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Introductory Material



Chapter 1

Convolutions

1.1. Definition of Convolutions
If f and g are two complex-valued, measurable functions on R?, their convolu-
tion f = g is defined by
frgl@)=| flz—y)gly)dy
Rd

for those values of € R? for which the integral exists. We will in this chapter
give a number of conditions on f and g under which the convolution f # g exists at
least a.e.

1.2. Basic Properties of Convolutions

We begin by showing that the convolution between two functions in L'(R%) is
defined and belongs to L'(R?).

Proposition 1.2.1. If f,g € L*(R?), then the convolution f + g is defined a.e.
on R%. Moreover, f«ge LY(R®) with ||f +g|1 < ||f]1]gl:-

Proof. We will use the fact that the function (z,y) — f(x —y)g(y), (z,y) € R??,
is measurable on R2? without a proof. According to Tonelli’s theorem (Theo-
rem A.7.2),

[[1r@=lswigeas = [ ([ 1= llottaz ) a

R2d
B Ld (Lw /@ =)l dy) l9(y)| dy (1.1)
= | @1z | tawldy <o,

so it follows that h € L'(R??). Fubini’s theorem (Theorem A.7.1) then shows that
it follows that f +g € L'(R%) and, in particular, that the convolution f * g(z) exists
for a.e. z € R%. The last assertion, finally, follows directly from (1.1). [ |

The next proposition shows that convolution is both commutative and associa-
tive.

Proposition 1.2.2. Suppose that f,g,h € L*(RY). Then

(i) f=g=g=f;
(it) (f=g)#=h=fx(g=h).
Proof.

(a) Making the substitution z = x — y, we obtain

Frolw) = | fe=vat)dy= | FGale 2= ge @)
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(b) The associativity property follows from Fubini’s theorem and (a):

(f 9) » hia) = j( e —y —z)dz>h<y>dy

J /z) (JR 9(@ =z = y)h(y) dy) dz

* (g h)(z). ]

Definition 1.2.3. The support of a function f, defined a.e. on R?, is the set
supp f = {x € R? : f|p,(x) # 0 for every § > 0}.

Remark 1.2.4. A few remarks are in order.

(a) If z does not belong to supp f, then there exists a ball Bs(x) such that f = 0 a.e.
on Bs(xz). This implies that the complement of supp f is open, so supp f is
closed.

(b) Notice also that f = 0 a.e. on the complement of supp f.

c) It follows that if f is integrable on R, then (., f(z)dx = | f(x)dx
R supp f

(d) Ome can show that if f is continuous, then suppf = {zeR?: f(z) #0}. In
general, however, this is not true. Take for instance f = xq. Then supp f = I,

but {ze R?: f(z) # 0} =R

Proposition 1.2.5. If f,g € L*(R?), then supp(f * g) < supp f + supp g.
Here, supp f + supp g is the algebraic sum of supp f and suppy, i.e.,

supp f +suppg = {x +y : x € supp f and y € supp g}.

It follows from the theorem that if supp f and supp g are compact, then supp f # g
is also compact.

Proof (Proposition 1.2.5). Let F be a closed superset to supp f + supp g. If z
does not belong to F', then there exists a number § > 0 such that Bs(zo) does not
intersect F since F is closed. It follows that if € Bs(x¢), then = — y ¢ supp f for
any point y € supp g, which implies that f=g(x) = 0. Hence, the restriction of f g
to Bs(xo) is 0, so xg does not belong to supp(f # g). Thus, supp(f * g) € F. This
holds for every set F', thus proving the proposition. |

1.3. Young’s Inequality

Our next result about convolutions — often called Young’s inequality — gener-
alizes Theorem 1.2.1 considerably.

Theorem 1.3.1. Suppose that 1 < p,q < o0 satisfy % + % >landlet 1<r<ow
be defined by %—I—% =141 If fe LP(R%) and g € LY(RY), then f =g is defined a.e.
on RY and belongs to L' (R%) with |f * gl < | lgl

Remark 1.3.2. Before proving the theorem, let us mention a few special cases.
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(a) If p=¢q =1, then r = 1, and we retrieve the result in Theorem 1.2.1.

(b) More generally, if 1 < p < o0 and ¢ = 1, then » = p, so f + g € LP(R?)
with [ f = glp < [ fllplglls-

(c) Finally, if ¢ = p/, then r = 0, so f » g € L*(R?) with |[f * g < [ £lp]glly-

Proof (Theorem 1.3.1). We first consider the case r = c0. Then ¢ = p’, and
Holder’s inequality shows that

fRd 1f(@=llgw)ldy < | flplgly  for ae. z e R,

from which it follows that f = g exists a.e. and | f * glloc < || fllpllgllp-

We next turn to the case 1 < r < o0. Notice that p and ¢ are finite in this case
and that r > p,¢. Thus, if « = 1—p/r, then 0 < a < 1. Let also 8 = r/q, so that S
satisfies 1 < 8 < 0. It now follows from Hoélder’s inequality that

M) = | = llswlds= | 1=l =l dy

1/q
< (f If(:v—y)l‘la’qlg(y)lqdy) 171
Rd
for a.e. € R%, which implies that

M) <Y [ 1=l gt d.

Using this and Minkowski’s integral inequality (Theorem A.6.4), it follows that

B 1/B
btz = s <1tz ([ ([ 15 =1t lgmitay) as)

/B
<t [ ([ =it gy

R4
1—
= 17151 £1G =004, gl
since a¢’ = p. Finally, since 8q = r and (1 — a)Bq = p, we obtain that

I8l < 1FIE1F1 " Ngle = 1£1p0glq- u

1.4. Regularity of Convolutions

We next study regularity properties, i.e., continuity and differentiability, of con-
volutions. We shall use the fact that translation is a continuous operation on
LP(R?) for 1 < p < . Here, the translate 7, f of a function f on R? in the
direction h € R? is defined by

mf(@) = flx—h), zeR"

Lemma 1.4.1. If f € LP(R%), where 1 < p < oo, then m,f — f in LP(R%)
as h — 0.
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Proof. Let € > 0 be an arbitrary number and choose a step function ¢ on R? such
that | f —¢|p, < €. Using direct calculations or the dominated convergence theorem,
it is easy to see that 7,¢ — ¢ in LP(R?). It follows that

1f =nfllo < If = 0lp + 16 = m0dlp + 1700 = T flp
=2|f = 0lp + ¢ = mndlp < 3¢

if |h| is small enough. |

As noticed in Remark 1.3.2 (c), f g € L*(R%) if f € L?(R?) and g € L” (R%),
where 1 < p < 00. We next show that f g is actually uniformly continuous in this
case and also that f = g(x) tends to 0 as |z| > 0 if 1 < p < 0.

Theorem 1.4.2. Suppose that f € LP(RY) and g € LP (R?), where 1 < p < .
Then f * g is uniformly continuous on R?. For 1 < p < oo, there also holds
that lim| |, f * g(x) = 0.

Proof. To prove that f g is uniformly continuous, we may assume that 1 < p <
(if p = o0, we let f och g change roles). An application of Holder’s inequality then
shows that

5 g(a+ 1) — [ o g(a) <f @+ h—y)— f(z—9)llg()|dy

Rd
< mnf = Flol gl -

According to Lemma 1.4.1, |7—_pf — fll, — 0 as |h| — 0, so it follows that the
convolution f # g is uniformly continuous. For the proof of the second assertion,
we let f, = xB,0)f and g, = xB,(0)g for n = 1,2,.... Then f, — f in LP(RY)
and g, — g in Lp’(Rd). The first part of the proof together with Theorem 1.2.5
also shows that f, * g, € C.(R?). Moreover,

[fn# gn = f# gl <[ flplgn = gl + 110 = Fllplglp-

This shows that f, # g, — f * g uniformly, from which it follows that f = g(x) — 0
as || — oo. [ |

We now consider differentiability of convolutions. In general, one expects f#g to
be at least as smooth as either f or g. Formally, this follows by differentiating f = g
under the integral sign:

(f + g)(z) = 0° f(x—y)g(y)dy=j 0 f(x — y)g(y) dy = () » 9(2)
Rd Rd

if 0*f exists, so that 0%(f * g) = (0%f) = g. Similarly, 6*(f = g) = f * 0%g if 0%g
exists. We will now show that these formal calculations can be justified if certain
conditions are imposed on f and g.

Theorem 1.4.3. Suppose that f € LP(R%), where 1 < p < o0, and g € C™(RY)
with 0*g € L (R?) for || < m. Then f+ge C™(R%) and

0%(frg)=f=x0d% forla|<m. (1.2)
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Proof. It suffices to prove the theorem for m = 1; the general case follows by
induction. The fact that f = g is continuous is a consequence of Theorem 1.4.2. To
prove (1.2), we first consider the case p = 1. Let e; be one of the elements in the
standard basis for R?. We will use the following notation:

[ #g(x+hej) — f+g(x)
h 9

Dj(f = g)(z,h) =

where z € R? and h € R ~ {0}. Using the assumptions on f and g together with
the dominated convergence theorem, we see that

(y + hej) —g(y)
; d

D(f rg)ash) = | Jlw—p)* y

— | fa—noatdy wsh—o,

which shows that 0;(f # g) = f 0,9 for j =1,...,d. Now suppose that 1 < p < oo.
Given € > 0, choose R > 2 so large that

J lg()I” dy < e
lyl=R/2
According to the mean-value theorem,

If*jgw)—Dﬂf*m@%MI<f [f (@ = )l10;9(y) — 059(y + Ohe;)| dy

ly|<R

+j (@ — )11;9(0) — 59(y + Bhe;)| dy
ly|=R

for some 6 € [0,1]. In this inequality, the first integral in the right-hand side tends
to 0 as h — O since the integrand tends to 0, f is locally integrable, and 0;g is
locally bounded. If |h] < 1, we also have

, 1/p
[ |ﬂx—yM%y@%—@My+9h%N@/<%Ub(f |@g@npm0
ly|ZzR |
< 2fle.

This establishes (1.2) in the case 1 < p < o0. Finally, f = d;9 € C(R?) according to
Theorem 1.4.2, so f * g € C*(RY). [ |

y|=R/2

Remark 1.4.4. Using exactly the same technique, one can show that the assertion
in Theorem 1.4.3 also holds true if we assume that f € L (R?) and g € CT*(R%).

loc

1.5. Approximate Identities

According to Theorem 1.2.1 and Theorem 1.2.2 (a), L'(R%) is a commutative
Banach algebra! with convolution as the product. A natural question to ask

LA Banach algebra is a Banach space B equipped with a product * such that | f * g| < | f|llgl
for all elements f, g € B.
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is whether this algebra has an multiplicative identity, i.e., if there exists a func-
tion K € L*(RY) such that

K+ f=f+K=ffor every f € L'(R%).

The answer to this question is in fact “no”. Indeed, suppose that K were such a
function. Then K % f = f for every function f € L'(R%) n L*(R%). This is a
contradiction since K * f is continuous in this case according to Theorem 1.4.2.

There are, however, sequences (K,)%_, < L'(R?) that approximate a mul-
tiplicative identity in the sense that K, * f — f in L'(RY) as n — oo for ev-
ery f e L'(R%). We will now see how such sequences can be constructed.

Definition 1.5.1. A sequence (K,,)’_; of integrable functions on R? is called an
approximate identity if

(1) Sga Kn(x)dz =1 for every n;
(ii) there exists a constant C' > 0 such that (g, |K,(z)|dz < C for every n;
(iii) limg, o0 S|w|25 | Ky (z)|dz = 0 for every & > 0.

Notice that if K > 0, then (ii) follows from (i). A simple recipe for constructing an
approximate identity is given by the following proposition:

Proposition 1.5.2. Suppose that K € L'(RY) satisfies the conditions K > 0
and {p. K(z)dx = 1. Put

Ku(z) = n’K(nz), xe RY, forn=1,2, ... (1.3)
Then (K,)X_, is an approximate identity.

Proof. Changing variables y = nx, we see that SRd K, (x)dz =1 for every n. The
same change of variables shows that

J 6|Kn(a:)|dx=J, IK(y)dy —> 0 asn — oo, =
T|=

ly|=znd

Theorem 1.5.3. Suppose that (K,)r_, is an approzimate identity and moreover
that f € LP(RY), where 1 < p < w. Then K, + f € LP(R) and K, + f — f
in LP(R?) as n — oo.

Proof. The fact that K, = f € LP(R) follows from Young’s inequality (see Re-
mark 1.3.2 (b)). Minkowski’s integral inequality (Theorem A.6.4) now shows that

(Ld |F(2) = Knf ()" dx) " ( JRd ”dx) p

< @) = Fa =P da) 1)l dy
Jo (I )
= | 1=l )

f (F(2) — f(x — ) Kn(y) dy
Rd
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We then split the last integral into two parts:

| = naiigaldy+ [ 07 = )l
ly|<o

y|=o

Since || f — 1, f|l, = 0 as y — 0 according to Lemma 1.4.1 and (ii) in Definition 1.5.1
holds, the first integral can be made arbitrarily small by choosing § sufficiently
small. Moreover, using the fact that | f —7, f|, < 2| f|, and (iii) in Definition 1.5.1,
we see that the second integral tends to 0 as n — 0. ]

The next result concerns pointwise and uniform convergence of convolutions with
approximate identities.

Theorem 1.5.4. Suppose that (K,)>_, is an approzimate identity and moreover

that f € LP(R%), where 1 < p < 0. Suppose also that
||K’n||Lp’({meRd:‘w‘>6}) —0 asn— (14)

for every 6 > 0. Then K, « f — f uniformly as n — o0 on a every compact
set K  R% where f is continuous.

Remark 1.5.5.

(i) Notice that pointwise convergence corresponds to the case when K consists

of just one point.

(ii) Notice also that if p = oo, then (1.4) coincides with (iii) in Definition 1.5.1.
(iii) Suppose that K is of the form (1.3), where K(x) = o(|z|~%) as |z| — o,
i.e., K(z) = |x|~%r(x), where r(x) — 0 as || — 0o. Then, for p = 1,
(nx

1Kl Lo ((zera:jz)6y) = SUP I 5)| <67 sup |r(y)| — 0 asn— o,
lo|z5  |Z] ly|>ns

and, for 1 < p <

o )””'
Kn o (f . = f 7,6193
Sl Lo (foeritsja)= 1) < ejzs 2]

< Cgyp sup |r(y)|— 0 asn — .
ly|zné

Therefore, (1.4) holds.

Proof (Theorem 1.5.4). Givene > 0, choose § > 0 such that |f(z)—f(z—y)| <€
for every z € K and every y € R? that satisfies |y| < 6. Suppose that |f(z)| < M
for every x € K. Then

F(@) = Ko+ f(2)] < j V@ = ey

@[ K@)y + f 1@ = o)1 (9)] dy

ly|=zé ly|=6

cosim | |Kuw)dy f |F(@ — )| (w)] dy-

ly|=6 ly|=6
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The first integral in the last member tends to 0 as n — o0 because of (iii). Also,

JI - | =K@ dy < [ flplEKnlLe qyera:jyi=oy)
Yy|l=

which shows that also the second integral tends to 0 as n — 00. It easy to see that
the convergence is uniform. [ |

Remark 1.5.6.

(a) In the definition of an approximate identity, the indices are the positive in-
tegers and the statements in the theorems just proved hold when n — oo.
In many cases, however, the indices naturally belong to some other subset of
the reals. One can, for instance, consider sequences (K.), where the index e
belongs to (0,00) and the limiting value for € is 0. We will also call such se-
quences approximate identities if they satisfy the properties in Definition 1.5.1
(with appropriate modifications). Let us also mention that Theorem 1.5.3 and
Theorem 1.5.4 hold true in such cases with identical proofs.

(b) In one dimension and under the assumption that every K, is even, it is possi-
ble to modify the proof of Theorem 1.5.4 to handle jump discontinuities. Sup-
pose that f € L”(R) and that the one-sided limits f(z™) = lim,_,o+ f(z + v)
and f(z7) = lim,_,o+ f(x — y) exist. Using the fact that K, is even, we see
that

oAx 1
f Kn(y)dy=§ forn=1,2,...,
0

from which it follows that

1

JUED) + 1) = Ka ) = [ (67 = e+ u)Kali)

0
(@) = fa = K dy
0

As in the proof of Theorem 1.5.4, one then shows that both these integrals tend

to 0 as n — o, so K,,  f(z) > $(f(z") + f(z7)).

Example 1.5.7. Put

1 1
Plz)=—-—
(x) ST z€R,
and L
_ lp—1.y _ €
Pg(x)—ﬁ P(8 l')—;m, $6R76>0.

Notice that P € LP(R) for 1 < p < o0. Since {© P(z)dz =1 and P > 0, (P:).0
is an approximate identity. We call P. the Poisson kernel. The integral

e

Posf@)=| fOP@—t)dt, weR,

where f € LP(R), is called the Poisson integral of f. Let u(z,y) = P, * f(z),
where (z,y) belongs to the upper half plane

H={(z,y) e R*: —0 <z <o and y > 0}.
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Notice that P,(x) is the imaginary part of —z~!, where z = z + iy € C, so P,()
is harmonic in H. This fact together with Theorem 1.4.3 imply that

Au(z,y) = ff: f@)APy(z—t)dt =0 for (x,y) € H,

which shows that u is harmonic in H. If moreover f € C(R), then Theorem 1.5.4
shows that u(z,y) — f(x) as y — 0 for every x € R. Thus, u is a solution to the
Dirichlet problem in H, i.e., a solution to Laplace’s equation Au = 0 in H
with boundary values f. O

Example 1.5.8. Put

and

1 .
Wt(x) = t71/2W(t71/2:C) = \/?tefwz/%f, T € ]3,7 t>0.
™

Then (W})i~o is an approximate identity since SfL W(z)dz =1 and W > 0; the
kernel W; is known as the Gauss kernel. If f € LP(R), where 1 < p < 00, then
the function u(z,t) = Wy = f(z), (x,t) € H, solves the heat equation:

uy —ul, =0 for (z,t) € H.

If also f € C(R), then u(z,t) — f(z) as t — 0 for every z € R, so u has boundary
values f. O

Example 1.5.9. Put

x
and
K, (z) = nK (nz) Lsinfz g 1,2
z)=nK(nz)==-——, = n=
n T nxQ ) ) ) )
One can show that {* L K(x)dx =1, so (K,)_, is an approximate identity. The
kernel K, is called the Fejér kernel for the real line. If f € LP(R) n C(R),

where 1 < p < o0, then K, = f(x) — f(z) as n — oo for every z € R. O

1.6. Regularization

In many situations, it is important to be able to approximate an LP-function with
smooth functions. The standard procedure for this is to use mollifiers.

Definition 1.6.1. A mollifier is a function ¢ € C*(R?) that satisfies the condi-
tions ¢ > 0, supp¢ < B1(0), and {,, ¢ dx = 1.

The following example contains the standard example of a mollifier.
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Example 1.6.2. It is not so hard to show that the function 1) on R, defined by

{el/t if t>0

vO=3 i t<0

belongs to C*(R); this comes down to showing that all right-hand derivatives of ¥
are 0 at t = 0. Now put ¢(z) = Cy(1 — |z|?) for x € RY, where the constant C

is chosen so that SRd #dx = 1. Then ¢ € C*(R?) with support in the closed unit
ball {ze R?: |z| < 1}. O

If ¢ is a mollifier and € > 0, put
¢e(z) = e (e x), = € R™

According to Proposition 1.5.7 and Remark 1.5.6, (¢.)c»0 is then an approximate
identity. Notice also that supp ¢. © Be(0).

The following theorem, which is a consequence of Theorem 1.2.5, Remark 1.4.4,
Theorem 1.5.3, and Theorem 1.5.4, summarizes a number of useful properties of
convolutions with mollifiers.

Theorem 1.6.3. Suppose that ¢ is a mollifier and moreover that f € LP(RY),
where 1 < p < 00. Then the following properties hold:

(i) the convolution ¢. * f exists a.e. on R® and belongs to LP(R?);
(ii) ¢e + f € C*(RY);
(#ii) the support of ¢ # [ is a subset of the closed e-neighbourhood of supp f;
(iv) if 1 <p< oo, then . * f — f in LP(R?) as ¢ — 0;
(v) ¢ % f — f uniformly as e — 0 on every compact subset to R where f is
continuous.

Notice that if supp f is compact, then ¢, * f € C*(R?). By an e-neighbourhood
of a subset E to R?, we mean the set

{z e R : dist(z, E) <&},

Its closure, i.e., the set obtained by replacing strict inequality with inequality, is
called a closed e-neighbourhood of F.

1.7. Partitions of Unity

The next proposition shows how the characteristic function of a compact set can
be regularized.

Proposition 1.7.1. Suppose that X < R% is open and that K is a compact subset
to X. Then there exists a function v € CF(X) such that 0 < ¢ < 1 and ¢ =1
on K.

Proof. Let 36 be the distance from K to X¢ and let x5 be the characteristic
function of a d-neighbourhood of K. If ¢ is a mollifier and if € satisfies 0 < & < §,
then the function ¥ = ¢ # xs belongs to C*™(X) with support in the closed 24-
neighbourhood of K. Moreover, it is easily checked that 0 < ¢y < 1 and ¢ =1
on K. [ |
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Corollary 1.7.2. Suppose that X; ..., X,, € R? are open and that ¢ € C*(X),
where X = U;nzl X;. Then there exist functions ¢; € CF(X;), j =1,...,m, such
that

¢ = i ®;- (1.5)
iz

If >0, then ¢; =0 forj =1,...,m.
Proof. It is easy to see that there exist compact sets Ki,...,K,, < X such
that K; ¢ X; for every j and supp¢ C U;n:1 K;. Now, using Proposition 1.7.1,
choose functions ¢; € CX(X;) that satisfy 0 < ¢; and ¢; = 1 on K, and put

¢1 =1, 2 = Pha(l — 1), ey S = (1 — 1) - oo - (L= Pim—1).

Then these functions satisfy (1.5) since
m m
dMoi—o=—0][(-¢;) =0 u
j=1 j=1

By combining Proposition 1.7.1 with Corollary 1.7.2, we obtain following result.
The functions ¢; in the Proposition are called a partition of unity subordinate
to the covering [ Jj~, X; of K.

