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FOURIER ANALYSIS: ASSIGNMENT - I

M.T. NAIR

We use the following notations: For f ∈ L1[−π, π], we let1

SN (f, x) :=

N∑
n=−N

f̂(n)einx, DN (t) :=

N∑
n=−N

eint, KN (t) :=
1

N + 1

N∑
k=0

Dk(t).

• CP [−π, π] denotes the vector space of all 2π-periodic complex valued functions defined on R
whose restrictions to [−π, π] are continuous.

• CP (k)[−π, π] for k ∈ N ∪ {0}, denotes the vector space of all 2π-periodic complex valued

functions defined on R whose restrictions to [−π, π] are k-times continuously differentiable.

Note that (verify!) if f belongs to CP (k)[−π, π], then f (j)(−π) = f (j)(π) for j = 0, 1, . . . , k.

• AC[−π, π] denotes the vector space of all complex valued functions defined on [−π, π] which

are absolutely continuous.

• ACP [−π, π] denotes the vector space of all 2π-periodic complex valued functions defined on

R whose restrictions to [−π, π] are absolutely continuous.

Problems:

(1) Prove:

(a) Given any Riemann integrable function on [a, b] and ε > 0, there exists a step function g

on [a, b] such that ‖f − g‖1 :=
∫ b
a
|f(x)− g(x)|dx < ε.

(b) If f is a step function on [a, b], then∫ b

a

f(t) cos(nt)dt→ 0 and

∫ b

a

f(t) sin(nt)dt→ 0 as n→∞.

(c) If f is Riemann integrable on [a, b], then∫ b

a

f(t) cos(nt)dt→ 0 and

∫ b

a

f(t) sin(nt)dt→ 0 as n→∞.

(2) For f ∈ L1[−π, π], verify the following:

(a) DN (−t) = DN (t) for all t ∈ [−π, π].

(b)

∫ π

−π
DN (t)dt = 1.

(c) DN (t) =
sin(N + 1

2 )t

sin( t2 )
, t 6= 0.

(d) SN (f, x) =
1

2π

∫ π

−π
f(t)DN (x− t)dt =

1

2π

∫ π

−π
f(x− t)DN (t)dt.

1DN (·) and KN (·) are called Dirchlet kernel and Fejer kernel, respectively.
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(3) Show that

∫ π

−π
|DN (t)|dt ≥ 8

π

N∑
k=1

1

k
.

(4) Let f ∈ L1[−π, π]. If
∑∞
n=1 |f̂(n)| < ∞, then the Fourier series of f converges uniformly on

[−π, π] to a continuous function. Why?

(5) Justify the following statements:

(a) If f is Lipschits continuous at a point2 x ∈ [−π, π] , then the Fourier series of f converges

at x.

(b) If f is Holder continuous at a point3 x ∈ [−π, π], then the Fourier of f converges at x.

(c) If f is Lipschits continuous4 on [−π, π], then the Fourier of f converges uniformly.

(d) If f is Holder continuous5 on [−π, π], then the Fourier of f converges uniformly.

(6) Prove the following:

(a)
1

2π

∫ π

−π
KN (t)dt = 1.

(b) KN (t) is an even function and KN (t) ≥ 0 for all t ∈ [−π, π].

(c) For 0 < δ ≤ π,
∫ π

δ

KN (t)dt→ 0 as N →∞ on [δ, π].

(7) Let un(x) = einx for x ∈ [−π, π, ], n ∈ Z and PT [−π, π] := span{un : n ∈ Z}, i.e., the space

of all trigonometric polynomials. Justify the following:

(a) PT [−π, π] is dense in CP [−π, π] with respect to ‖ · ‖∞.

(b) PT [−π, π] is dense in L2[−π, π] with respect to ‖ · ‖2.

(8) Justify the following:

(a) If f ∈ L1[−π, π] and the Fourier series of f converges uniformly, say to g, then ĝ(m) =

f̂(m) for all m ∈ Z.

(b) If f ∈ L2[−π, π] and if the Fourier series of f converges uniformly, say to g, then f = g

a.e.

(c) If f ∈ CP [−π, π] and if the Fourier series of f converges uniformly, say to g, then f = g.

