

October 8, 2014

FOURIER ANALYSIS: ASSIGNMENT - II

M.T. NAIR

- (1) Let $f \in L^1(\mathbb{R}^d)$. Prove the following:
 - (a) $\hat{f}(\xi)$ is well-defined for every $\xi \in \mathbb{R}^d$.
 - (b) $\sup_{\xi \in \mathbb{R}^d} |\hat{f}(\xi)| \leq \|f\|_1$.
 - (c) $\xi \rightarrow \hat{f}(\xi)$ is uniformly continuous on \mathbb{R}^d .
 - (d) The map $f \mapsto \hat{f}$ is a linear operator from $L^1(\mathbb{R}^d)$ to $C_b(\mathbb{R}^d)$ with norm at most 1.
 - (e) $|\hat{f}(\xi)| \rightarrow 0$ as $|\xi| \rightarrow 0$.
- (2) Let $1 \leq p < \infty$. For $f \in L^p(\mathbb{R}^d)$ and $y \in \mathbb{R}^d$, let

$$(\tau_y f)(x) := f(x - y), \quad x \in \mathbb{R}^d.$$

For each $f \in L^p(\mathbb{R}^d)$, prove the following:

- (a) $\tau_y f \in L^p(\mathbb{R}^d)$ for every $y \in \mathbb{R}^d$.
- (b) The map $y \mapsto \tau_y f$ from \mathbb{R}^d to $L^p(\mathbb{R}^d)$ is continuous.
- (3) Prove that, if $f \in L^1(\mathbb{R})$ is differentiable with $f' \in L^1(\mathbb{R})$, then

$$\hat{f}'(\xi) = (i\xi)\hat{f}(\xi), \quad \xi \in \mathbb{R}.$$

- (4) Suppose $f \in L^1(\mathbb{R})$ such that $x \mapsto g(x) := xf(x)$ belongs to $L^1(\mathbb{R})$. Prove that \hat{f} is differentiable and

$$(\hat{f})'(\xi) = i\hat{g}(\xi), \quad \xi \in \mathbb{R}.$$

- (5) Let

$$\begin{aligned} (e_h f)(x) &= e^{ih \cdot x} f(x), & (\tau_h f)(x) &= f(x - h), \\ (\mathcal{R} f)(x) &= f(-x), & (D_t f)(x) &= f(tx). \end{aligned}$$

For $f \in L^1(\mathbb{R}^d)$, $h \in \mathbb{R}^d$, $0 \neq t \in \mathbb{R}$, prove the following.

- (a) $\widehat{e_h f} = \tau_h \hat{f}$,
- (b) $\widehat{\tau_h f} = e_{-h} \hat{f}$,
- (c) $\widehat{\mathcal{R} f} = \mathcal{R} \hat{f}$,
- (d) $\widehat{D_t f} = |t|^{-d} D_{1/t} \hat{f}$, $0 \neq t \in \mathbb{R}$.

- (6) Prove that the operator $f \mapsto \hat{f}$ from $L^1(\mathbb{R}^d)$ to $C_0(\mathbb{R}^d)$ is not onto.
- (7) Suppose $f \in L^1(\mathbb{R})$. If $\hat{f} \in L^1(\mathbb{R})$ and if

$$g(x) := \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(t) e^{itx} dt, \quad x \in \mathbb{R},$$

then prove that $f = g$ a.e. Also deduce the following.

(a) If $f \in C_0(\mathbb{R}) \cap L^1(\mathbb{R})$ such that $\hat{f} \in L^1(\mathbb{R})$, then

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(t) e^{itx} dt \quad \forall x \in \mathbb{R}.$$

(b) $f \mapsto \hat{f}$ is an injective operator.

(8) Let $\varphi : \mathbb{R} \rightarrow \mathbb{R}$ be an integrable function such that $0 < \varphi(x) \leq 1$ for all $x \in \mathbb{R}$ and $\varphi(\lambda x) := \varphi(\lambda x) \rightarrow 1$ as $\lambda \rightarrow 0+$. Prove that, for every $g \in L^1(\mathbb{R})$,

$$\int_{\mathbb{R}} \varphi(\lambda t) g(t) e^{itx} dt \rightarrow \int_{\mathbb{R}} g(t) e^{itx} dt.$$

(9) Let φ be as in Problem(8) and let ψ be defined by $\psi(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \varphi(t) e^{itx} dt$ for $x \in \mathbb{R}$. If $f \in L^1(\mathbb{R})$ is such that $\hat{f} \in L^1(\mathbb{R})$ and if $\int_{\mathbb{R}} \psi(x) dx = 1$, then prove that

$$\frac{1}{2\pi} \int_{\mathbb{R}} \varphi(\lambda t) \hat{f}(t) e^{itx} dt = \int_{\mathbb{R}} f(x - \lambda s) \psi(s) ds.$$

(10) Let $\psi \in L^1(\mathbb{R})$ be a non-negative function such that $\int_{\mathbb{R}} \psi(x) dx = 1$ and for $f \in L^1(\mathbb{R})$ and $\lambda > 0$, let

$$h_{\lambda}(x) := \int_{\mathbb{R}} f(x - \lambda s) \psi(s) ds.$$

Prove that $\|h_{\lambda} - f\|_1 \rightarrow 0$ as $\lambda \rightarrow 0$. Deduce the following.