Corollary 1.7.3. Suppose that X1 ..., X, € R¢ are open and that K is a compact
subset to U;n=1 X;. Then there exist functions ¢; € C(X;), j = 1,...,m, such
that 0 < ¢; < 1 for every j and Z;nzl ¢; < 1 with equality on K.

1.8. A Density Theorem

The following density theorem is a consequence of Theorem 1.6.3.

Theorem 1.8.1. If 1 < p < w and X < RY is open, then CF(X) is dense
in LP(X).

In the proof of the theorem, we use the following lemma.

Lemma 1.8.2. Suppose that X is an open subset to R? and that f € LP(X),
where 1 < p < o0. Then there exists a sequence (f)>_, such that every function f,
has compact support and f, — f in LP(X).

Proof. Put K,, = {z € X : |z| < n and dist(z, X¢) > 1/n} and f, = xk,f
for n =1,2,.... Then every set K, is compact and

If = fullp =J. |lf = fulPde — 0 asn— o
X

due to dominated convergence. [ |

Proof (Theorem 1.8.1). Let f € LP(R%). Given & > 0, choose a function g with
compact support in X such that |f—g|, < . Then extend g to R¢ by letting g = 0
outside X. If ¢ is a mollifier on R?, then ¢, * g € C(X) if 5 is chosen so small
that supp(¢, * g) € X. Moreover, |g — ¢, * g[, < € for a possibly even smaller
value of . Thus, for a sufficiently small 7,

If = bn = glp < If =gl + 19 = &0 * gllp < 2. -
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1.9. Periodic Convolutions
There is a corresponding convolution for functions f and g on R with period 2,
namely

27

In this chapter, we will concentrate on the non-periodic case; let us just mention
that all results remain true in the periodic case.

f=g(t) = L _’f f(t—s)g(s)ds.
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Chapter 2

L'-theory for Fourier Series

2.1. Function Spaces

For 1 < p < o0, we let LP(T) denote the class of measurable functions f, defined a.e.
on R, such that f has period 27, i.e.,

f(t+2m) = f(t) forae teR,

and f € LP(—m,m). In the case 1 < p < 00, we equip LP(T) with the norm

7T 1/p
71y = (52 [ trorar)

and for p = 00, we use the norm of L*(—m,7):
1/l = inf{C : |f(t)] < C a.e.}.

With these norms, LP(T) are Banach spaces. Notice that if f belongs to LP(T),
where 1 < p < 00, then

L plae < (1 [ If(t)l”dt>1/p,

o — 2 J_,

according to Holder’s inequality, which shows that LP(T) < L*(T). We similarly
have L*(T) < L'(T).

For m = 0,1, ..., we denote by C™(T) the class of m times continuously differ-
entiable functions on R with period 27, equipped with the norm

If1

e = 2 1fD .
§j=0

It is known that C"™(T) is a Banach space which is dense in LP(T) for 1 < p < oo.

2.2. Fourier Series and Fourier Coefficients

Definition 2.2.1. The Fourier series of a function f € L!(T) is the formal series

[vs]

> Fm)e™, (2.1)
n=—ao
where the Fourier coefficients f (n) are defined by
~ 1 (™ .
f(n) = o fe ™ dt, n=0,%1,... (2.2)
T

—T

The series (2.1) is convergent at t € R with value S if

N
lim ;N F(n)ei = 3. (2.3)

N>

15
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Since we do not assume that the Fourier series of a function f is absolutely conver-
gent, it is necessary to define in what sense (2.1) should be interpreted. Interpreting
the Fourier series as the limit of symmetric partial sums as in (2.3) gives a satisfac-
tory theory with nice formulae and also allows for cancellation. Let us stress that
we — at this stage — consider the Fourier series of a function as a purely formal
object and that we do not assume that it converges in any sense.

Example 2.2.2. Let f € L!(T) be defined by f(t) =t for —r <t < 7. Then

~ 1 (™ . 0 if n=0
=— | tedt= —1)"
) 2 J_ . c z( ) if n#0
n

The Fourier series of f is thus

-1 . x -1 n+1
) Z %emt =2 Z_:l % sin nt.

n#0

The last identity holds if either side converges because of the way we have defined
convergence for a Fourier series. We will return to this function and its Fourier
series in Example 2.6.3. d

2.3. Trigonometric Series

Definition 2.3.1. A trigonometric series is a formal series of the form

where (c,,)7___. is some sequence of complex numbers.

Every Fourier series is of course a trigonometric series. There are, however, trigono-
metric series that are not Fourier series. We now give an example of a trigonometric
series that later will be shown not to be a Fourier series (see Example 2.10.4). To
prove convergence, we will use a little discrete analysis.

If (an)_, is a sequence of complex numbers, we define the forward differ-
ence Aa, by

Aay, = apy1 —an, n=0,1,...

Then the following product rule holds:
A(anby) = (Aap)by, + anAb,, n=0,1,...

for all sequences (a,)%_; and (b,)?_;. Summing both sides in this identity from M
to N, where N > M > 1, we obtain the formula for summation by parts:

N N

Z anAbn = aN+1bN+1 — aMbM — Z (Aan)bn (24)
n=M n=M
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The reader should compare this formula with the formula for integration by parts.
Notice also that if we put

n—1

Z ap for n=1,2,..
A’!l = k=0 I

0 for n=0
then (Ay,)_, is a primitive to (a, ), in the sense that AA,, = a, forn =0,1,....

Proposition 2.3.2. Suppose that (an);— is a decreasing sequence of real numbers
such that a,, — 0 as n — o0. Then the trigonometric series Z;fzo ane™ is conver-
gent for t ¢ 2nZ. The series also converges uniformly on every compact subset K
to R such that K c (2km,2(k + 1)m) for some number k € Z.

Proof. For t € R, put B,(t) = ZZ;(I) eF, n =1,2,..., and By(t) = 0. Using the
fact that |’ — 1| = 2|sin £|, we see that

|Bn ()] =

et —1

eint _ 1‘ 1

= |sin £
for every t ¢ 2rZ and n = 0,1, .... It also follows from (2.4) that
N _ N
Z ane’™ = any1Bn+1(t) — an B (t) + Z (Aap)By(t).
n=M n=M

The first two terms in the right-hand side of this equation tend to 0 as M, N — oo.
This also applies to the third term since

1 X 1
(Aan)Bn(t)‘s ar 2 Au = o — o).

| sin 5

The statement about uniform convergence on a compact subset K to R such
that K < (2n7,2(n + 1)m) holds since |sin 2|~ is bounded on K. [ |

Example 2.3.3. Proposition 2.3.2 shows that the series
i eint
= Inn

is convergent for ¢ ¢ 27Z. It follows that the imaginary part of this series, namely
the series

v 6] .
sinnt

b
= Inn

converges for every t € R. We will show in Example 2.10.4 that this series is in fact
not a Fourier series. O
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2.4. Properties of Fourier Coefficients

We next collect some useful properties of the Fourier coefficients of a function. The
mapping, which maps a function f € L'(T) to the sequence (f(n))*_ . is called
the finite Fourier transform. According to the following result, which follows

directly from the definition, this map is linear.

Proposition 2.4.1. Suppose that f,g € L*(T) and o, 3 € C. Then

~

af + Bg(n) = af(n) + Bg(n) for every n € Z.

The next proposition shows that the discrete Fourier transform of a convolu-
tion is the product of the transforms of the functions involved. Recall that the
convolution between two functions f and g with period 27 is defined by

Feot) =5 [ se-s)gte)ds

and that f # g exists a.e. and belongs to L'(—m,); see Section 1.9.

Proposition 2.4.2. Suppose that f,g € L*(T). Then f + ge L'(T) and

—

frgln) = f(n)’g\(n) for every n € Z. (2.5)

Proof. We prove (2.5) by changing the order of integration and using the fact
that f has period 2m:

s = g [ ([ s 9mrar) e
(271r>2 f W ( : J(t = s)e dt) g(s)e ™ ds

= f(n)a(n). -

The first part of the next proposition shows that the finite Fourier transform
maps L(T) into ¢* (the space of bounded sequences of complex numbers), while
the second shows that that the image of L'(T) is a subset of cg (the space of
sequences of complex numbers that tend to 0 at +o0). In Example 2.10.4, we will
show that the last inclusion in fact is proper. We will refer to second property in
the proposition as the Riemann—Lebesgue lemma.

Proposition 2.4.3. Suppose that f € L*(T). Then the following properties hold:

~

() [f(m)] < £l for every n e Z;

~

(i) f(n) > 0 as n — +oo.

~

Proof. The first property follows directly from the definition of f(n). To prove
the second property, notice that

~

27 f(n)

f(t)e—int dt = — f(t)e—in(t+7r/n) dt

—T —T

- i ft— ﬂ/n)efmt dt,

—T
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so that
— 1 "
S od4m ) .

fn) (f(t) = f(t = m/n))e™""" dt. (2.6)

It now follows from (2.6) and Lemma 1.4.1 that

1f(0)] < L|f = Topufli — 0 asn — foo. -

Remark 2.4.4. Notice that if f € L!(T), then

1 U . ™

- i .
f(n) = ) (t) cosntdt — o f(t)sinntdt.

—T

This identity together with the Riemann-Lebesgue lemma show that if f is real-
valued, then both integrals in the right-hand side tend to 0 as n — +00. By splitting
a complex-valued function into its real and imaginary parts, we see that this is also
true in general.

~

According to the Riemann-Lebesgue lemma, f(n) = o(1) as n — +oo for every
function f € L'(T). We now show that if f has additional regularity, then f (n)
will decay faster. The main tool used is integration by parts. The largest class of
functions, for which it is possible to integrate by parts, is the class of absolutely
continuous functions.

Definition 2.4.5. Denote by AC(T) the class of absolutely continuous functions
on R with period 27.

Proposition 2.4.6. Suppose that f € C*(T) and f*~1 e AC(T), where k > 1.
Then

F®(n) = (in)*f(n), neZ. (2.7)

Moreover, f(n) = o(n™%) as n — +0, i.e., lim_ 1+ n¥ f(n) = 0.

Proof. The identity (2.7) follows by integrating the left-hand side k times by parts
using the fact that f is periodic:

D) = 5= [ 1O@e
- %(f(kfl)(ﬂ)e*im — fED(—m)emm) 4+ % 7; FED(@)em dt
= et e = Gy i)

—T

Since f*) e L'(T), this formula together with the Riemann-Lebesgue lemma shows
that f(n) = o(n=%) as n — +oo. [ |

Remark 2.4.7. The assertions in the proposition of course hold true if f € C*(T).
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Definition 2.4.8. Suppose that the function f is defined on an interval I < R.
We say that f satisfies a Holder condition at a point ¢ € I if there exist con-
stants C' > 0, a > 0, and 6 > 0 such that

|f(s) = f(t)] < Cls—t|* for every s € I satisfying |s —¢] < ¢

If f satisfies a Holder condition at every t € I with the same constants C' and «,
and if § can be taken as the length of I, then we say that f is Hélder continuous.

When o« = 1, one usually uses the terms Lipschitz condition and Lipschitz
continuous. Notice that if f satisfies a Holder condition at ¢, then f is continuous
at t, and if f is Holder continuous, then f is also uniformly continuous.

Example 2.4.9.
(a) The function f(t) = 1/|t], t € R, is Hélder continuous on R with exponent 3

|\F \F| V]|s—t| fors,teR.

(b) If f is differentiable on an interval I and |f/(t)| < C for every ¢ € I, then f is
Lipschitz continuous on I; this follows directly from the mean value theorem:

[f(s) = fF@OI = 1F'(Olls —t| < Cls —t| fors,tel,
where £ is some point between s and ¢. O

Definition 2.4.10. Denote by A, (T) the class of Holder continuous functions on R
with period 2. The norm of f € A,(T) is given by

s) — f(t
o = swp =G
steR, s20  |s— 1]

Notice that if @ > 1, then A,(T) contains only constants. The next result is a
direct consequence of (2.6).

Corollary 2.4.11. Suppose that f € Ao (T). Then there exists a constant C = 0
such that

1f(n)] < Cf|aumn|™  for every n # 0.

Definition 2.4.12. Denote by BV (T) the class of 2w-periodic functions on R that
are of bounded variation.

Proposition 2.4.13. Suppose that f € BV(T). Then

V()
27|n|

|f(n)| < for every n # 0. (2.8)

Proof. The inequality (2.8) follows by integration by parts:

1 T —int _ 1
71 F(t)e dt‘—‘%n

—T

r ¢int df(t)‘ < YU n

—T
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Remark 2.4.14. In Proposition 2.4.3, we saw that the Fourier coefficients of a
function f € L'(T) belong to cy, i.e., f(n) = 0 as n — too. It is natural to ask if
anything more can be said about the rate of convergence of ]? (n). This is, in fact,
not possible; one can show that the Fourier coefficients of a L!-function can tend
to 0 arbitrarily slowly. To be more precise, if (c,);~_ is a sequence of nonnegative

numbers, such that lim,, ,, ¢, = 0, that satisfies the following convexity condition:
Cn+1 + Cn—1 = 2¢, forn =1,

then there exists a function f € L'(T) such that J?(n) = q)p| for every n € Z.

2.5. Partial Sums of Fourier Series

In the next section, we will prove a number of criteria for pointwise convergence
of Fourier series. As a preparation, we now study the partial sums of the Fourier
series for a function f € L'(T). Denote by Sy f the N-th symmetric partial sum of
the series (2.1), that is

N
Snft)y= > f(n)e™, N=01,...
n=—N

We rewrite Sy f(t) as a convolution in the following way:

N 1 0 ) ) 1 s N .
Snf(t) = Z <27r fls)e ™ ds) et = %J’ f(5)< Z ezn(ts)> ds
o - n=—N

n=—N
- % _7T f(S)DN(t_S)dSZ% B f(t—=38)Dn(s)ds (2.9)
= Dy = f(1),

where Dy is the Dirichlet kernel:
N .
Dy(t)= > €™ teR, N=0,1,... (2.10)
n=—N

The next proposition summarizes some of the most important properties of the
Dirichlet kernel.

Proposition 2.5.1. The following properties hold for the Dirichlet kernel Dy :

sin(N + 1)t
) u forte R\ 277
(i) Dn(t) = sin 5 :
2N +1 forte2nZ
(ii) D is even;
1 s

31) — Dy (t)dt = 1.

(i) 5= | Dt
Proof. The first property follows by summing the geometric series in (2.10), the
second is obvious, while the third is obtained by integrating both sides of (2.10)
over (—m, ). [ |
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Let us return to our investigation of the partial sums of a function f € L*(T).
Since Dy is even, we have that

Swi(t) = o O”<f<t+s>+f<t—s>>SW*;)s ds. (2.11)
Suppose now that 0 < § < 7. Then
Sy f(t) = if: ft+s) ;rf(t_s) sin(N + 1)sds
+% Lﬁ J(t+ ) Jsrf(t_s) sin(N + 1)sds (2.12)
bo [ 9 - S”(sii; = )iV + s

The second integral in (2.12) tends to 0 as N — oo according to the Riemann—
Lebesgue lemma (see Remark 2.4.4) since the integrand belongs to L*(8, 7). This
also applies to the last integral since the function
1 2
g(s) = —=, 0<s<m,

in 2
Slrl2 S

is bounded (because g is continuous and g(s) — 0 as s — 0).! We thus have the
following asymptotic representation for Sy f(t).

Proposition 2.5.2. Suppose that f € L*(T) and 0 < & < w. Then

5
Snf(t) = %fo f(t+s) l_f(t =) sin(N + 3)sds +en(t) (2.13)

for every t € R, where en(t) — 0 as N — 0.

Taking f =1 in (2.13), we obtain that

1==2

2 (% sin(N + 3
Jsm(z)sds—i-zs]v, (2.14)
'/T

0 S

where ey — 0 as N — 00. By combining (2.13) with (2.14), we obtain a necessary
and sufficient condition for the convergence of the Fourier series of f at a point .

Proposition 2.5.3. Suppose that f € L'(T). Then limy_,o, Syf(t) = S if and

only there exists a number § > 0 such that

- r flt+s)+ f(t—s)—28S
0

sin(N + 3)sds = 0. (2.15)

N—w0 S

Proof. Multiply (2.14) with S and subtract from (2.13):

d
SNf(t)_S:%L f(t+8)+ f(t—s)—25

S

sin(N + 3)sds + (en(t) — Sen).

Then use the fact that en(t) — Sey — 0 as N — oo. [ |

1One can in fact show that |g(s)| < 72/24 for 0 < s < 7.
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2.6. Criteria for Pointwise Convergence

We now establish a number of corollaries to Theorem 2.5.3. The first is Dini’s
classical criterion.

Corollary 2.6.1 (Dini’s Criterion). Suppose that f € L'(T) satisfies a Dini
condition at t € R, meaning that there exist numbers § > 0 and S € C such that

f |f(t+s) + f(t —s) — 28]

0 S

Then limy_,o, SN f(t) = S.

ds < 0.

In particular, if

[LIERESEXEL TP 216
0 S
for some 6 > 0, then limy_,o. Sn f(t) = f(t).

Proof (Corollary 2.6.1). The quotient in (2.15) belongs by the assumption to
the space L1(0,0). The assertion therefore follows from the Riemann-Lebesgue
lemma. |

The next corollary is the convergence criterion one usually meets in introductory
courses in Fourier analysis.

Corollary 2.6.2. Suppose that f € L*(T). If the one-sided limits

f(tT)= lim f(t+s) and f(t7)= lim f(t—s)

s—0t s—0+
and the one-sided derivatives

f'tT) = lim flt+s) = F07) and f'(t7) = lim flt—s)—f(t7)

s—0+ S s—0+ —S

exist, then

1) + 1)

Jim sy f() = 1 (2.17)
Proof. Let S denote the right-hand side of (2.17). Then the quotient in (2.15) is
bounded for every § > 0. ]

Example 2.6.3. If we apply the result in Corollary 2.6.2 to the function in Ex-
ample 2.2.2, we see that

o (_1 n+l
t=22 ~—~—gsinnt for —w <t <.
- n

For t = +m, the series equals 0, which is in accordance with the corollary. O

Corollary 2.6.4. Suppose that f € L*(T). If f satisfies a Hélder condition at a
point t € R, then limy_,. Snf(t) = f(¢t).
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Proof. The assumption means that there exist numbers C' > 0, « > 0, and § > 0
such that
|[f(t+s)— f(t)] < Cls|* for |s| <.

This implies that the integrand in (2.16) is bounded by g(s) = 2Cs* 1 0 < s < 4,
which is a integrable function on (0, §). [ |

Example 2.6.5. Let f € C(T) be defined by f(t) = 1/|t| for —7 <t < 7. Notice
that we cannot apply Corollary 2.6.2 to show that the Fourier series of f is con-
vergent at t = 0 since both one-sided derivatives are infinite. However, f satisfies
a Holder condition at 0:

1£(s) = FO)] = /Is| = s = 0]"/* for —7 <s <,
so the Fourier series of f converges to 0 at ¢t = 0. O

In the proof of our next result, we will use the Si function:

.
Si(t)=f ST g 0<t <o

0 T

The following lemma is often proved using calculus of residues. We will, however,
give a proof that uses techniques from this chapter.

Lemma 2.6.6. There holds lim;_,, Si(t) = 5.

Proof. Using integration by parts, we see that if ¢t > 1, then

1. t
S t
Si(t) = J’ 2T dr +cos1 — —Cots - f T ar.

o T 1 T2

Moreover, since the integral Sf 772 cos T dr is absolutely convergent, it follows that
the limit lim; 4 Si(¢) exists. From (2.14), we also have that

J‘s sin(N + 3)s

m
B dS=§+EN,
0

where ey — 0 as N — 0. The claim now follows if we change variables in the last
integral and let N — oo:

dr. [ |

1
5 1 N+lys o
g: i sin(N + 3)s ds — lim (N+3) SlanT:J7 sinT

N—x 0 S N—>x 0 T 0 T

The following convergence criterion for functions of bounded variation was
proved by C. Jordan in 1881.

Theorem 2.6.7. Suppose that f € LY(T). If f is of bounded variation on an
interval [t — 0,t + 0] for some 6 > 0, then

1) + 1)

Jm swfw = 1
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Proof. Put F(s) = 3(f(t+s) + f(t—s)) for |s| <6, S = F(0"), and m = N + 3.
Then

ff(t+s)+f(t—s)—2s
0

5
. sin(N + 1)sds = f (F(s) —S)dSi(ms)
0

= (F(67) — S)Si(md)
s

— J Si(ms) dF'(s).
0

If we now use the fact that Si(ms) — § as m — oo and the dominated convergence
theorem, we obtain that

J5f(t+s)+f(t—s)—25
0

S

lim
N-ow

sin(N + 3)sds

Il
S ol
|
=

|
=®

|
13
S—
(=9}

QU
g
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Since every absolutely continuous function is of bounded variation, we have the
following corollary.

Corollary 2.6.8. Suppose that f € AC(T). Then

A}imj Snf(t) = f(t) for everyteR.

2.7. The Riemann Localization Principle

Although the Fourier coefficients of a function f € L!(T) depend on the global
behaviour of f, the convergence of the Fourier series of f at a point in fact only
depends on the behaviour of f in an arbitrarily small neighbourhood of the point.
This is the content of the following theorem, known as the Riemann localization
principle.

Theorem 2.7.1. Suppose that f,g € LY(T). If f = g in a neighbourhood of a
point tg € R, then the Fourier series of f and g either both converge to the same
value or both diverge.

Proof. Suppose that f(t) = g(t) for |t — to] < §. Then, according to (2.13),

1J6 [(to+5) + f(to — )
T Jo s
Sng(to) + o(1). u

Sn f(to) sin(N + 3)sds + o(1)

2.8. A Uniqueness Theorem for Fourier Series

The following theorem shows that the Fourier coefficients determine a function
completely. Notice that we do not assume that the Fourier series are convergent; if
the series converge to the involved functions, the result is of course obvious.

