

August 22, 2014

FOURIER ANALYSIS: ASSIGNMENT - I

M.T. NAIR

We use the following notations: For $f \in L^1[-\pi, \pi]$, we let¹

$$S_N(f, x) := \sum_{n=-N}^N \hat{f}(n) e^{inx}, \quad D_N(t) := \sum_{n=-N}^N e^{int}, \quad K_N(t) := \frac{1}{N+1} \sum_{k=0}^N D_k(t).$$

- $CP[-\pi, \pi]$ denotes the vector space of all 2π -periodic complex valued functions defined on \mathbb{R} whose restrictions to $[-\pi, \pi]$ are continuous.
- $CP^{(k)}[-\pi, \pi]$ for $k \in \mathbb{N} \cup \{0\}$, denotes the vector space of all 2π -periodic complex valued functions defined on \mathbb{R} whose restrictions to $[-\pi, \pi]$ are k -times continuously differentiable. Note that (verify!) if f belongs to $CP^{(k)}[-\pi, \pi]$, then $f^{(j)}(-\pi) = f^{(j)}(\pi)$ for $j = 0, 1, \dots, k$.
- $AC[-\pi, \pi]$ denotes the vector space of all complex valued functions defined on $[-\pi, \pi]$ which are absolutely continuous.
- $ACP[-\pi, \pi]$ denotes the vector space of all 2π -periodic complex valued functions defined on \mathbb{R} whose restrictions to $[-\pi, \pi]$ are absolutely continuous.

Problems:

(1) Prove:

(a) Given any Riemann integrable function on $[a, b]$ and $\varepsilon > 0$, there exists a step function g on $[a, b]$ such that $\|f - g\|_1 := \int_a^b |f(x) - g(x)| dx < \varepsilon$.

(b) If f is a step function on $[a, b]$, then

$$\int_a^b f(t) \cos(nt) dt \rightarrow 0 \quad \text{and} \quad \int_a^b f(t) \sin(nt) dt \rightarrow 0 \quad \text{as } n \rightarrow \infty.$$

(c) If f is Riemann integrable on $[a, b]$, then

$$\int_a^b f(t) \cos(nt) dt \rightarrow 0 \quad \text{and} \quad \int_a^b f(t) \sin(nt) dt \rightarrow 0 \quad \text{as } n \rightarrow \infty.$$

(2) For $f \in L^1[-\pi, \pi]$, verify the following:

(a) $D_N(-t) = D_N(t)$ for all $t \in [-\pi, \pi]$.

$$(b) \int_{-\pi}^{\pi} D_N(t) dt = 1.$$

$$(c) D_N(t) = \frac{\sin(N + \frac{1}{2})t}{\sin(\frac{t}{2})}, t \neq 0.$$

$$(d) S_N(f, x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) D_N(x - t) dt = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - t) D_N(t) dt.$$

¹ $D_N(\cdot)$ and $K_N(\cdot)$ are called Dirichlet kernel and Fejer kernel, respectively.

(3) Show that $\int_{-\pi}^{\pi} |D_N(t)| dt \geq \frac{8}{\pi} \sum_{k=1}^N \frac{1}{k}$.

(4) Let $f \in L^1[-\pi, \pi]$. If $\sum_{n=1}^{\infty} |\hat{f}(n)| < \infty$, then the Fourier series of f converges uniformly on $[-\pi, \pi]$ to a continuous function. Why?

(5) Justify the following statements:

- If f is Lipschitz continuous at a point² $x \in [-\pi, \pi]$, then the Fourier series of f converges at x .
- If f is Holder continuous at a point³ $x \in [-\pi, \pi]$, then the Fourier series of f converges at x .
- If f is Lipschitz continuous⁴ on $[-\pi, \pi]$, then the Fourier series of f converges uniformly.
- If f is Holder continuous⁵ on $[-\pi, \pi]$, then the Fourier series of f converges uniformly.

(6) Prove the following:

- $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_N(t) dt = 1$.
- $K_N(t)$ is an even function and $K_N(t) \geq 0$ for all $t \in [-\pi, \pi]$.
- For $0 < \delta \leq \pi$, $\int_{\delta}^{\pi} K_N(t) dt \rightarrow 0$ as $N \rightarrow \infty$ on $[\delta, \pi]$.

(7) Let $u_n(x) = e^{inx}$ for $x \in [-\pi, \pi]$, $n \in \mathbb{Z}$ and $\mathcal{P}_T[-\pi, \pi] := \text{span}\{u_n : n \in \mathbb{Z}\}$, i.e., the space of all trigonometric polynomials. Justify the following:

- $\mathcal{P}_T[-\pi, \pi]$ is dense in $CP[-\pi, \pi]$ with respect to $\|\cdot\|_{\infty}$.
- $\mathcal{P}_T[-\pi, \pi]$ is dense in $L^2[-\pi, \pi]$ with respect to $\|\cdot\|_2$.

(8) Justify the following:

- If $f \in L^1[-\pi, \pi]$ and the Fourier series of f converges uniformly, say to g , then $\hat{g}(m) = \hat{f}(m)$ for all $m \in \mathbb{Z}$.
- If $f \in L^2[-\pi, \pi]$ and if the Fourier series of f converges uniformly, say to g , then $f = g$ a.e.
- If $f \in CP[-\pi, \pi]$ and if the Fourier series of f converges uniformly, say to g , then $f = g$.