(a) There exists a sequence (λ_n) of positive real numbers such that $h_{\lambda_n} \rightarrow f$ a.e.

(b) If φ is as in Problem(8), $f \in L^1(\mathbb{R})$ such that $\hat{f} \in L^1(\mathbb{R})$, and

$$f_{\lambda}(x) := \int_{\mathbb{R}} \varphi(\lambda t) \hat{f}(t) e^{itx} dt,$$

then $\|f_{\lambda} - f\|_1 \rightarrow 0$ as $\lambda \rightarrow 0$.

(11) Let $\varphi(x) = e^{-|x|}$. Verify the following.

(a) φ satisfies the conditions in Problem(8).

(b) $\psi(x) := \frac{1}{2\pi} \int_{\mathbb{R}} \varphi(t) e^{itx} dt$, $x \in \mathbb{R}$ satisfies $\int_{\mathbb{R}} \psi(x) dx = 1$.

(12) Let ψ be as in Problem(9). If $f \in L^p(\mathbb{R})$ for $1 \leq p < \infty$, then prove that $f * \psi_{\lambda} \in L^p(\mathbb{R})$ and $\lim_{\lambda \rightarrow 0} \|f * \psi_{\lambda} - f\|_p = 0$.

(13) Let ψ be as in Problem(9) and $f \in L^{\infty}(\mathbb{R})$. Prove that if f is continuous at a point $x \in \mathbb{R}$, then $\lim_{\lambda \rightarrow 0} (f * \psi_{\lambda})(x) = f(x)$, where ψ_{λ} is as in Problem(9).

(14) Prove the following.

(a) If $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, then $\hat{f} \in L^2(\mathbb{R})$ and $\|\hat{f}\|_2 = 2\pi \|f\|_2$.

(b) The set $Y := \{\hat{f} : f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})\}$ is dense in $L^2(\mathbb{R})$.

(15) Prove that there exists a unique surjective continuous linear operator Φ from $L^2(\mathbb{R})$ onto itself such that $\Phi(f) = \hat{f}$ for every $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$. Show also that $\|\Phi(f)\|_2 = 2\pi\|f\|_2$ for every $f \in L^2(\mathbb{R})$.

(16) Let $f \in L^1(\mathbb{R}^d)$ and for $n > 0$, let $E_n := \{x \in \mathbb{R}^d : |x| \leq n\}$. Prove that

$$\int_{E_n} f(x)e^{-ix \cdot \xi} dx \rightarrow \int_{\mathbb{R}^d} f(x)e^{-ix \cdot \xi} dx = \hat{f}(\xi) \quad \text{as } n \rightarrow \infty$$

for every $\xi \in \mathbb{R}^d$.

(17) Let $f \in L^2(\mathbb{R})$ and for $n > 0$, let $E_n := \{x \in \mathbb{R}^d : |x| \leq n\}$. Prove the following.

- $f_n := \chi_{E_n} f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$ for every $n \in \mathbb{N}$.
- $\|f - f_n\|_2 \rightarrow 0$ as $n \rightarrow \infty$.
- (\hat{f}_n) is a Cauchy sequence in $L^2(\mathbb{R})$.
- $\|\hat{f}_n - \Phi(f)\|_2 \rightarrow 0$ as $n \rightarrow \infty$, where Φ is the Fourier-Plancheral transform.
- There exists a subsequence (\hat{f}_{k_n}) for (\hat{f}_n) such that $\hat{f}_{k_n} \rightarrow \Phi(f)$ a.e. on \mathbb{R} .

(18) For $f \in L^2(\mathbb{R})$ and $r > 0$, let

$$g_r(\xi) := \int_{-r}^r f(x)e^{-ix\xi} dx, \quad h_r(x) := \int_{-r}^r \Phi(f)(\xi)e^{ix\xi} dt$$

for all $x, \xi \in \mathbb{R}$. Then $g_r \in L^2(\mathbb{R})$, $h_r \in L^2(\mathbb{R})$, and

$$\|g_r - \Phi(f)\|_2 \rightarrow 0, \quad \|h_r - f\|_2 \rightarrow 0 \quad \text{as } r \rightarrow \infty.$$

DEPARTMENT OF MATHEMATICS, I.I.T. MADRAS, CHENNAI-600 036, INDIA

E-mail address: mtnair@iitm.ac.in