Theorem 2.8.1. Suppose that f,g € L*(T) and f(n) = g(n) for everyn € Z. Then
f=g9ae
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Proof. By the linearity of the Fourier coefficients, we may assume that g = 0.
First put F(t) = St_w f(r)dr+C, t € R, where C is chosen so that F'(0) =0, i.e., C
has to satisfy the equation
1 us
— F(t)dt+C = 0.
o) (t)dt +
The function F' has period 27 since

t+27 T ~
F(t 4 2m) — F(t) = f frydr = frydr =2mf0) =0
t -7
for every t € R. Then put G(t) = Siﬂ F(s)ds, t € R. Since ﬁ(()) = 0, G also has
period 27. It now follows from Proposition 2.4.6 that

(in)*G(n) = G"(n) = f(n) =0,

S0 @(n) = 0 for every n # 0. Corollary 2.6.2 now shows that G(t) = G(0) for
every t € R. Differentiating this identity twice, we obtain that f = 0 a.e. [ ]

2.9. Uniform Convergence of Fourier Series

We next consider uniform convergence of Fourier series. Suppose first that the
Fourier series >, f(n)e"™ of a function f € L!(T) is absolutely convergent:

*©L

> 1f)] <.
n=—uw
It then follows from the Weierstrass M-test that the Fourier series converges uni-
formly, and hence that its sum, which we denote g(t), is a continuous function.
Integrating the series termwise, which is allowed because it converges uniformly, we
see that g(n) = f(n) for every n € Z. The uniqueness theorem (Theorem 2.8.1)
therefore shows that g = f a.e. In particular, the Fourier series of f converges

to f a.e. The following theorem summarizes these observations.

Theorem 2.9.1. Suppose that f € L*(T). If the Fourier series of f is absolutely
convergent, then the series converges uniformly to a function belonging to C(T),
which coincides with f a.e. In particular, the Fourier series of f converges to f a.e.
and everywhere if f is continuous.

For instance, if f € C2(T), then f(n) = o(n~2) as n — =+ according to Theo-
rem 2.4.6,s0 >___ |f(n)| < o0, and we can apply Theorem 2.9.1 to conclude that
the Fourier series of f converges uniformly to f. It is possible to obtain precise

information about the rate of convergence of the series. Indeed, for every € > 0,
there exists a number M > 0 such that

~ £ .
ol <5 il > M.

Now, if N > M, then

| Pdr 2
— = < — < —_— = —
|F(8) = Sx S (1) <2 ) o< f -z

n=N+1 N

Z f(n) eint

[n|=N+1

for every ¢t € R. It follows that ||f — Sy f[o = o(N™!) as N — oo,
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Theorem 2.9.2. If f € C*(T), then |f — Snflle = o(N"') as N - 0. In
particular, the Fourier series of f converges uniformly to f.

The result in the next theorem is much stronger than the previous one. As
expected, the proof is harder.

Theorem 2.9.3. Suppose that f € L'(T) is Hélder continuous on (a,b). Then the
Fourier series of f converges uniformly to f on every interval (c,d) c (a,b) such
that (c,d) < (a,b).

In particular, if f is Holder continuous on R, then the Fourier series of f converges
uniformly to f on R. R

Notce that if f is Holder continuous, then f(n) = O(n~%) as n — +oo for
some number a > 0 according to Corollary 2.4.11, so just looking at the Fourier
coefficients, it is not at all obvious that the Fourier series should converge uniformly
(or even pointwise). We will use the following definition and lemma.

Definition 2.9.4. A sequence (g, ),_; of functions on a set £ < R is said to be
equicontinuous if the following condition is satisfied: For every ¢ > 0 there exists
a 0 > 0 such that if s,¢ € E and |s —t| < ¢, then

|gn(s) — gn(t)| <& for every n = 1.

To put it differently, a sequence is equicontinuous if it is uniformly continuous,
where the continuity is uniform both with respect to the variable and the index.

Lemma 2.9.5. Suppose that (gn)y—; is a sequence of functions on a compact
set K € R. If go(t) > 0 as n — oo for every t € K and (g,)_, is equicon-
tinuous, then (g,)_, converges uniformly to 0 on K.

Proof. The proof proceeds by contradiction. Suppose that there exists a num-
ber € > 0, indices n; < ng < ..., and points t1,to, ... € K such that

|gn, (tr)| = e for k=1,2,....

By compactness, there exists a subsequence to (tx)7_,, which we may assume is
the whole sequence, that converges to some point ty € K. We then have

€ < |gny, (tr)| < |gny, (tk) — gny, (t0)| + |y (T0)]-

This is a contradiction since the right-hand side can be made arbitrarily small by
choosing k sufficiently large. [ ]

Proof (Theorem 2.9.3). The assumption means that
lf(#) = f(w)] < Clt—u|® for all t,ue€ (a,b).

For N = 1,2,..., put gn(t) = Snf(t) — f(t), c <t < d. Since we know (Corol-
lary 2.6.4) that gn(t) converges to 0 as N — oo for ¢ < t < d, it suffices to show
that the sequence (gn)%_; is equicontinuous. Let € > 0 be arbitrary. From (2.11)
and (iii) in Proposition 2.5.1, we have

ds forc<t<d.

(ft+s) = f(1))

—T

1 J” sin (N + 1)s

in 2
Sll’l2
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It follows that if ¢ < ¢,u < d, then

lgn () — g (u)] < % - |f(t+5) — f(t)||8;|§f|(u +5) = Jw)]
+ L f(t+5) = fu+ )| 170 = F)] o
27 Jp<ls|<n | sin 2|

where 0 < 7 < 7 satisfies n < min(c — a,b — d). Using this ineqality and the fact
that |sins| > 2|s| for |s| < Z, we obtain

lgn () — gn(w)] < Cn® + Cp~Ht — |

Finally choose 7 so small that the first term in the right-hand side is less than /2
and then ¢ so small that the second term is less than ¢/2 whenever [t —u| <J. ®

Corollary 2.9.6. Suppose that f € C(T) with piecewise continuous derivative.
Then the Fourier series of f converges uniformly to f on R.

In Theorem 4.5.1, we will show that the convergence is also absolute.

Proof (Corollary 2.9.6). It follows from the assumption, that there exist points
—TmT=h <ty <. <t,=T

such that f is continuously differentiable on each interval [¢;,¢,41], 1 = 1,2,...,n—1.
But then f is Lipschitz continuous on every interval [¢;,¢;11]. This implies that f
is Lipschitz continuous on [—, 7] and therefore on R. [ |

2.10. Termwise integration of Fourier Series

A quite surprising result is the fact that the Fourier series of a L!'-function may
be integrated termwise and the resulting series is pointwise convergent everywhere
(even uniformly convergent), irrespective if the original series is convergent or not.
Suppose that f € L*(T). Then the function

FO = [ (1) - Foyar, teR.

is absolutey continuous and satisfies F' = f a.e. Moreover, F' has period 27:

t+27 - .

F(t+27) — F(t) =J (f(r) — f(0))dr = ) f(r)dr —2xf(0)=0

t -
for every t € R. According to Proposition 2.4.6, f(n) = mﬁ'(n) for every n # 0. It

now follows from Corollary 2.6.8 that

F(t) = ﬁ(O) + Z %emt for every t € R. (2.18)
n#0
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In Theorem 4.5.1, we will show that the series in (2.18) actually converges uniformly
on R. Now, if —00 < s <t < o0, then

Ft Z f et — ey = Y fi Fn J it g,

n#0 n#0

so that

Jf )t —s) ; L e dr =

Theorem 2.10.1. Suppose that f € L*(T). Then

Z f(n J " dr.

n=—aoc

jtf(r)d7'= i f(n)J’tedeT for —o0 < s <t< 0. (2.19)

n=—ux s
Formally, the equation (2.19) may be written
f ( Z f Z’I’LT) dr = Z f l[ inT dr.
s n=—o n=—x

Notice also that it follows from (2.19) that

f f(r)dr = lim_ f Snf(r)dr

This fact, however, does not imply that Sy f — f in L!(T).
Example 2.10.2. From Example 2.6.3, we know that

n+1
Z sinnt for —m<t<m.

Integrating this identity from 0 to t, we obtain that
TL

—=22 +1+2Z

To evaluate the first series in the right-hand side, we integrate both sides once more,
this time from —7 to 7:

Cosnt for —m<t< .

3 % (_1)n+1 D
3 4m Z Y which shows that Z = .
We have thus shown that

:%E

Putting ¢ = 7 in this identity, we obtain that

31
277 =

n=1

cosnt for —mr<t<m.
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The following corollary is a consequence to (2.18).

Corollary 2.10.3. Suppose that f € L'(T). Then the series

Z @eint
n#0

18 convergent for every t € R.
Example 2.10.4. In Example 2.3.3, we saw that the trigonometric series

0 .
sinnt

(2.20)

= Inn

is convergent for every t € R. However, since

&1
Z ninn 0

n=2

this is not the Fourier series of any function belonging to L!(T). It is not so hard to
show that the function, defined by (2.20), in fact does not belong to L!(T). Notice
that this also shows that the image of L!(T) under the finite Fourier transform is
not the whole of cg. O

2.11. Divergence of Fourier Series

Let us end this chapter with a few comments and results about divergence of Fourier
series. The first convergence criterion for Fourier series was proved by L. Dirichlet
in 1829. Dirichlet and many others in this period seem to have believed that
the Fourier series of a continuous function converges to the function everywhere.
In 1873, P. du Bois-Reymond however proved that there exists a continuous function
whose Fourier series diverges on a dense subset to R. Dirichlet’s construction was
later simplified by L. Fejér in 1909. In 1923, A. Kolmogorov proved that there
even exists a L!-function (although not continuous) whose Fourier series diverges
everywhere. It was therefore not unreasonable to expect that there could exist a
continuous function with an everywhere divergent Fourier series.

On the other hand, N. Lusin conjectured in 1915 that the Fourier series of
a L?-function and, in particular, of a continuous function, converges a.e. Lusin’s
conjecture was proved by L. Carleson as late as 1966. According to Carleson’s
theorem, the Fourier series of a continuous thus converges a.e. Carlesons result
was generalized in 1968 by R. A. Hunt to LP for 1 < p < o0, and a new proof
of Carleson’s theorem was given by C. Fefferman in 1973. In this connection, we
should mention that J.-P. Kahane and Y. Katznelson in 1966 showed that, for any
set £ c R with measure 0, there exists a continuous function whose Fourier series
diverges at every point of F.

We will here prove that there exists a continuous function with the the property
that the Fourier series of the function diverges at one point. Although the existence
of such a function can be proved constructively, we prefer to use a “soft” argument,
which is due to Kolmogorov, based on the Banach—Steinhaus theorem which we
state without a proof.
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Theorem 2.11.1 (Banach—Steinhaus). Suppose that X is a Banach space, Y

is a normed linear space, and (T,,)_; is a sequence of bounded, linear operators

from X toY. Then either there exists a constant C' such that
T < C  for everyn =1
or

sup || Tp| = oo
n=1

for every x that belongs to a dense Gs set in X.

Theorem 2.11.2. There exists a function in C(T) whose Fourier series diverges
at a point.

In the proof, we will use the following notation: For f € C(T), put

Sf(8) = sup [Sn (1)l tER.

Since every convergent sequence is bounded, it is obvious that the Fourier series
of f diverges at t if S* f(t) = 00.2 We also need to know something about the norms
of the Dirichlet kernels. Put Ly = |Dy|1 for N = 0,1,.... The numbers Ly are
known as the Lebesgue constants.

Lemma 2.11.3. The Lebesgue constants have the following asymptotics:
4
Ly = —5mIN+0() as N — oo. (2.21)
7T

The asymptotic behavior of the Lebesgue constants was first investigated by L. Fejér
in 1910. In the proof, presented below, we use a technique due to L. Lorch (1954).

Proof. Using the fact that (sin$) ' — 2571 is bounded for 0 < s < 7, we see that

T . 1
LNzlj |Sm(].v‘i‘§)3| s
i 0 Sln§
2 (™ |sin(N + 1 1 (" 1 2
=7J |m(2)3|ds+f |sin(N+%)s|(, S—f)ds
T Jo s T Jo sing s
2 (™ |sin(N + 1
=*J sV 23 4 oq).
i 0 S

We then change variables in the last integral and split it into two parts:

2 (N+l)7'r .
Ln —f : 'S;?S'dﬁou)

™ Jo

9 (N“rl)ﬂ' s 2 1 3
7J‘ #7 [sins] ds+ff [sins] ds + O(1)
1

™ S ™ Jo S

9 (N+$)7 | o
:71 i |517:S|d8+0(1).
1

s

2The converse is in fact also true: If the Fourier series of f diverges at ¢, then S* f(t) = co.
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Let m = L {7 |sint|dt = 2 be the mean-value of t — |sint|, t € R, over a period.
Then, according to the second mean-value theorem of integral calculus,

(N+3)7m | o _ 1
J wd8=fj(|sins|—m)ds
1 $ m™h

for some number 7 such that 1 <7 < (N + %)w The integral in the right member
is easily seen to be bounded with respect to IN. Hence,

9 ((N+3)m 2 (IN+3)7 | gins| —
T R YTty

™ )1 S ™ ) S

1 . 1

Proof (Theorem 2.11.2). For N = 1,2, ..., define the functional Ty : C(T) — C
by Tnf = Sy f(0) for f € C(T). It is not so hard to show that |Tn| = |Dn|1- So,
according to Lemma 2.11.3, supy s [|Tn] = o0. It thus follows from the Banach-
Steinhaus theorem that S* f(0) = oo for every f that belongs to a dense Gj set
in C(T). For any of these functions f, the Fourier series diverges at 0. ]

The result in Theorem 2.11.2 can be strengthened considerably. There is of
course nothing special with the point ¢ = 0 in the proof, so for every ¢t € R,
there exists a dense Gs set E; < C(T) such that S*f(t) = oo for every f € Ei.
Let (¢;)72, be a dense subset to R and put F = ﬂzle E;,. Then, according to
Baire’s theorem, F is also a dense G set and has the property that for every f € Ey,

S*f(t;) = oo for all points ;.

Notice that the set {t € R : S* f(¢) = o0} is G5 in R for every continuous function f
since S* f is lower semicontinuous (being the supremum of a sequence of continuous
functions). Let us summarize:

Theorem 2.11.4. There exists a a dense G5 set E < C(T) such that, for every
function f € E, the set {t € R: S*f(t) = o} is a dense Gs set in R.

We can rephrase the theorem in the following way: There exists a dense subset
to C(T), which is Gs and has the property that for any function in F, the Fourier
series diverges on a dense Gy set. Let us mention that it follows from Baire’s
theorem that E' is even uncountable.

We end this section by briefly returning to Theorem 2.8.1. This theorem may
also be formulated by saying that the finite Fourier transform, which maps L!(T)
into cgp, is injective. As we saw Example 2.10.4, there are sequences in ¢y that
are not Fourier coefficients of any function in L!(T), i.e., the Fourier transform is
not surjective. We shall now prove this by an abstract argument. Suppose that
the Fourier transform were surjective and hence bijective. Then, according to the
inverse mapping theorem, the inverse of the Fourier transform would be bounded,
so there would exist a constant C' > 0 such that

I£l < Clfle  for every f e L'(T).

But if f = Dy, then the right-hand side is 1 since the Fourier coefficients of Dy
are either 1 or 0, while the left-hand side tends to o0 as N — oo, which then gives
a contradiction.



Chapter 3
Hilbert Spaces

Let X denote a complex vector space.

3.1. Inner Product Spaces, Hilbert Spaces
Inner Products

Definition 3.1.1. A function (-, -): X x X — C is called an inner product if
(i) the function (-,z) : X — C is linear for every z € X, that is,

(ax + By, 2z) = a(x,z) + B(y,z) forall z,ye X, a,f € C;

(i) (z,y) = (y,z) for all z,y € X;
(iii) (x,z) = 0 for every x € X;
(iv) (x,x) =0 if and only if z = 0.
Equipped with an inner product, X is called an inner product space.

Tt follows from (i) and (ii) that
(,y +2) = (2,9) + (2,2) and (2,ay) = a(z,y)

for x,y,z € X and o € C. This means that (-, -) is sesquilinear (linear in the
first argument, but only additive in the second).
For the rest of this chapter, X will always denote an inner product space.

Example 3.1.2. Let us give a few examples of inner product spaces:
(a) The space C? with

d
(w,9) = D 275, w,yeCh
j=1

(b) The space ¢ with

(Cv d) =

n

Cndn, c,del?

e

D18

the series is absolutely convergent since 2|c,d,| < |c,|? + |dn|? for all n;
(c) The space L?(T) with
s

(F.9)= 5 | swa@an, fge 1

this definition makes sense since fg is measurable and belongs to L'(T) be-
cause 2[£7] < |f|2 + |gI?, where |f[2 + [g[? € L}(T).
(d) The space L?(RY) with

(ro)= | f@a@ds. fge R,

33
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The Cauchy—Schwarz Inequality
Theorem 3.1.3 (The Cauchy—Schwarz Inequality). For z,y € X,

(@, 9)| </ (2, 2)V/ (4, 9)-
Equality holds if and only if x and y are linearly dependent.

Proof. The inequality obviously holds true if y = 0. If y # 0, put e = ty,
where t=! = 1/(y,y). Then (e,e) = 1, and

|(z,y)|
(v, v)

0< (.’t - ($7€)€7x - ($7e)e) = (Cﬂ,:ﬂ) - |($76)|2 = (l‘,:&) -

)

from which the Cauchy—Schwarz inequality follows directly. Equality holds if and
only if z — (z,e)e = x — t*(z,y)y = 0, which means that z and y are linearly
dependent. [ |

Example 3.1.4. The Cauchy-Schwarz inequality for L?(T) is

L[ sowal < (& [ wora) (L[ o)

—T —T

for f,g € L*(T). Notice that this inequality coincides with Hélder’s inequality. O

The Norm on an Inner Product Space
Definition 3.1.5. For x € X, we define |z| = +/(z, z).
With this notation, the Cauchy—-Schwarz inequality may be written

(@ o)l < [llyll,  »vyeX.

Proposition 3.1.6. The function | - | is a norm on X, that is,
(i) |z|| = 0 for every x € X and ||z|| = 0 if and only if x = 0;
(i) |oz| = |a||z| for every a € C and every x € X;

(iir) & +yl < =] +[y] for all z,y € X.
The third property is called the triangle inequality.

Proof. It is only the triangle inequality that really requires a proof. We deduce
this from the Cauchy—Schwarz inequality in the following way:

lo +yl* = |=* + 2Re(z,y) + Jyl* < 2] + 2|z, »)] + [y]?
< 2l + 2zl + Iyl* = (el + lyl)?. u

Example 3.1.7. The norm of a function f € L?(T) is

I 1/2
e = (55 [ 1P ar) 0

—T
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The next simple, but useful corollary follows directly from the Cauchy—Schwarz
inequality.

Corollary 3.1.8. The function (-,z) : X — C is Lipschitz continuous for every
fized z € X:
[(z,2) = (y, )| < |z —yllz|  forall z,yeX.

In vector algebra, the following identity is known as the parallelogram law.

Proposition 3.1.9. Forz,ye X, |z +y|? + |z — y|? = 2(|z||* + |y||*)-

Proof. Expand the left-hand side as in the proof of Proposition 3.1.6. |

Hilbert Spaces

With the norm, there comes a notion of convergence.

Definition 3.1.10.

(a) A sequence ()7, in X is said to be convergent if there exists a vector z € X
such that |z —z,| — 0 as n — 0.

(b) A sequence (z,);_; is said to be a Cauchy sequence if |z, — z,]| — 0
as m,n — oo.

(¢) The space X is said to be complete if every Cauchy sequence is convergent.

(d) A Hilbert space is a complete inner product space.

Example 3.1.11. One can show that the spaces in Example 3.1.2 are all Hilbert
spaces. O

3.2. Orthogonality
Orthogonality, Orthonormal Sets

Definition 3.2.1. Two vectors z,y € X are said to be orthogonal if (z,y) = 0.
This relation is denoted z L y.

The next proposition generalizes Pythagoras’ Theorem in classical geometry.

Proposition 3.2.2 (Pythagoras’ Theorem). If z1,...,xx € X are pairwise or-
thogonal, that is, (€, x,) = 0 if m # n, then

2 N
=D laal®.
n=1

Proof. Just expand the left-hand side in the identity using the properties of the
inner product and the fact that the vectors are pairwise orthogonal:

N
2, @n
n=1

N

> e,

n=1

N

2 N N N N
= (Z Ty Z xn) = Z ('vaxn) = Z (J?n,l’n) = Z HxTLHQ' u
m=1 n=1 n=1

m,n=1 n=1




36 Chapter 3 Hilbert Spaces

Orthonormal Sets

Definition 3.2.3. A subset F to X is called orthonormal if the elements in E are
pairwise orthogonal and have all norm 1. A sequence (e,)’_; < X is orthonormal
if the corresponding set E = {eq, g, ...} is orthonormal.

Example 3.2.4. The sequence (e"*)*_ _ c L?(T) is orthonormal:

) . 1 (™ . lifm=n
imt inty _ _© i(m—mn)t dt = . O
(e, e™) 2 J’ ¢ {0 if m#n

—T

Lemma 3.2.5. Suppose that H is a Hilbert space and that (e,)_, is a orthonor-
mal sequence in H. Let (cn)¥_y be a sequence of complex numbers. Then the
series ., cney is convergent in H if and only if >, |en|? < o0.

oL

ne1 Cntn means that there exists

We remark that the convergence of the series Y]
an element = € H such that |z — >

o1 Cnénl = 0as N — oo.

Proof. According to Pythagoras’ theorem (Theorem 3.2.2),
2 M
= Z |en|2
n=N

for M > N. It follows that the series 25:1 cnén is convergent in H if and only
if 3 | |en|? is convergent. -

M

2, Caen

n=N

Example 3.2.6. If the sequence (c,)?__., < C satisfies > lca|? < o0, then

n n=—o

the function f(t) = > c,e'™, t € R, belongs to L?(T). Compare this with
the following result: If we assume that ».___ |c,| < o0 (a stronger assumption),

then it follows from Weierstrass’ theorem that f is continuous on R. O

3.3. Least Distance, Orthogonal Projections
Distance to a Subspace

In this and the following subsection, H will denote a Hilbert space. A subspace Y
to H is said to be closed if Y contains all its limit points, i.e., if (y,)>_; is a
sequence in H and y,, — y € H, then, in fact, y € Y.

Theorem 3.3.1. Let Y be a closed subspace to H. Then, for every x € H, there
exists a unique vector y € Y such that

—y| = inf |z — 2|
o=yl = inf |z~ 2|

Proof. First choose (yn)i—; < Y such that |z —y,| — d = inf ey |2 — 2||. By the
parallelogram law (Theorem 3.1.9),

2

Ym + ¥y
==y = nl? = 2007 =yl + 2 — yal?).