(9) Let $f \in L^1[-\pi, \pi]$ and $0 < \delta \leq \pi$. Show that (you may use Riemann Lebesgue lemma) for every $x \in [-\pi, \pi]$,

- $\frac{1}{2\pi} \int_{\delta \leq |t| \leq \pi} [f(x) - f(x-t)] D_N(t) dt \rightarrow 0$ as $N \rightarrow \infty$.
- $\frac{1}{2\pi} \int_{\delta \leq |t| \leq \pi} [f(x+t) - f(x)] D_N(t) dt \rightarrow 0$ as $N \rightarrow \infty$.

(10) Let $f \in L^1[-\pi, \pi]$. Prove the following (you may use Problem 9 and ideas from Dini criterion):

- If $f(x+) := \lim_{t \rightarrow 0+} f(x+t)$, $f'(x+) := \lim_{t \rightarrow 0+} \frac{f(x+t) - f(x)}{t}$ exist at a point $x \in [-\pi, \pi]$, then $S_N(f, x) \rightarrow f(x+)$ as $N \rightarrow \infty$.
- If $f(x-) := \lim_{t \rightarrow 0+} f(x-t)$, $f'(x-) := \lim_{t \rightarrow 0+} \frac{f(x) - f(x-t)}{t}$ exist at a point $x \in (-\pi, \pi]$, then $S_N(f, x) \rightarrow f(x-)$ as $N \rightarrow \infty$.

²There exists $\kappa > 0$ such that $|f(x) - f(y)| \leq \kappa|x - y|$ for all $y \in [-\pi, \pi]$, where κ may depend on x

³There exists $\kappa > 0$ and $\alpha > 0$ such that $|f(x) - f(y)| \leq \kappa|x - y|^{\alpha}$ for all $y \in [-\pi, \pi]$, where κ and α may depend on x .

⁴There exists $\kappa > 0$ such that $|f(x) - f(y)| \leq \kappa|x - y|$ for all $x, y \in [-\pi, \pi]$

⁵There exists $\kappa > 0$ and $\alpha > 0$ such that $|f(x) - f(y)| \leq \kappa|x - y|^{\alpha}$ for all $x, y \in [-\pi, \pi]$

(c) If the limits in (a) and (b) above exist exist at a point $x \in (-\pi, \pi)$, then

$$S_N(f, x) \rightarrow \frac{1}{2}[f(x+) + f(x-)] \text{ as } N \rightarrow \infty.$$

(11) Prove the following⁶:

- (a) If $f \in ACP[-\pi, \pi]$ is absolutely continuous on $[-\pi, \pi]$, then $\widehat{f}'(n) = (in)\widehat{f}(n)$ for all $n \in \mathbb{Z}$.
- (b) If $f \in CP^{k-1}[-\pi, \pi]$ and $f^{(k-1)} \in ACP[-\pi, \pi]$, then $\widehat{f^{(k)}}(n) = (in)^k \widehat{f}(n)$ for all $n \in \mathbb{Z}$.
- (c) If $f \in CP^1[-\pi, \pi]$, $f' \in AC[-\pi, \pi]$ and $\widehat{f}(n) = 0$ for all $n \in \mathbb{N}$, then $f = 0$.
- (d) If $f \in L^1[-\pi, \pi]$ and if $\widehat{f}(n) = 0$ for all $n \in \mathbb{N}$, then $f = 0$ a.e.

(12) *Hardy's Tauberian Theorem:*

Suppose $f \in L^1[-\pi, \pi]$ and $\widehat{f}(n) = O(1/n)$. If $\sigma_N(f, x) \rightarrow f(x)$ at some point $x \in [-\pi, \pi]$ (resp. uniformly on $[-\pi, \pi]$), then $S_N(f, x) \rightarrow f(x)$ (resp. uniformly on $[-\pi, \pi]$).

Prove that if f is absolutely continuous on $[-\pi, \pi]$, then Fourier series of f converges uniformly to f .

(13) Show that, for each $x \in [-\pi, \pi]$ and $N \in \mathbb{N}$, the map $f \mapsto S_N(f, x)$ is a continuous linear transformation on $CP[-\pi, \pi]$ with respect to the norm $\|\cdot\|_\infty$.

(14) Prove that

$$\sup_{f \in CP[-\pi, \pi], \|f\|_\infty \leq 1} |S_N(f, 0)| = \frac{1}{2\pi} \int_{-\pi}^{\pi} |D_N(t)| dt.$$

(15) Prove that⁷ there exists $f \in CP[-\pi, \pi]$ such that $S_N(f, 0) \not\rightarrow f(0)$ as $N \rightarrow \infty$.

(16) Prove that $x^2 = \frac{\pi^3}{3} + 4 \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx$ and deduce

$$\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^2} = \frac{\pi^2}{12} \quad \text{and} \quad \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.$$

(17) Prove that $x = 2 \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin nx$ and deduce the *Madhava-Nilakantha* series

$$\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}.$$

DEPARTMENT OF MATHEMATICS, I.I.T. MADRAS, CHENNAI-600 036, INDIA

E-mail address: mtnair@iitm.ac.in

⁶Recall *Fundamental theorem of Lebesgue Integration*: A function $f : [a, b] \rightarrow \mathbb{C}$ is absolutely continuous if and only if there exists $g \in L^1[a, b]$ such that $f(x) = f(a) + \int_a^x g(t)dt$ for all $x \in [a, b]$, and in that case f is differentiable a.e., and $f' = g$ a.e.

⁷You may use a special case of *Uniform boundedness principle*: Let \mathcal{X} be a Banach space and (φ_n) be a sequence of continuous linear functionals on \mathcal{X} which is pointwise bounded on $\{u \in \mathcal{X} : \|u\| \leq 1\}$. Then (φ_n) is uniformly bounded on $\{u \in \mathcal{X} : \|u\| \leq 1\}$.