(9) Let f ∈ L1[−π, π] and 0 < δ ≤ π. Show that (you may use Riemann Lebesgue lemma) for

every x ∈ [−π, π],

(a)
1

2π

∫
δ≤|t|≤π

[f(x)− f(x− t)]DN (t)dt→ 0 as N →∞.

(b)
1

2π

∫
δ≤|t|≤π

[f(x+ t)− f(x)]DN (t)dt→ 0 as N →∞.

(10) Let f ∈ L1[−π, π]. Prove the following (you may use Problem 9 and ideas from Dini criterion):

(a) If f(x+) := lim
t→0+

f(x+ t), f ′(x+) := lim
t→0+

f(x+ t)− f(x)

t
exist at a point x ∈ [−π, π),

then SN (f, x)→ f(x+) as N →∞.

(b) If f(x−) := lim
t→0+

f(x− t), f ′(x−) := lim
t→0+

f(x)− f(x− t)
t

exist at a point x ∈ (−π, π],

then SN (f, x)→ f(x−) as N →∞.

2There exists κ > 0 such that |f(x)− f(y)| ≤ κ|x− y| for all y ∈ [−π, π], where κ may depend on x
3There exists κ > 0 and α > 0 such that |f(x) − f(y)| ≤ κ|x − y|α for all y ∈ [−π, π], where κ and α may depend

on x.
4There exists κ > 0 such that |f(x)− f(y)| ≤ κ|x− y| for all x, y ∈ [−π, π]
5There exists κ > 0 and α > 0 such that |f(x)− f(y)| ≤ κ|x− y|α for all x, y ∈ [−π, π]
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(c) If the limits in (a) and (b) above exist exist at a point x ∈ (−π, π), then

SN (f, x)→ 1

2
[f(x+) + f(x−)] as N →∞.

(11) Prove the following6:

(a) If f ∈ ACP [−π, π] is absolutely continuous on [−π, π], then f̂ ′(n) = (in)f̂(n) for all

n ∈ Z.

(b) If f ∈ CP k−1[−π, π] and f (k−1) ∈ ACP [−π, π], then f̂ (k)(n) = (in)kf̂(n) for all n ∈ Z.

(c) If f ∈ CP 1[−π, π], f ′ ∈ AC[−π, π] and f̂(n) = 0 for all n ∈ N, then f = 0.

(d) If f ∈ L1[−π, π] and if f̂(n) = 0 for all n ∈ N, then f = 0 a.e.

(12) Hardy’s Tauberian Theorem:

Suppose f ∈ L1[−π, π] and f̂(n) = O(1/n). If σN (f, x) → f(x) at some point

x ∈ [−π, π] (resp. uniformly on [−π, π]), then SN (f, x)→ f(x) (resp. uniformly on

[−π, π]).

Prove that if f is absolutely continuous on [−π, π], then Fourier series of f converges uniformly

to f .

(13) Show that, for each x ∈ [−π, π] and N ∈ N, the map f 7→ SN (f, x) is a continuous linear

transformation on CP [−π, π] with respect to the norm ‖ · ‖∞.

(14) Prove that

sup
f∈CP [−π,π], ‖f‖∞≤1

|SN (f, 0)| = 1

2π

∫ π

−π
|DN (t)|dt.

(15) Prove that7 there exists f ∈ CP [−π, π] such that SN (f, 0) 6→ f(0) as N →∞.

(16) Prove that x2 =
π3

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx and deduce

∞∑
n=1

(−1)n+1

n2
=
π2

12
and

∞∑
n=1

1

n2
=
π2

6
.

(17) Prove that x = 2
∑
n=1

(−1)n+1

n sinnx and deduce the Madhava-Nīlakaṅtha series

π

4
=

∞∑
n=0

(−1)n

2n+ 1
.
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6Recall Fundamental theorem of Lebesgue Integration: A function f : [a, b]→ C is absolutely continuous if and only

if there exists g ∈ L1[a, b] such that f(x) = f(a) +
∫ x
a g(t)dt for all x ∈ [a, b], and in that case f is differentiable a.e.,

and f ′ = g a.e.
7You may use a special case of Uniform boundedness principle: Let X be a a Banach space and (ϕn) be a sequence of

continuous linear functionals on X which is pointwise bounded on {u ∈ X : ‖u‖ ≤ 1}. Then (ϕn) is uniformly bounded

on {u ∈ X : ‖u‖ ≤ 1}.