4
x 2
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Notice that the first term in the left-hand side is at least 4d®. On the other hand,
the right-hand side tends to 4d?, so it follows that |y, — yu|| — 0. If y denotes the

limit of the sequence (y,)X_;, then y € Y since Y is closed. Moreover, since

d< |z -yl <|z—yu| +lyn —yl — d asn— oo,

it follows that |z — y| = d. To prove that y is unique, suppose that |z —y'|| = d
for some y' € Y. Then, as above,

y+y' 2
Hx a TH +ly = y'17 = 2(lz —yI” + o —y'I*).

Since the first term in the left member is at least 4d® and the right member is
exactly 4d?, it follows that |y —¢'| = 0, so y = ¢/'. [ |

Theorem 3.3.2. Suppose that Y is a closed subspace to H. Then
lz =yl = ;g}f/ lx — 2| if and only if (x—y,z) =0 for every z€Y.
Proof. Suppose first that | — y|| = d = inf,ey |& — 2z|. Given z € Y, choose a
scalar A € C such that (z —y, Az) = —|(z — y, 2)|. Then
2 <z —y) +tr2]” = o — yl* + 2t Re(z — y, Az) + A 2]
= d* = 2t|(z — y, 2)| + ]A*]|2]*

for every t € R. This implies that 2|(z — y,2)| < t|A\]?|z]? for every ¢ > 0, from
which it follows that (z —y, z) = 0.
The converse is easier; in fact, by Pythagoras’ theorem (Theorem 3.2.2),

lo =2 =z =) + (v = DI* = |z = wl* + |y — 2[* = |= — g

for every z € Y since x — y and y — z are orthogonal. |

Orthogonal Projections

Definition 3.3.3. Let Y be a closed subspace to H and let x € H. The unique
vector y € Y, that satisfies (x — y,2) = 0 for every z € Y, is called the orthogonal
projection of z on Y. We will denote this vector by Py x.

Example 3.3.4. Suppose that {ej,...,enx} © H is orthonormal and let Y be the

linear span of {ey,...,ex}. Then the orthogonal projection of a vector x € H on Y
is Pyx = Zgil(x,en)en since v — Pyx 1L e, form=1,2,...,N:
(x — Pyx,en) = (z,en) Z z,en)(en, em) = (x,em) — (x,e,) = 0. O

Example 3.3.5. The Fourier coefficients of f € L?(T) are defined by
. 1 [~ .
f(n) = 2—f fe ™dt, n=0+1,42,...
™ —T

Notice that f(n) = (f,en), where e, (t) = e, t € R. It follows that the partial sum

Zn, N f (n)e™ to the Fourier series of f is nothing but the orthogonal projection

of f on the linear span of the functions eV, ... =Nt O
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3.4. Orthonormal Bases
The Finite-Dimensional Case

Suppose that dim(X) = d < o and that {ey,...,eq} is an orthonormal basis for X.
Then every vector x € X can be written

d
r = Z TpCn.
n=1

Taking the inner product of both sides in this identity with e,, n = 1,...,d, we
find that z,, = (z,e,), so that

d
}: Z, en €n-

It now follows from Pythagoras’ theorem that

= = Z |(z, en)]

We shall next investigate to what extent these observations can be generalized to
infinite-dimensional spaces.

Bessel’s Inequality

Theorem 3.4.1 (Bessel’s Inequality). If (e,)r_; < X s orthonormal, then,
for every x € X,
2 (2, ea)? < 2]

Proof. According to Example 3.3.4, the orthogonal projection of = on the sub-
space span{ey, ..., en} to X is the vector 25:1 (z,en)en. Two applications of Pytha-
goras’ theorem now shows that

N 2 N 2
Jz)? = o= > (@ en)en| + | D (x en)en
n=1 n=1
N 2 N N
=z = D@ en)en| + D)@ en))? = D |(z,en)?
n=1 n=1 n=1
Since this inequality holds for any N, Bessel’s inequality follows. ]

Example 3.4.2. For L?(T), Bessel’s inequality takes the form

[e’e]

X 0P <o [ o e, 0

n=—a
Combining Bessels inequality with Lemma 3.2.5, we obtain the following result.

Corollary 3.4.3. If (e,)’_, © X is orthonormal, then the series > (z,en)ey
1s convergent for every xr € X.
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Orthonormal Bases, Parseval’s Identity

Let H be a Hilbert space.

thonormal basis for H if every x € H can be written

Definition 3.4.4. An orthonormal sequence (e,)*_; < H is said to be an or-

ox
x = Z (z,en)en.
n=1

Theorem 3.4.5. For an orthonormal sequence (ey)r_, < H, the following condi-
tions are equivalent.

(ii) For every x € H, ||z||* = Z% (2, en)|?

n=1

(iii) If (z,en) =0 for every n, then x = 0.

(i) The sequence (en)i_, < H is an orthonormal basis for H.

The identity in (ii) is known as Parseval’s identity.

Proof. We first assume that (i) holds true and deduce (ii). As in the proof of
Bessel’s inequality,

N N 2
”33”2 - Z |(.13,6n)|2 =|T— Z (-ryen)en
n=1 n=1

The right-hand side tends to 0 as N — 00, so Parseval’s identity holds.
The fact that (ii) implies (iii) is self-evident.
Finally, suppose that (iii) holds. Then, according to Corollary 3.4.3, the se-
. o»L . .
ries > _,(x, e,)ey is convergent; denote the sum by y. Since

(:Z? - y’em) = (x76m) - (I76m) =0

for every m, we have that y = z, and hence that = = Y| (z, e, )en. [ |



Chapter 4

L?-theory for Fourier Series

In the present chapter, we first establish Parseval’s identity for L?(T). A conse-
quence is the fact that (¢)*___ is an orthonormal basis for L?(T), another is a
for L?(T). We also prove the so called Riesz—Fischer theorem and a result about
uniform convergence of Fourier series.

4.1. The Space L*(T)

Let us summarize the definitions and results in Chapter 3 that concerned Fourier
series.

(a) In Example 3.1.2, we defined an inner product for L?(T):
1 (7 —
(f.9) = 5= | F@3@ e, fige 12T,

(b) With this inner product, L?(T) becomes a Hilbert space.
(c) We also saw that (e"*)*___ is an orthonormal sequence in L?*(T) in Exam-
ple 3.2.4.

(d) Then, using the fact that f(n) = (f(t),e™m) for n € Z and f € L*(T), we
showed in Example 3.4.2 that Bessel’s inequality for L?(T) has the form

N [Fn)? < if (B dt for f e L3(T). (4.1)

—T

~

In particular, the sequence (f(n))%_ . of Fourier coefficients of f € L*(T)
belongs to 2.

~

Notice that Bessel’s inequality implies that f(n) — 0 as n — Foo for every func-
tion f € L?(T); this is a weaker form of the Riemann-Lebesgue lemma (Proposi-
tion 2.4.3).

4.2. Parseval’s Identity
Theorem 4.2.1 (Parseval’s Identity). Suppose that f,g € L*(T). Then

1 us

2 ) .

fOgmd= Y Fm)am).

n=—uw

Taking g = f, where f € L?(T), in Parseval’s identity, we see that

1 s €L

IfOPdt = |f(n).

2 ), W=

Proof. We first assume that f belongs to C2(T). Then f(n) = o(n=2) as n — +a0
according to Theorem 2.4.6, which implies that the Fourier series of f is uniformly

40
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convergent. Using this fact together with Corollary 2.6.2, we obtain that

g [ (anf ) Zf w [ gmena
= o7 Z fn

n=—:x

In the general case, we choose as a sequence (f);_,, of functions in C?(T) such
that ||f — fxll2 = 0 as k — oo. Bessel’s inequality (4.1) then shows that

If = Fillee < IF = Fls

SO fk — f in 2. We finally obtain from the first case that

1 s ™

f(t)g(t)dt = lim L fi(Dg(t)dt = lim Z Fr(n

2 ), k—oo 2w J_ o =

Example 4.2.2. In Example 2.2.2, we showed that the Fourier series of the func-
tion f € L?(T), defined by f(t) =t, —7 <t <, is

Parseval’s inequality now shows that

1 1 (" = 2

1
Z — = 5= t2dt, which implies that Z - O
n 27 J_, — n
n#0 n=1

The next two results are consequences of Theorem 3.4.5. Notice that the second
corollary is a special case of the more general Theorem 2.8.1.

Corollary 4.2.3. The sequence (e™)*___ is an orthonormal basis for L*(T).

The statement means that if f € L2(T), then f(t) = >,"_ f(n)emt in the sense
of L?(T), that is,
|f—Snflz—0 as N — oo.

Corollary 4.2.4. Suppose that f,g € L*(T) and f(n) = g(n) for every n € Z.
Then f =g a.e.

4.3. The Riesz—Fischer Theorem

As noticed in Section 4.1, the finite Fourier transform %, defined by

~

Ff(n)=f(n), neZ, for feL*(T),
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maps L2(T) into £2. This mapping is obviously linear. According to Parseval’s
identity, it is also an isometry:

|Z flez = | Flee = |2 for fe L*(T),

and according to the uniqueness theorem, it is injective (this, of course, also follows
from the fact that every linear isometry is injective). To show that .Z# is surjective,

we assume that (c,)%__ ., is an arbitrary sequence in ¢2. Lemma 3.2.5 then shows

that the function f(t) = Y,___ c,e™ belongs to L?(T). Moreover, since the inner

product is continuous according to Corollary 3.1.8,

oL
flm) = (f(t),e™) = Z cn(e™, ™) = ¢, for every m € Z,
=—0

which shows that .# f(n) = ¢, for every n € Z. These observations are summarized
in the following theorem.

Theorem 4.3.1 (The Riesz—Fischer Theorem). The space L?(T) is isometri-
cally isomorphic to (2.

The isomorphism in the theorem is thus the finite Fourier transform.

4.4. Characterization of Function Spaces

In some cases, function spaces can be characterized in terms of Fourier coefficients.
For instance, a function f € L*(T) belongs to L?(T) if and only if

[z s}

> 1)) <.

n=—o

The necessity of this condition follows from Bessel’s inequality and the sufficiency
from Riesz—Fischer’s Theorem in conjunction with the uniqueness theorem.
Now suppose that f € AC(T) with f’ € L?(T). According to Proposition 2.4.6,

we have f'(n) = inf(n) for every n € Z, so Parseval’s identity shows that

o

> n?f ) =[] < co.

n=—0oC
We shall now adress the converse.

Theorem 4.4.1. Suppose that f € L*(T) satisfies

ve]

> n?|f(n)? < oo. (4.2)

n=—aua

Then there exists a function g € AC(T) with g’ € L?(T) such that f = g a.e.

Thus, if f € L*(T), then f € AC(T) with f’ € L?(T) if and only if (4.2) holds (in
the sufficiency part, we assume that f is redefined on a set of measure 0).
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Proof. Using Riesz—Fischer’s theorem, it follows from (4.2) that there exists a
function h € L%(T) such that h(n) = inf(n) for every n € Z. If

then H has period 27 since iAL(()) = 0. Moreover, H is absolutely continuous
with H' = h a.e. We also have

m]?(n) = B(n) = I/f\’(n) = mﬁ(n) for every n € Z,

so H(n) = f( ) for n # 0. The uniqueness theorem (Theorem 2.8.1) now shows
that H — f = H(0) — f( ) a.e. Finally, put ¢ = H — (H(0) —f(O)). [ |

4.5. More About Uniform Convergence

In Theorem 2.9.2, we proved that if f € C?(T), then the Fourier series for f is
uniformly and absolutely convergent. We shall now show that this also holds under
the weaker assumption that f € AC(T) with f’ € L?(T). This of course implies
that the same conclusion holds if f € C*(T).

Theorem 4.5.1. Suppose that f € AC(T) with f' € L?(T). Then the Fourier
series of f is absolutely convergent. Moreover,

If = Snflle < \/zf'llz (4.3)

In particular, the Fourier series of f converges uniformly to f.

~ ~

Proof. Using the identity inf(n) = f’(n) together with the Cauchy-Schwarz in-
equality for ¢? and Corollary 2.6.8, we obtain that

S fmi= Y ﬁunf(nn

[n|=N+1 [n|=N+1
1\ /2 1/2
I 2
<( Z ng) (Z |f'(n)|) .
In|=N+1 In|=N+1

The inequality (4.3) now follows from Bessel’s inequality (4.1) and the fact that

2 1<rdt_1 =
n2\Nt2_N.

n=N+1
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Summation of Fourier Series

5.1. Cesaro Convergence

Given a sequence (ay ), of complex numbers, we denote by oy the arithmetic
mean of the first N + 1 terms in the sequence, i.e.,

ag +ay + ... +an
= , N=0,1,...
N+1

ON

Definition 5.1.1. Let (a,)7_, be a sequence of complex numbers.
(a) The sequence (ay, )i is said to be Cesaro convergent with (Cesaro) limit a
ifoy —aas N — .

(b) The series Y, ay is said to be Cesaro summable with (Cesaro) sum S if
the sequence of partial sums S,, = »7_,ax, n =0,1,..., is Cesaro convergent
with limit S.

Sequences and series, that are divergent in the usual sense, may in fact be convergent
in this new sense as the following examples show.

Example 5.1.2. The sequence 1,0, 1,0, ... is Cesaro convergent with limit % In-
deed,

k+1
2k +1

1
Oopi1 = 3 and o9 = for k=0,1,.... O

Example 5.1.3. The series 1 —1+1—1 + ... is Cesaro summable with sum 5 In
fact, the sequence of partial sum is Sp =1, S; =0, Sy =1, S3 =0,..., which has

Cesaro limit % according to the previous example. O

The following proposition shows that if a sequence is convergent, then it is also
Cesaro convergent with the same limit. The converse is false according to Exam-
ple 5.1.2.

Proposition 5.1.4. Suppose that (a,)*_, is a convergent sequence of complex
numbers with limit a. Then lmy_,o on = a.

Proof. Let € > 0 be arbitrary and choose M so large that |a — ap| < ¢ if n > M.
For N > M, we then have

N M
-] € | S+

The second term in the right-hand side of this inequality is less than €. The claim
thus follows if we choose N so large that the first term is also less than . ]

LN
N+1

|a—O'N|_

N+1

44
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5.2. The Fejér Kernel

We next consider Cesaro summability of Fourier series. The Cesaro means or Fejér
means oy f for the Fourier series of a function f € L*(T) are defined by

1 N
onf) = D1 Snf(t), teR, N=0,1,...
n=0

Using Equation (2.9), we see that

N N
1 1
t) = D, t) = D, t).
IO = 5y 2 e 100 = (5 2 Pa) +50
The expression within brackets in the right-hand side of this equation is known as
the Fejér kernel and denoted Ky, N = 0,1,.... To obtain an explicit expression
for Ky, we use (2.10):

M=

N
1
(N +1)sin’LKy(t) = Z sin £ sin (N + 1)t = 3 (cosnt — cos (n + 1)t)

n=0 n

Pl

1
= 5(1 —cos (N + 1)t) = sin® V¢

for every t € R. We thus have

int
sin 3

N +1 for te2nZ

i N4l
1 (smgt

2
for t¢2rZ
Kn(t)={ N+1 ) or t¢2m

Proposition 5.2.1. The Fejér kernel Ky has the following properties:
(i) Ky = 0;

fii) 2" Kn(t)dt = 1

(i) for every § >0, S6s|t|<7r Ky(t)dt - 0 as N — o;

(iv) Kn is even;
(v) Kn(t) < N +1 for every t € R.

Properties (i)—(iii) show that (Kn)%_; is an approximate identity (see Defini-
tion 1.5.1).

Proof. Out of these five properties, the first and the fourth are obvious. The
second holds because the same is true for the Dirichlet kernel. If we use the fact
that |sint/2| = |t|/7 for |t| < 7, we obtain that

2

KN(t) < m

for 0 < |t| < , (5.1)

form which the third property follows. Finally, to prove the fifth property, notice
that

n
|Dn(t)| = ‘1 +2 ) coskt‘ <1+42n
k=1
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forte R and n =0,1,..., so that

N N

1 1

KN(t)=‘N+1ZDn(t)‘sNHZ(HQn):NH for t € R. n
n=0 n=0

Proposition 5.2.2. Suppose that f € L*(T). Then

N
onf(t) = Z (l — N|7—Li—| 1) f(n)emt forte R and N =0,1,.... (5.2)
N

n=—

Proof. The identity (5.2) is proved by changing the order of summation:

1 & 1 &
onf(t) = g 2 S f ) = 57 2

+ n=0 +1 n=0k=—n
1 i i A(k) ikt i ( |k| > A( ) ikt -
= 6 p—
N+1 =N Tk o N+1

5.3. Fejér’s Theorem

The next theorem, which was proved by L. Fejér in 1904, is a consequence of the
fact that (Kn)%_; is an approximate identity. The theorem shows that the Fourier
series of a L'-function f is Cesaro summable at every point, where f has one-sided
limits (and, in particular, at every point where f is continuous) and uniformly
Cesaro summable on every compact set, where f is continuous.

Theorem 5.3.1. Suppose that f € L*(T).
(a) If the one-sided limits f(tT) and f(t7) exist at some point t € R, then oy f(t)
converges to (f(tT) + f(t7))/2 as N — oo.

(b) If f is continuous on a closed set F c R, then oy f converges uniformly to f
on F as N — o0.

According to du Bois-Reymond’s example (see Theorem 2.11.2), the corresponding
theorem with o f replaced by Sy f is false. We have, however, the corollary below,
which follows directly from Proposition 5.1.4 and Theorem 5.3.1.

Corollary 5.3.2. Suppose that f € L*(T). If the Fourier series of f converges at
a point t € R, where the one-sided limits f(t*) and f(t™) exist, then

& r o 1)+ ()
) Fmeint = HZIES

n=—aow

Suppose, for instance, that f € C(T) and the Fourier series of f is absolutely
convergent. It then follows from Corollary 5.3.2 that

o8]
Z f(n)ei”t = f(t) for every t e R.
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Compare this result with Theorem 2.9.1.

The corollaries are two versions of Weierstrass’ approximation theorem,
one for trigonometric approximation and one for polynomial approximation. By a
trigonometric polynomial we here mean a function of the form

N
p(t) = Z cne™, teR.
n=—N

Corollary 5.3.3. The class of trigonometric polynomials is dense in C(T).

Proof. If f € C(T), then oxf converges uniformly to f as N — oo according to
Theorem 5.3.1. But oy f is a trigonometric polynomial for every N (see Proposi-
tion 5.2.2). -

Corollary 5.3.4. Suppose that —o0 < a < b < o0. Then the class of polynomials
is dense in C([a,b]).

Proof. The proof is readily reduced to the case [a,b] = [—1, 1] by a linear change of
variables. Suppose that f € C([—1,1]). Then the function g(s) = f(coss), s € R,
belongs to C(T). Theorem 5.3.1 then shows that the trigonometric polynomials

ong(s) = iN (1= 5 ) ame = g(0) + >3 (1= 557ty cosns

n=— n=1

tend to g uniformly as N — oo. If we now make the substitution ¢ = coss,
where 0 < s < 7, we see that the functions

N n
Py(t) =g(0) + Z <1 T 1) g(n) cos(n arccost)

n=1

tend to f uniformly as N — oo. To finish the proof, we need to show that the
function p,(t) = cos(narccost), t € R, actually is a polynomial for n = 1,2,....
First of all, po(t) = 1 and p;(t) = ¢t. Moreover, for n > 2,

cos(n arccost) = 2 cos(arccost) cos((n — 1) arccost) — cos((n — 2) arccost). (5.3)
It therefore follows by induction that the right-hand side is a polynomial. ]
The polynomials p,,, that we encountered in the proof of Corollary 5.3.4, are known
as the Chebyshev polynomials. Notice that (5.3) shows that these polynomials
satisfy the recursive formula

Pn(t) = 2tpn_1(t) — pn_o(t), n=23,....
Since po(t) = 1 and p;(t) = t, we see for instance that

po(t) = 26> — 1, p3(t) = 4t> — 3t, and py(t) = 8t* — 8t2 + 1.
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5.4. Convergence in L?

The next theorem, which deals with convergence in LP(T) of the Fejér means, is a
consequence of Theorem 1.5.3. The corresponding result for p = oo is false since
the uniform limit of a sequence of continuous functions is continuous. With Sy f
instead of on f, the result is false for p = 1, but true for 1 < p < 00. The proof in
the latter case is much harder, except, of course, for p = 2.

Theorem 5.4.1. Suppose that f € LP(T), where 1 < p < 0. Then onf converges
to f in LP(T) as N — oo.
With the aid of Theorem 5.4.1, we obtain a new proof of Corollary 4.2.3.

Corollary 5.4.2. Suppose that f € L?(T). Then Sxf converges to f in L?(T)
as N — o0.

Proof. Since Sy f is the orthogonal projection on the linear span of of the func-

tions eVt ..., eVt (see Example 3.3.5), we have that

If =Snflz < |f —onflla for N=0,1,.... -

We also get a new proof of the uniqueness theorem for Fourier series (Theo-
rem 2.8.1).

Corollary 5.4.3. Suppose that f,g € L*(T) and f(n) = g(n) for every n € Z.
Then f =g a.e.

Proof. It follows from the assumption that oy f = ong for every N. This implies
that
If =gl <If—onfli+llovg —gllh — 0 as N — oo,

from which it follows that |f —g|l1 =0, so f =g a.e. [ |

5.5. Lebesgue’s Theorem
To prove our next theorem, we will need the concept of a Lebesgue point.

Definition 5.5.1. Suppose that f € L*(T). A point ¢ € R is said to be a Lebesgue
point for f if

h
i |1+ 0 = s0lds =0,

Every point of continuity of f is obviously a Lebesgue point. The Lebesgue points
appear in the theory of differentiation in the following way. Let a € R and put

t
F(t) = J f(s)ds, teR.
Then F is differentiable at every Lebesgue point ¢ of f with derivative f(t) since

F(t+h) — F(t)

1 "
A —f(t)‘é‘hj(; |f(s+t)— f(t)]ds| — 0 as h— 0.

The basic result about Lebesgue points, which we state without a proof, is due to
H. Lebesgue.
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Theorem 5.5.2. Suppose that f € L'(a,b). Then almost every t € (a,b) is a
Lebesgue point of f.

The next theorem is also due to Lebesgue.

Theorem 5.5.3. Suppose that f € L*(T). Then onf(t) — f(t) as N — o at
every Lebesgue point t € R of f.

Notice that it is not true that the Fourier series of a function in L!(T) converges
to the function almost everywhere; this follows from Kolmogorov’s example (see
Section 2.11),

Proof. Let t € R be a Lebesgue point of f. Using (ii) and (iv) in Proposition 5.2.1,
we see that

lon f(t) — F(¥)] < 217er [f(t—s)+ f(t+s)—2f(t)|[Kn(s)ds forae. t€R.

Put g(s) = |f(t —s) + f(t +s) —2f(¢)| for 0 < s < 7. Also put

Then, since t is a Lebesgue point of f,

D[l - sds+ L [+ - f0las—0 asu—o,

For an arbitrary € > 0, one can therefore find a number § > 0 such that u=*F(u) <
if 0 < u < ¢. Using this and (v) in Proposition 5.2.1, we then obtain that

fl/Ng(s)KN(s) ds < (N +1)F(1/N) <2 if N>¢ '

Tt also follows from (5.1) that

f os) K (s)ds < = f 9(s)

1/N 1/N s
J( >+2f F(s)d§>
N 1/N S S
7% e
< (=
SW (5 +25N) < 3re.
Finally,
T 2 (" w2
|, smntsas < 5 [ ato)ds < sl + 20l <
for sufficiently large INV. ]

Corollary 5.5.4. Suppose that f € L'(T) and that Y. * A(n)ei"t is conver-

gent a.e. Then f(t) =" __ f(n)e™™ a.e.

n=—ao

n—ff
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Proof. Let g(t) denote the sum of the Fourier series of f at ¢ € R. The state-
ment in the theorem then follows by combining the theorems 5.5.2 and 5.5.3 with
Proposition 5.1.4:
f(t) = lim onf(t) = A}im Snf(t)=g(t) ae. [ |
-

N—>xo

5.6. Hardy’s Tauberian Theorem

We have above seen that if (a,);~_ is a sequence of complex numbers and a,, — a,
then oy — a, but also that the converse in general is not true. Results, describing
situations when the converse is in fact true, are called Tauberian theorems after
Tauber who was the first to establish results of this type. We will now prove
Hardy’s Tauberian theorem.

Theorem 5.6.1. Suppose that f € LY(T) satisfies f(n) =0 ') asn > to.
If on f(t) converges for some t € R, then Sy f(t) converges to the same limit.
Morover, if on f converges uniformly on some set, the same holds for Sy f.

Proof. It is not so hard to show that
M+1

SNf(t) —onf(t) = 3 r— (o f(t) —on f(1))

_MMj‘l Z (1_]\)711)J?(n)eint7

N<|n|<M

if M > N > 1. Denote the sum in the right-hand side by Sy n(t). Let € > 0 be
arbitrary and put M = [(1 + ¢)N]| (where [r] is the integer part of r € R plus 1).
Then

M—N "~ (1+¢)N-N £

M+l _ (1+e)N+2 1+e+5

It follows that

. ‘M+1
im su
N—>%p - N

By the assumption, |f(n)| < C|n| ™!, so

(oa (8) — aNf(t»\ —0.

M

M+1 M+1 1 1
t)| < = -
‘M—NSM’N()‘ Cir=n 2 (n M+1>
n=N+1
M+1 [/ M M-N
<ol (2t Mo
M-N\" N M+1
l+e+ %
<C(%ln(1+s+%)—1),

which shows that
+1
— N

1+¢

lim sup In(l+¢)— 1) < Ce.

N—oC

SJV[,N(t)‘ < C’(

Since € was arbitrary, the limit in the left-hand side has to be 0. This proves the
first assertion. Because all estimates so far are independent of ¢, we see that Sy f
converges uniformly whenever oy f does. ]
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Corollary 5.6.2. Suppose that f € AC(T). Then the Fourier series of f is uni-
formly convergent on R.

~

Proof. According to Proposition 2.4.6, f(n) = o(n™!) as n — 400, and according
to Theorem 5.3.1, onf — f uniformly on R as N — oo. The result therefore
follows from Hardy’s Tauberian theorem. ]
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Chapter 6

L'-theory for Fourier Transforms

6.1. The Fourier Transform
Definition 6.1.1. The Fourier transform f of a function f € LY(RY) is de-
fined by

f = (x)e” ™ dx, ¢eR™L
Rd

Here, z - £ = Z?zl z;&5, v, € R?, is the standard inner product in R?%. Notice
that the Fourier transform is absolutely convergent since

|f(z)e”™¢| = |f(z)| for every z € R? and every ¢ € R%.

Example 6.1.2. Let f be the characteristic function of the interval (—1,1) c R.
Then
2siné

fo = | e for € 0
-1
and f(O) = 2. Notice that f ¢ L'(R). O

Example 6.1.3. Let f(z) = ¢ /*l, 2 € R. Then

~ *L ] o0 4 0 4
f(6) J e l*le=18 gy = J e~ (i) g0 4 J 1=z 1.
o 0

— 3L
1 1
— + — =
1+d€  1—4& 1+4&2

for £ € R. O

Example 6.1.4. Let f(z) = e’|m|2/2, z € R To calculate the Fourier transform
of f, we first consider the case d = 1. Then

~ r'e ) . ) - o
&) = f e T RPeT W g = ¢ /QJ o (@+i6)?/2 g

— — 0

o
_ 6—52/2J e~ 2 dp = \Pre= 2 for feR.

—0

Here, the penultimate equality follows from Cauchy’s theorem. For the general
case, we put f;(z) = e %2 zeR? for j=1,..,d. Then f = fi-...- fg, from
which it follows that

F6) = Fuer) - Falea) = Name€/2 . NameSil2
= (27r)d/26—\5|2/2 for £ € RY. .

53
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Example 6.1.5. Suppose that f € L'(R?) is a radial function, i.e., f(z) = g(|z|)
for z € R?, where g is some function on [0,00). Then f is also a radial function.
Indeed, if T is any rotation of R%, then

~

N Jm g(lyl)e~ € dy = f(€) for € e R

This shows that f(f) only depends on ||, so f is radial. Using polar coordina-
tes ¢ = pw, where 0 < p < 00 and w € S4 1, we see that

GE J 9(p) (Ldl e dw> p'tdp, £eR”

0

One can show that the integral within brackets actually is a Bessel function. O

6.2. Properties of the Fourier Transform

The mapping .%, which maps a function f € L'(R%) onto the function f, is also
called the Fourier transform. The Fourier transform is obviously linear being an
integral:

Proposition 6.2.1. Suppose that f,g € L'(R?) and o, B € C. Then

af + Bg(€) = af(€) + Ba()  for every € € R

In the next proposition, we summarize some simple, but useful properties of the
Fourier transform. We will use the following notation:

en(z) = e reRY heR
As before, 73, is the translation operator in direction h € R?, defined by
mf(x) = f(x—h), zeR™

We also use the reflection operator R and the dilation operator D;, where ¢
is a non-zero real number, defined by

Rf(z) = f(—z), ze RY and D,f(z) = f(tz), z € RY,
respectively. Here, f denotes a function on R?.

Proposition 6.2.2. Suppose that f € L*(R?). Then the following properties hold
for he R and t # 0:

(i) enf = T f;
(ii) Tnf = e-nf;
(iii) Rf = Rf;
(iv) Dif = [t| =Dy J;
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(v) f = Rf.
The proof is left to the reader as an exercise.
Suppose that f € L'(R?) and that A is a non-singular d x d matrix. Put
A*f(x) = f(Az), zeR%

Proposition 6.2.3. Suppose that f € L*(RY) and that A is a non-singular d x d
matriz. Then

AFf(€) = [det A7 (ATH)*F(), € R (6.1)
Proof. Changing variables y = Az, we see that
Af(©) = | fAx)e ™ do = | det A" f Fly)e A0y,
Rd R4

Now, since (A7 1y) - & =y - ((A71)E), we have
Axf(e) = |detA|-1j Fly)em A0 gy = |det A7 ((AHD*f(6). =
Rd

Notice that if A = —I, where [ is the identity matrix, then A* is the reflection

operator R, and if A = tI, where t is a non-zero real number, then A* is the dilation

operator.

Proposition 6.2.4. Suppose that f € L*(R%). Then the following properties hold:
(i) f is bounded on R<: |f(§)| < ||y for every € € RY;

(i) f is uniformly continuous on R

(i) f(§) =0 as [§] — oo

As for Fourier coefficients, we shall refer to the last property as the Riemann—
Lebesgue lemma. The first property in this proposition shows that the Fourier
transform maps L!'(R?) into L*(R?), while the second and the third properties
show that the image of L*(R) is a subset to Cp(RY).
Proof (Proposition 6.2.4).

(i) This follows directly from the definition of 7.

(ii) Notice that

~ ~

fe+m=FOI< | @l =1lde foreheRe

The claim now follows from the dominated convergence theorem since the in-
tegrand is less than or equal 2| f(x)| and tends to 0 as h — 0. The convergence
is uniform because the integral is independent of &.

(iii) As in the proof of (ii) in Proposition 2.4.3, we have

1

fio) =3 | (@) = ragpep fla)e=Sat for & #0.

Finally apply the triangle inequality and Lemma 1.4.1. ]
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Example 6.2.5. A consequence of Proposition 6.2.4 is that none of the following
functions on R:

1
nga §- x—1(§), 1
is the Fourier transform of a L!-function. O

One of the most important properties of the Fourier transform is that the trans-
form of a convolution is the product of the transforms of the functions involved.
Recall from Theorem 1.2.1 that the convolution f # g is defined a.e. on R? and
belongs to L'(RY) if f,g € L*(R?).

Proposition 6.2.6. Suppose that f,g e L'(R?). Then

Frgle) = f(&)§(e) for e e R (6.2)

Proof. One proves (6.2) simply by changing the order of integration and perform-
ing a linear change of variables:

Fa© = [ ([ 1= naway)e =i

- [ ([ s =metetar)gwe < ay
R R

= J(©)3(e) for (e R™ -

Example 6.2.7. In Section 1.5, we showed that the Banach algebra L'(R?) has
no multiplicative unit, i.e., there is no function K € L'(R%) such that

K« f=f forevery fe L'(RY). (6.3)

Let us give a new proof of this fact using the Fourier transform. Suppose that such
a function K existed. Let f be the Gauss function in Example 6.1.4. Taking the
Fourier transform of both sides in (6.3), we would then have that K f = f. Since f
has no zeroes, this would imply that K (€) = 1 for every ¢ € R?, which contradicts
the Riemann-Lebesgue lemma. O

Proposition 6.2.8. Suppose that f,g € L*(R?). Then

~

f@)g(x)de = | fz)g(x)dz. (6.4)
R4 Rd
Notice that both integrals in (6.4) are defined since f and g are continuous and
bounded.

Proof. The identity (6.4) follows directly by changing the order of integration. H

Proposition 6.2.9. Suppose that f € L*(R?) and that 0° f exists a.e. and belongs
to L*(RY) for some multi-inder o. Then

~

Jof(€) = (i) F(€)  for every € € RY. (6.5)
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Proof. Using induction, the proof reduces to showing that (6.5) holds when |a| = 1,
i.e., when 0% = 0; for some index j with 1 < j < d. Without loss of generality, we
may assume that j = 1. We shall write a point z € R% as z = (21, 2’), where z; € R
and 2’ € R%~!. Notice that the function z; +— f(z1,2’) belongs to L'(R) for almost
every 2’ € R4™1 according to Fubini’s theorem. For such points 2’ € R?~!, we have
that

T
f(z1,2") = f(0,2") +J o f(t,z')dt for —oo <z < o0.
0
This identity shows that the limits lim,, 4. f(x,2’) exist. These limits have to

be 0 since f(z1,2’) € L'(R). We now obtain (6.5) by integrating the one-dimesional
Fourier transform of 01 f(x1, ") by parts:

6/3?(5) = JRdil <J_v\ 01 f(x1, x/)e—ixlﬁl dm1>e—ix'~£' dz’
= i€ f(©)- -

The Riemann-Lebesgue lemma shows that ]?(5) = o(1) as [¢| — oo if f e L'(RY).
As for Fourier coefficients, the Fourier transform will decay faster the more regular
the function f is:

Corollary 6.2.10. Suppose that f € L'(RY) and that 0“f exists a.e. and belongs
to LY*(RY) for some multi-index oc. Then

F&) =o(lg]1°ly  as €] — .
Proof. Since 0°f € LY(RY), [¢]1¥[F(£)] = |02 (€)| — 0 as |¢| — oo. =

Proposition 6.2.11. Suppose that f € L*(R) and that (g, |z|*|f(z)|dz < o0 for
some integer k > 1. Then f € CF(R?) and

6“]?(5) = JRd’(—ix)"‘f(ac)e*””'5 dz  for |a| <k and £ € R (6.6)

We remark that (6.6) is exactly what one obtains by formally differentiating 7
under the integral sign:

rfe =0 | fa@etin = | f@oge s
Rd Rd
= f (—iz)* f(z)e ™ da.
R4

Proof. It suffices to prove (6.6) for k = 1 and we may assume that o = (1,0, ...,0).
Writing z = (21,2’) and € = (&1,¢’), where 2/, ¢ € R4™!, we then have that

~ b e~trih _ 1 I
f(& +h&)— 517 f f —izy) f(z1, @ ) e~ Hz&+2"-E) dxida’.
h RiJ o —ix1h
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Since the differential quotient tends to 1 as b — 0 and its absolute value is less than
or equal 1, (6.6) follows from the dominated convergence theorem. The continuity
of 01 f is a consequence of the fact that the right-hand side in (6.6) is a continuous
function of £ (this also follows from the dominated convergence theorem). ]

Example 6.2.12. We shall calculate the Fourier transform of the function
flz)=e" z€R,

in Example 6.1.4 in a another way. Notice that f'(x) = —zf(z) for every = € R.
If we apply the Fourier transform to this identity, using (6.5) and (6.6), we obtain
that R R

i£f(&) = —if'(¢) for every £ € R.
Every solution to this differential equation has the form f(f) = C’e’tz/Q, ¢ eR, for
some constant C. In this case,

sl
C=f(0)= f e~ 2 dy = \/2r,
— 3L
so that f(£) = \2me=¢/2 for ¢ € R. O

6.3. Inversion of Fourier Transforms in One Dimension

We next turn our attention to inversion of Fourier transforms and begin with the
simpler one-dimensional case. The results (and the methods used for obtaining
them) are very similar to the results about pointwise convergence of Fourier series
in Chapter 2.

Let us first define an operator that corresponds to the symmetric partial sum
for the Fourier series of a periodic function. For f € L*(R) and N > 0, put

1N
Swf@) =5 | feeds s
2 -N
Using the definition of f , we see that

1 N o0 ) ) 1 e) N )
S (x) = ( f(y)e—wﬁdy>elfwd§= f<y)( | e’““‘”%) dy

2 —N \J—x 2m J_p —N
i sin N(z —y)
= J(Y)———"ds= Dy = f(x),
7%() @ =) (z)
where Dy is the Dirichlet kernel for the real line:
in N
Dy(x) =222 2 eR, N>o.
T

Using the fact that Dy is an even function, we can also write Sy f as
):lf“ﬂw+w+f@—w
™ Jo Y

The following results are proved in the same way as the corresponding results for
Fourier series.

Snf(x sin Ny dy.
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Proposition 6.3.1. Suppose that f € L'(R) and § > 0. Then

L fEt+y + flz—y)
)_WL y

Snf(z sin Ny dy + en(z)

for every x € R, where ey(x) » 0 as N — o0.

Proposition 6.3.2. Suppose that f € L*(R). Then limy_.. Sy f(z) = S if and
only there exists a number § > 0 such that

lf‘sf(w+y)+f(w—y)—
0 Y

lim 5 sin Nydy = 0.
N—ow T

Theorem 6.3.3. Suppose that f € L*(R) satisfies a Dini condition at x € R, i.e.,
there exist numbers § > 0 and S € C such that

J‘s [f(x+y) + f(z —y) — 25|
0 Yy

dy < 0.

Then limy_,o, Sy f(z) = S.

In particular, if

dy < oo

f /(@ +y) + [ —y) = 2f ()]
0 Yy
for some number § > 0, then

One calls the limit in the right-hand side a principal value integral. Notice that
the principal value cannot be replaced with an integral over R, since f in general
does not belong to L}(R) (cf. Example 6.1.2).

Corollary 6.3.4. Suppose that f € L*(R). If the one-sided limits
flzt)= lim f(z+y) and f(z7)= lim f(z—y)
y—0+ y—0+
and the one-sided derivatives

f'(@t) = lim faty) - f@7) and f'(x7) = lim fe—y) —f=")

y—0+ i y—0+ -y

exist, then
fat) + fa)

am Snf(z) = 2

Example 6.3.5. According to Example 6.1.2 and Corollary 6.3.4,

(Y 2sing lif-1<z<1
S

. ; 1 .
M or ), e T et m i - 0
Oifx>1lorax<-—1



60 Chapter 6 L*-theory for Fourier Transforms

Example 6.3.6. According to Example 6.1.3 and Corollary 6.3.4,

e”l*l = lim S b2
NS 21 ) N 14 E2 ™

e q¢ ! ff LI d¢ forzeR
e = — e r X s
o 1+ &2

where the last equality holds because the integrand belongs to L'(R). If we now
replace x with —x and let  and & change roles in this identity, we obtain that

J ey = e €l for £ € R.
o 1+ a?

This shows that the Fourier transform of the function

f(z) zeR, is f(&)=ne k¥l ceR. O

" T

Corollary 6.3.7. Suppose that f € L'(R). If f satisfies a Hélder condition at a
point x € R, then limy_,o. Sy f(z) = f(x).

6.4. Inversion of Fourier Transforms in Several Dimensions

Inversion of Fourier transforms in more than one dimension is considerably harder
than in the one-dimensional case, the main reason being the fact the Fourier trans-
form f of a L'-function f not necessarily is integrable, which makes the interpre-
tation of the inversion formula, i.e.,

f@) = g | FOde, aere

very delicate. We will therefore focus on the simpler case when f e LY(RY).

Theorem 6.4.1. Suppose that both f and f belong to L' (R?). Then
1 ~ ]
flz) = @i JRd f&)eE*de  for a.e. x € RY. (6.7)

If f, in addition, is bounded on R%, then (6.7) holds at every x € R?, where f is
continuous.

Proof. For y € RY, put

o(y) = 2m) W2 and () = ¢ Vo(ey),
where € > 0 and = € R? are parameters. Then

9(6) = (2m) ™27 and (&) = 6 (€ ~ )

for ¢ € R?, where $E(§) = 6*d$(5*1§). Notice that QASE is even. Proposition 6.2.8
now shows that

HOdw—de = g | foe a6
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Letting € — 0, the right-hand side in this identity tends to the right-hand side
in (6.7) due to dominated convergence. Since (¢.):>0 is an approximate identity,
the left-hand side tends to f in L'(R?) (see Theorem 1.5.3). If we now choose a

subsequence ¢, such that ¢., * f — f a.e. as k — o0 and replace € by € in (6.8),
we obtain (6.7). The final statement also follows from Theorem 1.5.3. [ |

Definition 6.4.2. The inverse Fourier transform f of a function f € L'(R%)
is defined by

fla) = ﬁ Ld f&erde, zeR

The inverse Fourier transform shares most properties with the Fourier transform.
With this notation, Theorem 6.4.1 may be reformulated as

f(z) = f(z) for ae. zeR?

assuming that f and f belong to L'(RY).
As a corollary to Theorem 6.4.1, we obtain the following uniqueness theorem
for the Fourier transform.

Theorem 6.4.3. Suppose that f,g € L'(RY). Iffz g, then f =g a.e.

Proof. Put h = f —g. Then h = 0 € LY(RY), so it follows from Theorem 6.4.1
that h = 0 a.e. and thus that f = g a.e. [ ]

We end this section by giving a simple criterion for when the Fourier transform of
a L!'-function belongs to L'(R?).

Proposition 6.4.4. Suppose that f € L'(R?), that there exist positive constants C
and M such that |f(z)| < C for |x| < M, and that f > 0. Then f € L'*(RY).

Proof. The proof is quite similar to that of Theorem 6.4.1. Put
olx) = (2m) e 2,z e R,
and
¥(z) = ¢(ex), z € RY,
where £ > 0. Then (&) = ¢ (£) for ¢ € RY. Proposition 6.2.8 now shows that

1 N _£21¢12 . ~ R
@ Jou 79 €l /2dg—URdf(f)qbe(f)ds‘szd [F(©)o(€)d. (6.9)

We next split the integral in the right member of (6.9) as follows:

~

FO10(6) dé + f FO)15.(6) de

|€|=M

fRd 1F(©)|g<(€) d = J

l&l<M
—M?/2¢?

2 —dj2¢
S G e e P UGIL

< (2m) = (C + |,
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where the last inequality holds for sufficiently small €. This shows that
f(§)e =112 dg < (2m)¥2(C + | f]1)
Rd

for every sufficiently small € > 0. If we now let € — 0 and apply the monotone
convergence theorem, we obtain that f € L'(RY). [ |



Chapter 7

L?-theory for Fourier Transforms

In this chapter, we will show how the Fourier transform can be extended to func-
tions f € L2(R?). We also prove the celebrated Plancherel formula and show how
inversion of Fourier transforms works in L?(R%).

7.1. Definition of the Fourier Transform

The strategy for extending the Fourier transform to L?(RY) is the following: One
first chooses a sequence of functions f, € L'(R%) n L?(R%) such that f, — f
in L2(R%). Since each f, belongs to L'(R?), it has a Fourier transform fn. The
next step is to prove that the sequence fn is convergent in L?(R%). The limit of
this sequence is then defined as the Fourier transform f of f. To prove that this
extension is consistent with the previous definition, one has to verify that the two
definitions coincide for functions in L'(R%) n L?(R%). One also needs to verify
that f is independent of the choice of the sequence f,,.
Given a function f € L*(R?), we define let f, = f|g, (o), i-e.,

fn(ﬂU):{ flz) if |zl <n

7.1
0 if |z|=n (7.1)

for n = 1,2,.... Every function f, of course belongs to L?(RY). We first show
that f, is integrable, and thus has a Fourier transform, and that the sequence
approximates f in L2(R%).

Lemma 7.1.1. Suppose that f € L>(R?) and that f, is given by (7.1). Then
(a) f.€ L'(RY) n L2(RY) for every n;

(b) fo— fin LQ(Rd)'

Proof.

(a) This follows directly from Holder’s inequality:

'Wlif 1F(@)] dz < Cn2| fll2 < o0,
xT|<mn
(b) Notice that

17 =l = |

|z|zn

f@Pde= [ xa@lfe)d,

where Y, is the characteristic function of R? \ B,(0). The integral in the
right-hand side tends to 0 as n — o0 since the integrand tends to 0 a.e. and it
is dominated by the integrable function |f|*. |

We next prove a weak form of the Plancherel formula.

Lemma 7.1.2. Suppose that f € L*(R%) n L2(R%). Then f € L2(R%) and

| @R = s | 1O as (7.2

63
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Proof. Let g = f *+ Rf be the so called autocorrelation function, where Rf is
defined as before by Rf(z) = f(—z), = € R%. Thus,

g(z) = Rdf(y)f(y—x)dy for 2 € RY.

Then g € L*(R?) since f € L*(RY) (see Theorem 1.2.1). The Fourier transform

of the function Rf is anccording to Proposition 6.2.2, so it follows from Propo-
sition 6.2.6 that § = |f|>. The assumption that f € L?(R¢) moreover implies
that g is bounded: |g(z)| < |f|3 for every z € R%. Proposition 6.4.4 thus shows
that g € L'(R?). This means that we can apply the inversion formula in Theo-
rem 6.4.1:
f@) fly —z)ds = Lf IF (&)’ de  for ae. z€ R (7.3)
R4 (2m)4 Jpa

But since both sides of this identity are continuous functions (see Theorem 1.4.2
for the left-hand side and Proposition 6.2.4 for the right-hand side), it holds for
every x € R%. Hence, (7.2) follows if we take z = 0 in (7.3). [

Lemma 7.1.3. Suppose that f € L*(R?) and that f, is given by (7.1). Then the
sequence (f,)>_, is convergent in L?>(R%).

Proof. Using (7.2) and the fact that f,, converges to f, we see that (fn);{:l is a
Cauchy sequence in L2(R9):

1o = Fullz = @)Y frr = fulla — 0 as m,n — oo, n
Definition 7.1.4. If f € L2(R%) and f,, is given by (7.1), we define fe L?(RY) as
the limit in L?(R?) of the sequence (f,)%_;.
Remark 7.1.5.
(a) Notice that the Fourier transform maps L?(R?) into L?(R).
(b) By definition,
F(¢) = lim f(z)e ™€ dz in L*(RY), (7.4)

noL |z]<n

which means that

J.

(c) In the case f € L}(R%) n L2(RY), the transform f defined by (7.4) coincides
with Definition 6.1.1. In fact, there exists a subsequence n; such that n, — o0
as k — oo and

2
d¢ — 0 asn— .

7(©) —f et

f(f) = lim f(x)e ®Sdx for ae. £ € RL

k—a0 lz|<ny

But since f € L*(R), the right-hand side equals {g, f(z)e™"¢ dx.
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(d) If we choose another sequence of functions g, € L'(R?) n L?(R%), that con-
verges to f in L2(R%), then

1 = Gall < IF = Falz + 1Fa = Gall = 1] = Fullz + @m) 721 fu = gulla,

which shows that g, converges to f in L2 (R%). This means that the definition
is independent of the sequence f,,.

Example 7.1.6. Let f(z) = sinz/x, x € R. Notice that f belongs to L%(R), but
not to L'(R). According to Example 6.3.5,

lim ST i gy = mx(—1,n(z) for z # £1.

noo ) . x
It thus follows from (7.4) that f= TX(=1,1)- O

Notice that this example shows that the Fourier transform of an L2-function is not
necessarily continuous as was the case for L!-functions.

7.2. Plancherel’s Formula

We next extend the Plancherel formula to L#(R9).

Theorem 7.2.1. Suppose that f € L?>(R?). Then
2 _ 1 ey 2
| @R = s |1 as (75)

Proof. Since f,, and fn converge to f and f in L?(R%), respectively, and Planche-
rel’s formula holds for f,, we obtain that

1 1

2 _ 1 2 _ 1 72 _ 712
Iflz = nh_{& Ifnl2 = nh_I}}o W“fn“z = WWHQ u

Example 7.2.2. If we apply Plancherel’s formula to the function in Example 7.1.6,
we see that

o0 2 1
1
J Ve = — | rPde=n 0
x? 2m J_4

e
Corollary 7.2.3. Suppose that f,g e L?>(R?). Then

— 1 S
| @i = g | Foa@ e

Proof. Apply Plancherel’s formula to f + g and f + ig. [ |
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7.3. Properties of the Fourier Transform

The Fourier transform on L%(R?) shares many properties with the Fourier trans-
form on L*(RY).

Proposition 7.3.1. Suppose that f € L?>(R%). Then the following properties hold
in L2(R%):

(i) Tnf = e_nf for he R

(ii) enf = nf for h e RY;

(iii) R = RF;

(iv) Dif = |t|=2Dy-1 f fort # 0;

(v) f=Rf

(vi) if 0;f € L*(R?) for some j, then 6/77’(5) = zgjf(f)
Proposition 7.3.2. Suppose that f, g€ L>(R?). Then

~

f@)g(z)de =] [f(z)g(x)de.
Rd Rd

Proof. Let (f,)%_, and (g,)*_, be any two sequences in L!(R%) n L?(R?) such
that f,, — f and g, — f. Then

f@)j(a)de = lim | fu(@)gn(@)de = lim | fo(2)gn(e)de

Rd n—oo Rd n—a Rd
- | Fwt iz,
Rd
where the second equality follows from Proposition 6.2.8. ]

7.4. The Inversion Formula

Recall the inversion formula proved in Section 6.4: If f, f e LY(RY), then f = f,
where

~ 1 .
= — e R?.
f(x) G Ld f(Qe~rdg, we
Notice also that ]\{ = (2m) %R f . This motivates the following definiteion.

Definition 7.4.1. The inverse Fourier transform f of f € L*(RY) is defined
by J = (2m) 'R},

Theorem 7.4.2. Suppose that f € L?>(R?). Then f=1

Combining this result with (7.4), we see that

n—%

f(z) = lim ﬁ Ld F©Oe€  d¢  in L2RY).
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Proof. Put g = f. We will prove that f = g a.e. by showing that If =gl =0.
To this end, notice that

If = gl5 =(f —9.f —9) = I3 = (£,9) = (f.9) + lgli3-

Using the fact that g = (QW)’dfT(see property (v) in Proposition 7.3.1) together
with Proposition 7.3.2, we obtain that

G | S@F @ iz = o | f@fe) i

(f.9) = JRd f(@)g(z)dx =
= [ f13

and consequently (f,g) = | f||3. Finally, two applications of the Plancherel formula
yield ||g|2 = | f[3. This shows that |f — g[2 = 0. ]

Example 7.4.3. Let us check the inversion formula for the function f = x(_1 1)
Then

flo =25 wd f@) =2mycin(@), sothat fo) = f@). O

Let .# denote the operator with maps a function f € L%(R?) onto its Fourier

transform f By combining Plancherel’s formula with the inversion formula, we
obtain the following theorem.

Theorem 7.4.4. The operator (2m)¥42.Z from L*(R?) to L>(R?) is an isometric
isomorphism.
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Chapter 8

Distributions

In this chapter, X and K will denote open and compact subsets to R, respectively.

8.1. Test functions

In the context of distribution theory, the class of infinitely continuously differen-
tiable functions on X with compact support is traditionally denoted Z(X) instead
of C(X) and the functions, that belong to Z(X), are called test functions.

Example 8.1.1. In Example 1.6.2, we gave the following example of a function ¢

that belongs to 2(R?):
e~ 1/(-lel*) jf |z] <1
x) = . O
) { 0 iffz>1

Definition 8.1.2. A sequence (¢,,)* ; € 2(X) converges to ¢ € Z(X) if
(i) there exists a compact subset K to X such that supp ¢,, € K for every n;
(ii) 0*@,, converges uniformly to 0%¢ on X for every multi-index .

We denote this by writing ¢,, — ¢.

Remark 8.1.3.

(a) We remark that there are corresponding definitions for sequences like (¢ )n~0,
where h — 0, etc.

(b) Notice that if ¢, — ¢ and supp ¢, c K for every n, then supp ¢ c K.

Example 8.1.4. Suppose that ¢ € Z(R?). Then 7,¢ — ¢ as h — 0. Indeed, the
support of 7,¢ is a subset of the closed |h|-neighbourhood of supp ¢. Also, if « is
some multi-index and z € R%, then

0%d(x — h) = 0%¢(x)| = [VO"¢(x — Oh) - h| < [V d(x — Oh)[|h] < |V b[0[R]

according to the mean-value theorem and the Cauchy-Schwarz inequality, where 6
is some number between 0 and 1, so that

1097 — 0%l < [VO*¢os|h].
This shows that 0%7,¢ tends uniformly to d“¢ as h — 0. O

Example 8.1.5. Let e; be the j-th vector in the standard basis for R?. We claim
that if ¢ € 2(X), then

o(x + hej) — ¢(x)
h
in 2(X). Two applications of the mean-value theorem show that if z € R¢, then

3yota) - A ) =000

— 0;¢0(x) ash—0

= 10;¢(x) — d;¢(x + Ohe;)|

= |07 ¢(a + nbhe;)||0h]
< 076l |,
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where 6,7 € [0, 1], from which the claim follows. O

8.2. Distributions
Definition 8.2.1. A distribution on Z(X) is a linear functional u : 2(X) — C

that is sequentially continuous, meaning that if

¢n — ¢ in @(X)a then U’(¢n) - u(¢)
We denote the class of distributions on 2(X) by 2'(X).

Remark 8.2.2.

(a) Notice that 2'(X) is a vector space with the addition and multiplication with
scalars defined pointwise.

(b) We shall most of the time write
(u, ¢y instead of u(d),
where u € 2'(X) and ¢ € Z(X).

8.3. Examples of Distributions

We next give a number examples of distributions.
Example 8.3.1. Every function f € L]
distribution u; on X through integration:

(X) gives rise to a so-called regular

Cup ¢y = L f(@)é(x) dz, ¢ e DX).

This mapping is obviously linear. To show that it is sequentially continuous, notice
that if ¢ € 2(X) with supp ¢ ¢ K, then

[Kug, &) < L |f(z)¢(z)| dz <[] JK |f ()] da.

It follows that if ¢, — ¢ in 2(X) and supp ¢,, € K for every n, then

g, &) — (g dudl < 16— bulle JK \F()] dz,

which shows that (uy, ¢n) — {uys, ¢). O

The following proposition shows that there is no need to distinguish between a
function f € Li . (X) and the regular distribution u; generated by f. We will
therefore sometimes denote the distribution uy by just f.

Proposition 8.3.2. Suppose that f, g€ Li (X) and

loc

(ug, ¢y =ug, ¢y for every ¢ e 7(X).
Then f =g a.e. on X.
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Proof. Put h = f —g. Then (up, ¢y = 0 for every ¢ € Z(X). Let K ¢ X be com-
pact and choose a function ¢ € Z(X) such that ¢ = 1 on K (see Proposition 1.7.2).
Then vh € L*(R%). Moreover, if ¢ is a mollifier on R? (see Definition 1.6.1), then

o (O)a) = | dula =)o) dy =0

for every x € R? and every sufficiently small ¢ > 0. But ¢. # (¥)h) — ¥h in L'(R?)
as € — 0, so Yh = 0 in L'(RY). Thus, h = 0 a.e. on R% so h = 0 a.e. on K.
Notice that X = J;_; K,, where

K,={zxeX:|z|<nand dist(z, X°)=>n"1} forn=1,2,...

Since every set K, is compact and h = 0 a.e. on K, it follows that h = 0 a.e. on X
and therefore that f = g a.e. on X. ]

Example 8.3.3. The Dirac delta §, at a point a € X is defined by
<5a7¢>:¢(a)7 qﬁe@(X)

One usually denotes dg by just . The continuity of §, follows as in Example 8.3.1
from the fact that

[<0a, D)l < [@] o for every ¢ € Z(X).

This distribution is not regular. In fact, suppose that §, were regular. Then there
would exist a function f € LL (X) such that

loc

JX f@)o(z)dz = ¢(a) for every ¢ € Z(X).

Let ¢ be the test function in Example 8.1.1. Then

6(0) = pnfa —a)) = \ [ s@tnte - o) as

< fl o s

for n = 1,2,.... This gives us a contradiction since the left-hand side is non-zero,
while the right-hand side tends to 0 as n — oo. O

Example 8.3.4. In one dimension, the Cauchy principal value pv% is de-
fined by
o)

X

<pv %, (b(x)> = lim x, ¢ 2R).

e—0 |z|=>e

The limit in the right-hand side is also denoted

pv " de.
e T

To show that this limit exists, first notice that if x € R, then

oa) = o(=2) = [ syt =z (sa)ds = avta),

—x
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where the function v is easily seen to smooth on R. Suppose that supp ¢ < [—R, R]
for some number R > 0. It then follows that

I e e At R

as € — 0. This also shows that pv % is sequentially continuous:

o 30)] =

The principal value distribution is not regular. In fact, let ¢ be a mollifier on R
and zg # 0. Theorem 1.6.3 then shows that

< R max [{(2)] < 2R[¢']oc. (8.1)

1 C P (a0 — 1
<pv—,¢5(x0—x)>=J 9e(20 ~ 2) dr — — ase—0.
x o x Zo
This shows that the only possible candidate for a function, that could generate the
principal value, is f(z) = 27!, 2 # 0. But f is not locally integrable. O

8.4. Distributions of Finite Order

In Example 8.3.1, we showed that the functional uf, generated by a locally inte-
grable function f, is continuous by establishing that, for every compact set K < X,
there exists a constant Cx (= §, | f| dz) such that

[Kug, &)l < Ck[|9ll

for every function ¢ € Z(X) with support in K. Basically the same technique was
employed in Example 8.3.3 and Example 8.3.4. The next theorem shows that the
existence of such an inequality is not only sufficient for a linear functional to be
continuous on Z(X), but also necessary.

Theorem 8.4.1. A linear functional u on 2(X) belongs to 2'(X) if and only if,
for every compact subset K of X, there exist a constant C = 0 and an integer m = 0
such that

(@) <C Y] 10°¢] (8.2)

|al<m
for every function ¢ € 2(X) with support in K.

Proof. The sufficiency of the condition (8.2) is obvious. To prove necessity, we
suppose that there exists a compact subset K of X such that (8.2) is not satisfied
for any constant C' and any integer m. One can then find functions ¢, € 2(X)
with support in K for which

[u(¢n)| > n Z [0%n]e forn=1,2,...

|la]<n

By homogeneity, we may assume that |u(¢,)| = 1 for every n. It then follows
that |0%@, | < 1/n if |a] < n, which shows that ¢, — 0 in 2(X). This is a
contradiction since u(¢,) does not tend to 0. [ |
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Definition 8.4.2. A distribution v € 2'(X) is said to be of finite order if (8.2)
holds with an integer m that is independent of the set K. The minimal integer m
for which (8.2) holds is then called the order of u. We denote by 2,,(X) the class
of distributions on X of order less than or equal m.

We remark that if w is of order m, then the constant C' in (8.2) will in general
depend on K (as in Example 8.3.1 and Example 8.3.4).

Example 8.4.3. The distributions in Example 8.3.1 and Example 8.3.3 are of
order 0. The order of the Cauchy principal value in Example 8.3.4 is according
to (8.1) not more than 1; we will show that the order is exactly 1. Suppose that
the order were 0. This means that there, for every compact set K ¢ R, would exist
a constant C'k such that

1
v 1.0(0))| < Calol.
for every function ¢ € Z(R) with support in K. Now take K = [0,2] and
let (¢,)"_;, be a sequence of function in Z(R) with support in K that satis-

fies 0 < ¢p(x) < 1 for every x € R, ¢p(z) = 0 for 0 < = < 1/2n, and ¢, (z) =1
for 1/n < & < 1. It then follows that

1 2 pn(x) bode
Ck =2 ‘<pv x,¢n($)>‘ = L/Qn . dx L/n = Inn,

which is a contradiction. O

WV

Example 8.4.4. Let the linear functional u on Z(R) be defined by
(w, ¢y =Y 69(j), ¢e2(R).
j=0

If supp ¢ < [—k, k] for some positive integer k, then

k—1

Ku, ) < D5 169,

J=0

which proves that u € 2'(R) according to Theorem 8.4.1. Suppose that u were of
finite order m > 0. Then, for a given compact subset K to R, there would exist a
constant C'i such that

[Cu, ) < Ck Y, 1690 (8.3)

Jj=0

for every test function ¢ with support in K. Now, take ¢ € Z(R) with support
in (—1,1) such that ¢(™*1Y(0) # 0 and put ¢, (t) = n~"¢(n(t — (m+1))) forte R
and n = 1,2, .... Then supp ¢, < (m,m + 2) for every n, ”@(1])”% < ¢V | for j
satisfying 0 < j < m, and (/)glmﬂ)(m + 1) = no™+1(0). If we now apply (8.3)
to K = [m,m + 2] and the sequence (¢,)_;, we get a contradiction since the
right-hand side is bounded with respect to n, while the left-hand side is unbounded.
This shows that u is not of finite order. O
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Remark 8.4.5. One can show that if u € 2,,(X), then u can be extended to
a sequentially continuous functional on C™(X) in a unique way. It follows that
distributions of order 0 are measures on X.

8.5. Convergence in 7'(X)

Convergence in 2'(X) is defined as pointwise convergence.?

Definition 8.5.1. A sequence (u,)i_; € 2'(X) converges to u € 9'(X) if

(tn, 8) — (u, &) for every ¢ € 2(X).

We denote this by writing u,, — u.
Example 8.5.2. Suppose that ¢ € Z(R). According to the Riemann-Lebesgue

lemma for the Fourier transform (see Proposition 6.2.4),

<eznm’¢(x)> _ ” ¢(x)eznm dr = {{)\(_n) —> 0 asn — o,

—
which shows that e™* — 0 in 2'(R). O
Example 8.5.3. For n = 1,2, ..., let f, € L'(R) be defined by

n if 0<z<l1/n
0 if <0orz>1/n"

ful) = {
Then uy, — ¢ in Z'(R). Indeed, if ¢ € Z(R), then
1/n 1/n
gty =n | ofw)de =n f (6(2) — 6(0)) dz + $(0) —> $(0) = (5. 6)
as n — 00 since

1/n
j (é(x) — 6(0)) do

0

< max [§(x) — ¢(0)] — 0. O

0<z<1/n

n

Example 8.5.4. Suppose that (K,)%_; is an approximate identity on R? (see
Definition 1.5.1). Theorem 1.5.4 then shows that ux, — ¢ in 2’(R%). Notice also
that the function f,, in that Example 8.5.3 can be written f,(x) = nK(nx),z € R,
where K = x(o,1)- O

Example 8.5.5. We will show that

o€
Z e =276 in P'(—m,7), (8.4)

n=—uxL

In the sense of topological vector spaces, 2/(X) is the dual of Z2(X). Convergence in 2’(X)
thus coincides with weak* convergence.
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where the series is interpreted as the limit of its symmetric partial sums. This is
the Fourier series expansion of 274, which we will return to later. The identity (8.4)
holds since

N - N T ) N ~
< Z eine, ¢>(x)> = Z o(x)e™ dx = 27 Z d(—n)
2y ne_NY—T n=—N

— 27 i b(n) = 21p(0) = (216, ¢) as N — oo

n=—w
for every function ¢ € Z(—m, 7). O

Example 8.5.6. Essentially the same calculations as in Example 8.5.5 show that
v e )
f e dy =215 in 7'(R),
—C
where the left-hand side is interpreted as the limit in 2'(R) of the integrals

f e~ dx, where e Randn=1,2,.... O

—n

Example 8.5.7. Suppose that f,, — f in L{ (X), i.e.,

loc

J |f — fnlde -0 asn — o
K

for every compact subset K to X; this holds for instance if f,, converges locally
uniformly to f on X. We will show that uy, — u; in 2’'(X) under this assumption.
Suppose that ¢ € 2(X) with compact support K c X. Then

56 = Cape ] = | [ (7= ) s

<WMLU—MM—M1 .

We end this section by stating without a proof a theorem which shows that the
space 2'(X) is complete.

Definition 8.5.8. A sequence (u,)*_; € 2’'(X) is a Cauchy sequence in 2’(X)
if {up, ¢y, n=1,2, ..., is a Cauchy sequence in C for every ¢ € Z(X).

Theorem 8.5.9. Every Cauchy sequence in 9'(X) is convergent.

8.6. Restriction and Support

Definition 8.6.1. The restriction u|xs of a distribution u € 2'(X) to an open
subset X’ of X is defined by

<u|X’a¢>:<ua¢>7 ¢6@(X/)

Notice that u|x € 2’(X’). The support of a distribution is defined as for functions
(see Definition 1.2.3).
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Definition 8.6.2. The support suppu of a distribution u € 2'(X) consists of
those points 2 € X for which u|xs # 0 for every neighbourhood X' of x.

If ¢ supp u, then there exists a neighbourhood X’ of x such that u|x: = 0. Since
this implies that the complement of supp u is open, we see that supp v is closed.

Example 8.6.3. Let us show that the support of d, is {a}. If ¢ € 2(R? \ {a})
then (84, ¢) = ¢(a) = 0, which shows that supp d, < {a}. Conversely, if ¢ € 2(R?
and ¢(a) # 0, then {J,, ¢y # 0, which shows that {a} c supp d,.

~—

O

The following proposition shows that the support of a regular distribution, gener-
ated by a locally integrable function, coincides with the support of the function.

Proposition 8.6.4. Suppose that f € L (X). Then suppus = supp f.

Proof. Suppose first that ¢ supp us. Then there exists a neighbourhood X' of
such that uf|x: = 0. Let K < X’ be compact and choose a function ¢ € Z(X)
such that 1 = 1 on K. Now, if ¢ is a mollifier on R¢, then

@*Wﬁmv=L¢4f—wwwﬂm@=o

for ' € X' if € is small enough. As in the proof of Proposition 8.3.2, it follows
that f(z') = 0 for a.e. ' € K and consequently for a.e. 2/ € X’. This shows
that x ¢ supp f.

Conversely, suppose that = ¢ supp f. Then there exists a neighbourhood X'
of  such that f =0 a.e. on X’. This implies that {us, $) = 0 for every ¢ € 2(X’),
ie., x ¢ suppuy. |

Proposition 8.6.5. Suppose that ue 2'(X) and ¢ € P(X) and that
supp u N supp ¢ = <.
Then {u, ¢y = 0.

Proof. Denote the support of ¢ by K. Then, for every z € K, there exists a
neighbourhood X' ¢ X of = such that u|x, = 0. Since K is compact, it follows
that K can be covered by a finite number such neighborhoods X7,... X],. Now
let ¢1, ..., ¢, be a partition of unity subordinate to this of K (see Proposition 1.7.3).
Then

m

Cu, 6y = Y <u, b6y = 0

Jj=1

since supp(¢;¢) < X; and u|XJ< = 0 for every j. [ ]
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Basic Operations on Distributions

In what follows, X denotes an open subset to R¢.

9.1. Vector Space Operations

As already noticed, 2'(X) is a vector space over the complex numbers with the
vector space operations defined pointwise: If u,v € 2'(X) and «, 8 € C, one defines
au + fv through

{au + fv, ) = au, ¢) + v, ¢), ¢ € (X).

It is easily verified that au + fv € 2'(X), i.e., au + Bv is linear and sequentially
continuous.

9.2. Multiplication with C*-functions

We next define multiplication of distributions with C*-functions — first some no-
tation.

Definition 9.2.1.

(a) We denote by &(X) the class of infinitely continuously differentiable functions
on X.

(b) A sequence (¢, )x_, in &(X) converges to a function ¢ € &(X) if 0%¢,, con-
verges uniformly to 0%¢ on every compact subset K to X for every multi-
index a.

Suppose that u € L (X) and f € &(X). Then, since fu € L{ _(X), the product fu

loc loc

defines a regular distribution on X (here denoted fu) which acts on 2(X) through
integration:

(Fuy @y = JX(fu)Mw - L u(fd)dz = (u, f8) for & € D(X).

Here, we used the fact that f¢ € Z(X). This shows that if u € 2'(X), the product
of u with f € &£(X) has to be defined in the following manner.

Definition 9.2.2. Suppose that v € 2'(X) and f € &(X). Then the product fu
is defined by

(fu,¢) =u, f¢), ¢€ D (X).

Remark 9.2.3.

(a) Tt is easy to see that fu is linear and sequentially continuous, so that fu
belongs to 2'(X). This is a consequence of the fact that if ¢, — ¢ in Z(X),
then f¢, — f¢ in 2(X) which is not hard to verify.

(b) Multiplication with a function f € C*(X) is a continuous operation on 2'(X)
in the sense that u, — u in 2'(X) implies that fu, — fu in 2'(X).

7
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Example 9.2.4. If f € C*(R?), then

(f6,9) =<0, f¢) = f(0)¢(0) = (f(0)4, $)
for every test function ¢ € 2(R%), which shows that f&§ = f(0)J. O

Example 9.2.5. Let us show that zpv 1 =1 in 2’(R). This holds since

e—0

1 z) )= lim M T = " r)dr =
(opv o) =tim | 200w | o=

for every ¢ € Z(R). O

In general, is impossible to define the product of two distributions in a meaningful
way. Let us illustrate this with an example.

Example 9.2.6. Suppose that we could define a product on 2'(R) which were
both commutative and associative. Due to commutativity, we would then have

(0 2)) == ((2)0)

But, since the product is assumed to be associative,

x(é(pvé)) = (z(;)pv% = Opvl =0,

xT

while

x((pv%)é) - (mpv%)ézl(s:é. 0

Proposition 9.2.7. Suppose that f € &(X) and u e 2'(X). Then

supp(fu) < supp f N supp u.

Proof. Suppose first that = ¢ supp f. Then there exists a neighbourhood X’ < X
of x such that f = 0 on X', which implies that

<fu7¢>:<uvf¢>:0

for every ¢ € 2(X) with support in X’ since f¢ = 0, and hence that x ¢ supp(fu).
Next suppose that z ¢ suppu. Then u|x: = 0 in a neighbourhood X’ < X
of x, which implies that (fu,¢) = 0 for every ¢ € 2(X) with support in X'
since supp(f¢) < X'. It follows that x ¢ supp(fu). ]

9.3. Affine Transformations
Suppose that v € LL _(R?) and let h € R%. Then

loc
vty = | ula=mota)ds = [ u(e)ota +h)do = G rnd)

for every ¢ € 2(R?). This identity motivates the following definition.
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Definition 9.3.1. If u € 2'(R%) and h € R?, then the translate 7j,u is defined by

(rhu, ¢y = (u, T-pdy, € 2(RY).

Remark 9.3.2.

(a) One easily verifies that 7,u € 2'(R?) by showing that 7,u is linear and sequen-
tially continuous. The second property follows from the fact that if ¢, — ¢
in 2(X), then ¢, — ¢ in Z(X).

(b) One can also show that translation is a continuous operation on 2'(R%):
If u, = win 2'(X), then mhu, — Thu in 2'(X).

The next example illustrates how translation shifts the support of a distribution.

Example 9.3.3. If h € R?, then

<Th5a ¢> = <67 Tfh¢> = ¢(h) = <5h7 ¢>
for every ¢ € 2(R?), which shows that 7,8 = dj. O

Now suppose that u € L}OC(Rd) and that A is a non-singular d x d matrix. Recall

that we have used the notation
A*u(z) = u(Az), xeR™L

Then, changing variables y = Ax, we have that

Au.0) = | u(An)o(e) do = |det Al | uly)o(A ) dy
R4 Rd
= |det A|7"(u, (A71)*¢)
for every ¢ € 2(R?). We therefore make the following definition.

Definition 9.3.4. If u € 2'(R%) and A is a non-singuar d x d matrix, then the
functional A*u is defined by

(A*u,¢) = |det A (u, (A1) ¢), ¢ € Z(RY).

Remark 9.3.5. It is easy to show that A*u belongs to 2'(R%) and that the
map u — A*u is a continuous operation on 2'(R9).

Some special cases are worth mentioning. The matrix A = —I corresponds to the
reflection operator R, defined by

(Ru, ¢y = (u,R¢), ¢€ Z(R?),
for u e 7'(RY).

Definition 9.3.6. A distribution v € 2'(R?) is called even if Ru = u and odd
if Ru = —u.

Example 9.3.7. If ¢ € 2(R%), then
(Rd, ¢) =<6, Rp) = ¢(0) = <6, ),

which shows that § is even. O
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Example 9.3.8. The Cauchy principal value is odd since
p(x)

$(=7) dr = — lim —dx

€T e—0 €T

(i )= o ) -y
= (v 6(@))

for every ¢ € Z(R). O

lz|=e |z|=e

The matrix A = tI, where t # 0, gives the dilation operator D;, defined by
(Dyu, ¢y = u, [t|™"Dy-16), ¢ € 2(RY),
for u € 7'(RY).

Definition 9.3.9. A distribution u € 2’(R%) is said to be homogeneous of de-
gree A € C if
Dyu =t fort > 0.

For a function u € L} (R?), this means that
u(tz) = tru(z) for every z € R%
Example 9.3.10. The Dirac § is homogeneous of degree —d:
(D18, 6) = 0,47 Di=16) = t76(0) = (76, )
for t > 0 and ¢ € Z2(RY). O

Example 9.3.11. The Cauchy principal value is homogeneous of degree —1 (which
of course is no big surprise since ! is homogeneous of degree —1):

¢t ')

X

<Dt pv % d)(:r)> = <pv %,tilDt—l ¢(x)> =t!lim dx

e—0 lz|=e

=¢"!lim ¢§Jy) dy = <t71 pv %7 ¢($)>

e—0 |y|2t5

for t > 0 and ¢ € Z(R). O
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Differentiation of distributions

As before, X wil demote an open subset to R%.

10.1. Definition

To motivate the definition of derivatives of distributions, assume that u € C1(X)
and let ¢ € 2(X). Using integration by parts, we see that

@ty = [ (@ode == [ u(@s0)ds = ~Cu.0y0)
X b'e
for j = 1,2,...,d. The first order partial derivatives of a distribution on X thus
have to be defined in the following way.

Definition 10.1.1. The partial derivative J;u, where j = 1,2,...,d, of a distri-
bution u € 2'(X) is defined by

ju, ¢) = —u,0;9), ¢ € Z(X). (10.1)

Remark 10.1.2.

(a) Tt follows directly from the definition of convergence in Z(X) that if u € 2'(X),
then djue 2/(X) for j =1,2,...,d.

(b) It follows from the previous remark that a distribution v € 2'(X) has deriva-
tives of every order. Also, if « is a multi-index, then (10.1) implies that

(0%u, ¢y = (=1)|*Nu, 0%¢)  for ¢ € D(X).

(¢) Notice that supp 0%u < supp u for every multi-index «.

(d) For a regular distribution uy, the derivatives of uy are often called weak
derivatives.

(e) In the one-dimensional case, the derivates of a distribution v will be deno-
ted v/, u” etc.

10.2. Examples of Derivatives

Example 10.2.1. The derivative 0%§, acts on 2(R?) in the following way:
(%00, 0y = (=1)*/(ba, 0°¢) = (=1)*'0%0(a), b€ 2(RY). O

The next example shows that the weak derivative of a absolutely continuous func-
tion on R coincides with the ordinary derivative.

Example 10.2.2. Suppose that f € AC(R). Integrating by parts, we the see that

W) = ~Cup. 8=~ | f@0@dr = | f@)@)ods = a0y
for every ¢ € Z(R). This shows that v, = uy. O
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In the previous example, the function is continuous and differentiable a.e. The fol-
lowing example illustrates what could happen if we drop the continuity assumption.

Example 10.2.3. Let us determine the first derivative of the Heaviside function H:

g8y =~ ) = - [ " @) de = 6(0) = (5,6

for every ¢ € 2(R). This shows that v}, = 0. O
The next example generalizes Example 10.2.3.

Example 10.2.4. Suppose that f € C1(R ~\ {a}) has a jump discontinuity at a
and that f’ € LL (R). Then

loc
Ax

Gpd) =g,y == | J@d@)de

_ f " F@)9! () do - @ @) da

— (f(a*) = f(a™))¢(a) + v‘f’(x)qb(x) dx

={(f(a™) = f(a™))da +us, ¢)
for every ¢ € Z(R). This shows that v, = (f(a™) — f(a™))ds + uy. O

The following example illustrates the fact that if the derivative of a function is
not locally integrable, then the weak derivative cannot coincide with the ordinary
derivative.

Example 10.2.5. Let f(z) = In|z|, x € R. Then

W) = ~Cup. 6=~ | o] ¢/(@) do = - liy el ) e
o o)
- liny((60) - s(-e)) ne + J| L iz )
B o) /1
= 31_1)% " — dx = <pv = ¢(w)>
for every ¢ € Z(R). This shows that v/ = pv 1 O

Example 10.2.6. Consider the function f on R, defined by

2 if >0
f(:c)={ g

0 if <0
The weak derivative of f is calculated in the following way:
PNy XLy
¢'(x) : ¢'(x)
(ulp, ¢y = —Cug, @) = _JO 7 dr = — lim T dx

e—0 x
1 (7 () ¢(e)
B ‘2%( C e T rap

L ([T 0@) = 6(0) o) = o(0)) _ L [* é(x) —6(0)
= —— hm( ey dr —2 c1/2 > :_7J> —pr W

2 Jo 3/2

e—0
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1/2 of z73/2 by

(gm0t = [ 420 0 geam)

we have u’j =—%fpm3%. O

for every ¢ € Z(R). If we now define the finite part fp

10.3. Differentiation Rules

Basically all differentiation rules from calculus hold in 2'(X). Differentiation
on 7'(X) is for instance a linear operation. This follows from the definition of the
derivative and the way addition and multiplication with scalars is defined in 2'(X).

Proposition 10.3.1. Suppose that u,v € Z(X). Then, for every multi-index «,
0%(au + bv) = a(0%u) + b(0“v) for all a,be C.
Leibniz’ rule for differentiating products also holds in 2'(X).

Proposition 10.3.2. Suppose that f € &(X) and u € 2'(X). Then, for every
multi-index o,

*(fu)= ) (g) 98f 0P, (10.2)
0<B<a

Proof. If a = 0, there is nothing to prove. Suppose that |a| = 1, so that 0% = J;
for some j. Then

05(fu), @) = =Cu, f(0;0)) = —Cu, 0;(f¢) = (0;F) ¢ = {f(Oju), ) +(0; f)u, $)
= (0, f)u+ f(05u),d)

for every ¢ € 2(X), which shows that 0,(fu) = (0;f)u + f(0;u). Using induction,
it follows that there exist constants Cg such that

0(fu)y = Y. Cgd’foPu.

0<B<a
If we now apply this identity to f(z) = &%, x € RY, and u(z) = €7, v € R4,
where ¢ € R% and n € R? are parameters, we obtain that
(& +n)elstme = < 2. G fﬁn“ﬁ>€(£+")'z-
0<B<a

After canceling the common factors, this shows that Cg are the coefficients in the
binomial expansion of (£ + n)®. This proves (10.2). [ |

As for smooth functions, partial derivatives of distributions commute.

Proposition 10.3.3. Suppose that ue 2'(X). Then
0%(0Pu) = 0°(0%u)

for all multi-indices o and (3.
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Proof. If ¢ € Z(X), then

0%(0%u), ¢y = (=1)11HPlCu, 97 (0%9)) = (=1)I*1*1P 1w, (07 9))
= (0°(0™u), ). ]

The operator 0% : Z'(X) — 2'(X) is sequentially continuous for every multi-
index a:

Proposition 10.3.4. Suppose that u, — u in 2'(X). Then
0“uy, — 0%u  in 2'(X)
for every multi-indicex a.
Proof. If ¢ € 2(X), then
(0%Up, @) = (=11, 0%¢) — (=)l u, 0%¢) = (0%u, ¢) asn— 0. m

It follows from this proposition that every convergent series in 2'(X) can be dif-

ferentiated termwise:
o

o0
6“(2 un> = 0%y,
n=1 n=1

Example 10.3.5. Notice that
ve
lz] = Z H(zx—n) forz>=0.
n=1

Since the series contains a finite number of terms for x belonging to a bounded in-
terval, it converges in L{. (0, 00) and hence in 2’(0, ) (see Example 8.5.7). Propo-
sition 10.3.4 and Example 10.2.3 now show that

jve 0

o) = S (Hz—n) = 6. 0

n=1

10.4. Antiderivatives

Let I < R be an open interval. A test function ¢ € Z(I) has an antiderivative
belonging to Z(I) if and only if SI ¢ dx = 0. Indeed, all antiderivatives ® of ¢ are
given by

X

®(z) = o(y)dy+C, zel,
—0
where C € C is a constant. Every antiderivative ® is of course smooth, but ® has
compact support in [ if and only if C' = 0 and SI ¢dx = 0. Below, we will show
that for every distribution u € 2'(I), there exists a distribution U € 2’(I) which is
an antiderivative of u in the sense that U’ = u and that the antiderivatives of u
are uniquely determined up to an additive constant.
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Proposition 10.4.1. Suppose that I < R is an open interval and that we 2'(I).
Then w has a antiderivative U € 2'(I). Moreover, every antiderivative V € 2'(I)
of u is given by V. =U + C for some constant C € C.

Proof. We will use the operator T': Z(I) — Z(I), defined for ¢ € (1) by
To(@) = | owdy-o | wdy zel,
- —0

where 1) € 2(I) satisfies {,¢pdz = 1. We leave it to the reader to establish the
following properties of T":

(i) To e 2(1);
(i) T¢" = ¢;
(iii) if ¢ — ¢ in 2(I), then T, — T¢ in 2(I).
Define U € 2'(I) by
U,y =~ Te), e H(I).

Then U’ = u since

<U/7 ¢> = _<Ua ¢/> = <u7 T¢I> = <ua ¢>

for every ¢ € 2(I). Suppose that V € 9’(I) satisfies V' = w and put W =V —U.
Then W’ =0, so

0=W"T¢)=—W,(T¢)) = ~(W,¢— 1, 0p¢) = W, 9), ¢y — (W, $)
for every ¢ € Z(I), which shows that W = (W, ¥}, i.e., V = U + (W, ). [ |

Example 10.4.2. Let us calculate the antiderivatives of pv% this using the tech-
nique employed in the proof of Proposition 10.4.1. We know that one antideriva-
tive U is given by

B(a) = (L OV()

U, ¢y = —<pv %,T¢(m)> = — lim

e—0 ‘xl?&‘

for ¢ € 2(R), where ®(z) = {*_ ¢(y)dy, z € R, and ¥(z) =" ¥(y)dy, =z € R.
Integrating by parts, we see that

U, ¢y = Iz, ¢(x)) = (1, p)In |z, ¢ (z)) = nfz| = C; é(x)),

where C' = (In|z|,%(z)). Thus, all antiderivatives of pv L are given by In|z| + D,
where D is an arbitrary constant. This also follows from Example 10.2.5. O

The uniqueness part of Proposition 10.4.1 gives the following corollary.

Corollary 10.4.3. Suppose that I c R is an open interval and that w € 2'(I)
satisfies ' = 0. Then u is a constant.
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10.5. Linear Differential Operators

Suppose that a, € &(X) for || £ m and that not all a, with |a| = m are
identically 0. Put
P@)= ) and™.
|| <m

We call P(0) a linear differential operator on 2'(X) of order m. An equation
of the form
P(O)u = v,

where v € 2/(X), is called a differential equation. In the case d = 1, this is an
ordinary differential equation and for d > 1 a partial differential equation.
For X = R% and v = ¢, the solutions to this equation are called fundamental
solutions.

Below, we illustrate how one solves an ordinary differential equation with a
distribution in the right-hand side.

Example 10.5.1. Let us determine all solutions v € 2'(R) to the differential
equation

u +2u =4 (10.3)
Multiplying the equation with the integrating factor e2*, we obtain that
2T + 2e*%u = e**§ =6

, sothat (e**u) =4.

One solution to this equation is u = H(x)e~2*. To find all solutions to the equation,
we solve the corresponding homogeneous equation, namely (e?*u)’ = 0, and find
that u = Ce™2%, where C' is a constant. This shows that all solutions to (10.3) are
given by

u=Ce ** + H(z)e ** O
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Distributions with Compact Support

11.1. Distributions on &(X)

Definition 11.1.1. A sequence (¢,,)>_; < &(X) converges to ¢ € &(X) if, for
every multi-index a and every compact subset K to X, 0“¢,, converges uniformly
to 0%¢p on K. We denote this by writing ¢,, — ¢.

Definition 11.1.2. A distribution on &(X) is a sequentially continuous, linear
functional on &(X). We denote the class of distributions on &(X) by &’(X).

As for distributions on &(X), we shall write (u, ¢) instead of u(¢) if u € &'(X)

and ¢ € &(X).

Example 11.1.3.

(a) The Dirac § at a € X and all its derivatives define distributions on &(X).

(b) Every function f € L'(X) with compact support also defines a distribution on
E(X). O

The following theorem is proved as Theorem 8.4.1. The proof is left to the reader.

Theorem 11.1.4. A linear functional u on &(X) belongs to &' (X) if and only if
there exist a compact set K € X, a constant C' = 0, and an integer m = 0 such
that

Ku, )| <C Y sup|0”¢(x)| (11.1)

la|<m reK

for every function ¢ € &(X).

This theorem shows that every distribution on &(X) has compact support.

11.2. Extension of Compactly Supported Distributions

Notice that 2(X) is a subspace &(X) — not only as classes of functions, but also
from a topological point of view — since convergence in Z(X) implies convergence
in &(X). It follows that if u € &'(X), then u|(x) € Z'(X). A distribution on &(X)
may thus be considered as a distribution on 2(X) with compact support. We will
conversely show that every distribution on 2(X) with compact support can be
extended to &(X).

Theorem 11.2.1. Suppose that u € 2'(X) has compact support K < X. Then
there exists a unique distribution u € &'(X) such that

(i) T =wu on Z(X);
(ii) {u, ¢y if p € E(X) and suppdp n K = .

Proof. According to Proposition 1.7.1, there exists a function y € 2(X) such
that x = 1 on K. Define 4 through

(@, ¢) = {u,x¢) for ¢ € &(X)
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and let L = supp x. Theorem 8.4.1 and Leibniz’ rule then shows that
<@, )] = [Cus xd)l < C ) sup [0%(x()d(x))]

lal<m zeL

<C' D) sup|o®e(z)] (11.2)

laj<m xzcL

for every ¢ € £(X). It thus follows from Theorem 11.1.4 that u € &’(X). We also
have

(U, ¢y = {u, xdp = {u, @) + (u, (x — 1)¢) =<u, ¢)  for every ¢ € Z(X)
since supp u N supp(x — 1)¢ = & (see Proposition 8.6.5). Morover,

<177 ¢> = <U,X¢> =0

for every ¢ € &(X) with suppd n K = & since supp(x¢) < supp ¢. To prove
uniqueness, suppose that v € &’(X) is another extension of u to &(X) that satis-
fies (ii). Then

(0, ¢) = v, x9) + (v, (1 = X)9) = (v, x¢) = {u, x¢) for every ¢ € £(X)
since supp((1 — x)¢) n K = &. This shows that v = @. [ |

Remark 11.2.2.

(a) This theorem and the preceding observations show that &'(X) may be identi-
fied with the subspace to 2'(X), that consists of distributions with compact
support, and we shall henceforth do that.

(b) We shall also write (u, ¢) instead of (@, ¢y if u € &'(X) and ¢ € &(X).
(¢) In general, it is not possible to replace the set L in (11.2) with the support of w.
However, if supp v has a smooth boundary, this can be done.

It follows directly from (11.2) that a distribution with compact support is of finite
order.

Corollary 11.2.3. Suppose that u € &'(X). Then u is of finite order.

11.3. Distributions Supported at a Point

Theorem 11.3.1. Suppose that u € 2'(X) and that suppu = {a} for some a € X.
Then there exist an integer m = 0 and constants Cy, where |a| < m, such that

u= Y Cad*s.

|a|<m

Proof. Without loss of generality, we may assume that a = 0. Let € > 0 be so
small that Bs.(0) € X and take a function x € Z(X), with support in By (0), such
that x = 1 on B.(0). Put y,(z) = x(2/z), z € X, j = 0,1,.... If m is the order
of u, the Taylor expansion of a function ¢ € Z(X) of order m around 0 is
0*¢(0)
o) = Y T )

lee|sm
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where
1077 ()] < Clz|™ 11 for |y] < m.

Applying u to this identity, we obtain

0°¢(0)

a!

<u’ ¢> = <u7 X¢> = Z

le|sm

Cus 2 x(@)) + Cus X ()7 (1)) (11.3)

Suppose that |z| < 26277 and that |8] + |y| < m. Then
10 (2)07 T (2)| < C21Fl2=I(H=1D) < 027,

It thus follows from (11.2) and Lebniz’ rule that {u, x;rmy — 0 as j — . If we
now let j — oo in (11.3), we see that

e} —1)lel
o= T v = 3 E (@))%, ),
|a]<m ’ |la|<m :

which proves the theorem. |
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Tensor Products and Convolutions

In this chapter, X and Y will denote open subsets to R% and R€, respectively.
Let W =X xY.

12.1. Tensor Products of Functions

Definition 12.1.1. For f € L{ (X) and g € L .(Y), the tensor product f®g
is defined by

f®g(x,y) = f(x)g(y), (z,y)eW.

Notice that f ® g€ L (W).

12.2. Tensor Products of Distributions

To get an idea of how the tensor product of two distributions should be defined,
we as usual consider regular distributions first and look at how the tensor product
of two functions act on a test function. Suppose that f € L{ (X) and g € LL (V)
and let ¢ € Z(W). Then

X

Go9. = [[1@ewotendray = [ @ (Lg(y)a:(m,y) dy> dx
w

= {f(z),{g(y), p(z,y))).

Notice that ¥(y) = ¢(x,y), y € Y, belongs to Z(Y) for every fixed x € X and that
the function

n(r) = L gw)o(z,y)dy, weX,

belongs to Z(X). The tensor product of u € 2'(X) and v € 2'(Y) should thus be
defined as

w®v, ) = (u(x),(v(y), ¢(z,y))) for o€ Z(W). (12.1)

Here, we allow a little abuse of notation to make the presentation less heavy and
hopefully clearer. We write v(y) to indicate that v acts on the second variable in ¢
and similarly for u. To show that (12.1) makes sense, we need the following lemma.

Lemma 12.2.1. Suppose that ve 2'(Y) and ¢ € 2(W). Then the function

n(x) = <uy), é(z,y)), ze€X, (12.2)

belongs to 2(X) and

Oz v(y), ¢(,y)) = (v(y), 0 ¢(x, y)) (12.3)

for every x € X and all multi-indices «. Moreover, the mapping from 2(W)
to 2(X), defined by (12.2), is sequentially continuous.
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Remark 12.2.2. There holds a corresponding result for v € &'(Y) and ¢ € &(W).
More precisely, if v € &(Y) and ¢ € &(W), then the function, defined by (12.2),
belongs to &(X) and (12.3) holds.

Proof (Lemma 12.2.1). For r > 0, put
Xr={reX:|z|<r}, Y,={yeY: :|Jy|<r}, and W, =X, xY,,

and choose r so large that supp¢ < W,. Then suppn € X,., which shows that 7
has compact support. As in Example 8.1.4, we see that

o(x+ h,y) — d(z,y) ash—0
in 2(Y) for every fixed x € X, from which it follows that
n(z+h) — n(x) ash -0,
so 7 is continuous. If e; is the j-th vector in the standard basis of R?, we also have

he;,y) — , 0
¢("’E + e]?]:li) (b(l' y) _ ad)(x’ y) as h — 0

in 2(Y) for every fixed € X. This establishes (12.3) in the case |a| = 1; the general
case follows by induction. We have thus shown that n € 2(X). Now, suppose that
¢; = 0 in Z(W). Denote the corresponding sequence, defined by (12.2) by n;.
If r is so large that supp ¢; < W, for every j, then suppn; € X, and, according
to (12.3) and Theorem 8.4.1,

sup [07n;(2)] < C sup D) sup |0707¢,(z,y)| — 0 as j — oo.

xeX, zeX, Wlsm yeY,

This shows that n; — 0 in Z(X). [ |

Definition 12.2.3. The tensor product u ® v of u € 2(X) and v € 2(Y) is
defined by

(w®uv,¢) = (u(x),(v(y), d(z,y))) for ¢ € Z(W).

Theorem 12.2.4. Suppose that u € 2'(X) and v e P'(Y). Then u®uv € 2'(W)
and suppu ® v = Supp u X supp v.

Proof. Suppose that ¢; — ¢ in Z(W). Then, with the notation in the proof of
Lemma 12.2.1, n; — n in 2(X). It follows that

W®uv, ;) =u,n;) — (u,m) ={u®v, $).
The statement about the support of u ® v is left as an exercise to the reader. H

Remark 12.2.5. If u € &(X) and v € &(Y), then the tensor product can be
extended to ¢ € &(W). In this case, u®v € &' (W).

Example 12.2.6. If a€ X and be Y, then

<5a ® 5177 ¢> = <(Sa($), <6b(y)v ¢($, y)>> = <§¢l (lf), ¢($, b)> = ¢(a’7 b) = <5(a,b)7 ¢>
for every ¢ € (W), which shows that 6, ® oy = d4.3)- O
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12.3. Properties of Tensor Products
Ifue 2'(X) and ve 2'(Y), then

W@, @) = u(x),{v(y), (@)Y (y))) = {u, p)v, ¥y
for all functions ¢ € 2(X) and ¢ € 2(Y). On the other hand,

(u, v, 1) = Cu(y), Culz), d(x))P(y)) = (vly), ), dx)b(y)))
=v@u, ¢ Q).

This shows that the tensor product is commutative on all functions in 2(W) of the
form ¢ ® 1, where ¢ € Z(X) and 1 € Z(Y). To extend this to arbitrary functions
in 2(W), we will prove the lemma below.

Lemma 12.3.1. The class of all finite linear combinations of functions of the
form ¢ ® 1, where p € D(X) and yp € 2(Y'), is dense in 2(W).

Proof. Suppose that ¢ € (W) and put K = supp¢. For every x € K, there
exists an open cube @, such that x € Q, < 2Q, € W. By compactness, K can
be covered by a finite number cubes Q,...,Q.,,. Let %1,...,%,, be a partition
of unity subordinate to this covering (see Corollary 1.7.3). Then ¢ = ZT:l Yo
and supp(¢y;) < Q;. Consider one of the functions ¢ = ¢¢p;. After making
a translation, we may assume that suppty) < (—r,r)9t¢ < (=2r,2r)4t¢ = W.
Weierstrass’ approximation theorem now shows that there, for every integer k > 1,
exists a polynomial Py such that

d+e

0%(,y) — 0*Pu(a,y)l < 7 for every (z,y) € (~2r,2r)

| =

and every multi-index «a with |a| < k. Let 7 be a one-dimensional cut-off function
such that 7 = 1 on [—r,7] and 7 = 0 outside (—2r, 2r), and put

(2, y) = Pe(z,y)7(21) .. 7(ye), (2,y) € W.

Then 1, € (W) with suppn, < (—2r, 2r)%¢ and has the form that we are looking
for. Consider the following three cases:
(i) In [—r,7]¢*¢ is . = Py. Moreover, 0% P}, tends uniformly to 0% as k — oo
for every multi-index a.

(i) In (=27, 2r)%*e \ [—r, ]9t is i = 0. Moreover, according to Leibniz’ rule,

o C
0% )| < C Y 107 Prln, )| <
B
which shows that 0“n, tends uniformly to 0.
(iii) Outside (—2r,2r)4* ¢ is ¢ = n;, = 0.
This shows that ny — ¢ in 2(W). [ |

Corollary 12.3.2. Suppose that U,V € 9'(W) and that {U,¢ @ ¥y =V, ¢ ® 1))
for all functions p € 2(X) and Y € P(Y). Then U =V.
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The next three propositions show that the tensor product is commutative, associa-
tive, and distributive.

Proposition 12.3.3. Suppose that ue 2'(X) andve 2'(Y). Then
uUR®v=vQRu.
Proof. This follows from Corollary 12.3.2 with U = u®v and V = v ® u. ]

Proposition 12.3.4. Suppose thatu e 2'(X),ve 2'(Y), andw € 9'(Z), where Z
is an open subset to RY. Then

u® (VRw) = (u®v) ®w.
Proof. If p € Z(X xY x Z), then

Ww® (v@w), ) = (u(z),{(v@w)(y, 2), d(x, y, 2)))
= u(x),{v(y), {w(z), ¢(x,y, 2))))
= <u ® 'U(.’E, y)v <w(’z)7 d)(1'7 Y, Z)>>
= {(u®v) @w,¢). L
Proposition 12.3.5. Suppose that u,v € 2'(X) and we P'(Y). Then
(U+V)QUW=uRw+vQw.
Proof. If p € 2(X xY x Z), then
((u+0) @w, ¢) = {u(z) + v(x),{w(y), o(x, y)))
= (u(z),{w(y), o(x, y))) + (@), (w(y), ¢(z,y)))
= u®w, Py + {v@w, P). [

Proposition 12.3.6. Suppose that u; — u in Z'(X). Then u; @ v —» u v
in 2'(X) for everyve 2'(Y).
Proof. We use the notation in the proof of Lemma 12.2.1. If ¢ € 2(W), then
(u; @, ¢) = uj, by — (u, ) = (w v, §). m
Proposition 12.3.7. Suppose that we 2'(X) and ve 2'(Y). Then
0365@ ®v) =05u® 651}
for all multi-indices o and (3.
Proof. Suppose that ¢ € 2(X) and ¢ € 2(Y). Then
(020) (u®v), o @)y = (—1)* Pl u@v, 03¢ ® 0)y)
= (=1)!*Ku, 376)(=1) *|Kv, 0 )
= (05w, X0 v, Py
= (05U @ v, @ ).
The general case follows from Corollary 12.3.2. ]

Remark 12.3.8. All results in this section also holds for distributions with com-
pact support, where the tensor products act on C*-functions.
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12.4. Convolutions of Distributions

We next consider convolutions of distributions. Suppose first that f, g € L' (R%) and
that both functions have compact support. Then f g € L'(R?) and thus defines a
regular distribution on 2(R?). This distribution acts on a test function ¢ € Z(R?)
in the following way:

Seadr=[ ([ st ot ay

- [ @ (] s et +nay) do

= {f(),{g(v), p(= +y)))
= {f(z) ®g(v), p(z +y))

Notice that the assumption about compact supports is needed not for the exis-
tence of the integrals above, but to justify the last equality. This shows that the
convolution between u € 2'(R%) and v € 2’'(R?) in principle should be defined by

(uxv,¢) = (ux) @v(y), o(z +y)), ¢e2(R).

In general, the right-hand side in this identity is however not defined because the
function (z,y) — ¢(z + y) does not have compact support. One case when this
makes sense is when if u,v € &' (R?) since then u ® v belongs to & (R?%).

We will assume that a weaker condition holds. Suppose that supp ¢ < B,.(0) for
some 7 > 0. Then supp ¢(- +-) € N,., where N, = {(x,y) e R*!: |z +y| < r}. The
condition, that we will require in the definition of convolutions, is the following:

(suppu x suppv) N N,. is bounded for every r > 0. (12.4)

Example 12.4.1. The condition (12.4) is satisfied for instance if
(i) ue &'(RY) or ve &'(RY);

(ii) suppu,suppv c {r e R%: x;j > c for every j} for some number c € R. O

Definition 12.4.2. Suppose that u,v € 2'(R?) satisfy (12.4). Then the convo-
lution between u and v is defined by

Cusv, ¢y = {u(z) @v(y), plz,y)d(z +y)), ¢ € DR,

where supp ¢ < B,.(0) and p € Z(R>??) is chosen so that p = 1 in a neighbourhood
of the set (suppu x suppv) n N,..

Remark 12.4.3. This definition is as expected independent of the choice of the
function p. In fact, if p; and ps are two such functions, then

Cu(z) @ v(y), (p1 (2, y) — p2(z,y))d(z +y)) =0

since p; — p2 = 0 in a neighbourhood of (supp u x suppv) n N,.. We will therefore
usually omit p and just write

(u v, ¢y = (u(@) @v(y), p(x +y))-
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Theorem 12.4.4. Suppose that u,v € 2'(R?) satisfy (12.4). Then uxve 2'(R%)
with suppu # v C SUpp u + Supp v.

Proof. The first statement follows from Theorem 12.2.4 and the second is left as
an exercise to the reader. [ |

Example 12.4.5. We have
uxd=08+u=u forevery ue Z'(R%).
Indeed,
(u6,¢) = u(x) @(y), oz + y)) = (u(@)d(y), ¢(x + y))) = {u, §)
and
(0 % u,¢) =6(x) @u(y), d(x + y)) = {6(x),{uly), ¢(z + y))) = {u, &)
for every ¢ € Z(R%). The same calculations show more generally that

u* 0% = 090 xu = 0% for every multi-index a. O

12.5. Properties of the Convolution

It is easy to show that convolution is both commutative and distributive.
Proposition 12.5.1. Suppose that u,v € 2'(R?) satisfy (12.4). Then
U*V =V *U.

Proof. Given ¢ € 2(RY), choose p € Z(R?) symmetric. Then, according to
Proposition 12.3.3,

(us v, ¢y = (u(z) @v(y), p(z, y)p(x, y)) = (v(y) @u(x), p(z,y)d(x +y))
= (u(y) @ u(z), p(y, 2)d(y + )) = (v * u, ). u

Proposition 12.5.2. Suppose that u,v,w € 2'(R%) and that (u,w) and (v,w)
satisfy (12.4). Then
(u+v)*w=1u*w+v*w.

Proof. Since supp(u+v) C supp u U supp v, it follows that (u+v, w) satisfies (12.4),
s0 (u + v) # w is defined. The rest of the proof is routine. [ |

To prove that convolution is associative is a bit harder than to prove commutativity
and distributivity. We will therefore omit the proof.

Proposition 12.5.3. Suppose that u,v,w € 2'(R?) and that the set
(suppu x suppv x suppw) N {(x,y,2) e R3 : [x +y + 2| <7} (12.5)
is bounded for every r > 0. Then

w# (vew) = (u*v)*w. (12.6)
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Remark 12.5.4. A few comments are in order.

(i) One can show that (12.5) implies that (u,v) and (v,w) satisfy (12.4); let us
for instance show that (12.4) holds. We can of course assume that w # 0.
Suppose that zp € supp w and choose r > |z9|. Then is the set

(suppu x suppv x {z0}) N {(2,,2) e R3* : |z +y + 2| < r}
bounded by assumption. It follows that the subset
(suppu x suppv x {z0}) n {(z,y,2) € R*: & + y| <7 — |20]}

is also bounded, which gives (12.4).

(i) If (u,v) satisfies (12.4) and w € &'(R%), then (12.5) holds.

(iii) Suppose that (u,v,w) does not satisfy (12.5). Then (12.6) does not have to
hold. Take for instance u = 1, v = ¢’, and w = §. Then

1#(0+«H)=1+H =1+6=1, but (1+8)«H=1+H=0+H =0.

Notice, however, that (1,46") and (¢’, H) satisfy (12.4) since ¢’ has compact
support.

Proposition 12.5.5. Suppose that u; — u in 2'(RY), that (u,v) satisfies (12.4),
and that (uj,v) satisfy (12.4) uniformly with respect to j. Then uj * v — w * v
in 2'(RY).

The assumption about uniformity means that there for every r > 0 exists a bounded
set B, such that

(suppu;j x suppv) n N, € B, for every j.

Proof (Proposition 12.5.5). Suppose that ¢ € Z(R?). Then, according to Pro-
position 12.3.6,

(uj v, 6) = Cuj() @v(y), oz +y)) — (ul@) @v(y), ¢(x +y)) = (u*v,¢). W

Proposition 12.5.6. Suppose that u,v € 2'(R?) and that (u,v) satisfies (12.4).
Then
0%(u*v) = 0% *v =u*d%

for every multi-index o.

Proof. Suppose that ¢ € Z(R?). Then, according to Proposition 12.3.7,

@ (uxv),¢y = (—1)*u v, 0%¢) = (ulx) @v(y), plx, y)0 ¢(x + y))
= u(z) ®v(y), 07 (p(z,y)d(x + y)))
= (Ozu(z) @ v(y), p(z,y)p(z +y))
= (0% = v, p).

This shows that 0%(u * v) = 0%u = v. The other identity is proved similarly. [ |
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The next proposition shows that the convolution between a distribution and a test
function is a smooth function.

Proposition 12.5.7. Suppose u € Z'(R%) and f € P(R?). Then u* f € &R?)
and

ux f(x) = (u(y), flx —y)> for every x € R% (12.7)

Proof. Notice that the convolution u * f is defined since f has compact support
and that the right-hand side in (12.7) is defined for every fixed = € R¢ since f(z—")
also has compact support. Suppose that supp f < B,(0) and choose p € Z(R?)
such that p = 1 on Bs,.(0). Lemma 12.2.1 then shows that the function

n(x) = Culy), f(x —y)) = Culy), p(v) f(x —y)), |z] <,

belongs to &(B,.(0)). This holds for every sufficiently large r, so we have n € &(R?).
Now suppose that ¢ € Z(R?) with supp ¢ = B,.(0). Then

(ux f,¢) = {ul@) ® f(y), p(x)p(y)(x +y)) = (ulx), {f(y), plx)p(y)d(x + y))).

We also have

S @+ = [ f@o+n = | f=)ot) dy
= oY), p(W) f(y — )

for every x € R®. This shows that

Cuxf,0) = (u(),{d(y), p(y) fy — x))) = {u(z) @ P(y), p(y) f(y — x))
= (p(y) ®u(x), p(y) f(y —2)) = Jm o(y)u(x), fly —x))dy

= | <uly), flz —y)o(e) d,
Rd

which proves (12.7). [ |

Example 12.5.8. The Hilbert transform H € 2'(R) is defined by

Ho(w) =pv -+ 6(z), 6 I(R).

Using Proposition 12.5.7, we see that

Ho(w) = v oo~y =ty [ XD gy [ K20 g,

20 Jly|ze Y -0 Y

12.6. Density Results

A consequence of Proposition 12.5.7 is the following result about regularization of
distributions.



98 Chapter 12 Tensor Products and Convolutions

Proposition 12.6.1. Suppose that u e 2'(R?) and let (¢;)721 be an approzimate
identity. Then ¢; = u € &R?) and ¢pj + u — u in P'(RY) as j — .

Proof. As in Example 8.5.4, we have ¢; — ¢ in 2'(R%). It then follows from
Proposition 12.5.5 that

bj+u—d+ru=u in 2'(RY). [ ]

Example 12.6.2. We will use the result in Proposition 12.6.1 to give a new proof
of Lemma 10.4.3. Suppose that v € 2'(R) and v’ = 0. Then, according to Propo-
sition 12.5.6,

(6 # ) = 6; =’ = 0.
Since ¢; * v is a smooth function, this shows that ¢; * u is a constant C;. Becau-

se ¢; *u — uin P'(R), it follows that C; converges to some constant C. O

The following two density results follow from Proposition 12.6.1.

Corollary 12.6.3. The set 2(R?) is dense in 2'(R%).

Proof. Suppose that v € 2'(R%). Take a cut-off function y € 2(R%) such
that x = 1 on By(0). If (¢;)7<, is an approximate identity, it then follows easily
from Proposition 12.6.1 that the sequence x(x/j)¢; *u(z), j = 1,2, ..., of compactly
supported test functions converges to u in 2'(R%). ]

Corollary 12.6.4. The set 2(X) is dense in 2'(X).

Proof. As in the proof of Theorem 8.3.2, let (K;);2; be an increasing sequence
of compact subsets to X such that X = U]le K. Then choose x; € Z(X) such
that x; = 1 in a neighbourhood of K; and put u; = xju, j = 1,2,.... Obvi-
ously, u; € £'(X) and we may extend u; to an element in &(R%). Let (¢;)7,
be an approximate identity. Then v¢; * u; € 2(R%) with support in X if j is large
enough; we will show that ; * u; — w in 2'(X). To this end, let ¢ € Z(X).
Then {u, ¢y = {uy, ¢y for large k. It follows that

gy = (i), [ ot 4y ) = (o), [ witota+ v dn )
= (W * ug, §)

if 7 > k is sufficiently large. Proposition 12.6.1 now shows that

j wug, o) = Yy # ug, ¢y —> {ug, ¢y = {u, g). L
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Tempered Distributions

13.1. Fourier Transforms of Distributions

When trying to define the Fourier transform of distributions, a complication ap-
pears. Suppose first that f € L!(R%) and ¢ € 2(R?). Proposition 6.2.8 then shows
that

pty= | Fao@yde = | @) d.

So far everything is fine. Notice, however, that (;AS does not belong to Z(R?) unless ¢
is identically 0 since ¢ can be extended to an entire function on C? and thus cannot
have compact support without being 0 everywhere. This means that we do not have

<ufv¢> = <ufv$>

for ¢ € Z2(R?). The class Z(RY) is therefore not suitable when working with
Fourier transforms of distributions. What is needed is a class of test functions that
is invariant under the Fourier transform.

13.2. The Schwartz Class
Definition 13.2.1. A function ¢ € C*(R?) is said to be rapidly decreasing if

[6]ap = sup %" ¢(x)| < o0 (13.1)
zeR4

for all multi-indices a and 5. The vector space of all rapidly decreasing is called
the Schwartz Class and is denoted .#.

Thus, if ¢ € .7, then ¢ and all its derivatives tend faster to 0 than |z|~* for any
integer k = 0 as |z| — o0.

Example 13.2.2. Tt is easy to show that the function ¢(x) = e‘““”‘z, z € R%,
belongs to . for every complex number a with positive real part. O

It follows directly from the definition that the Schwartz class is invariant under
differentiation and multiplication with powers of z and that these operations are
continuous on .&.

Proposition 13.2.3. The mapping . 3 ¢ — x*DP¢(x) is a continuous map
from % to S for all multi-indices o and .

There is a notion of convergence in the Schwartz class.

Definition 13.2.4. A sequence (¢,)*_; c . converges to ¢ € . if
¢ = bnllas — 0 asn— o0

for all multi-indices o and £.

99
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Proposition 13.2.5. The set 2(R?) is a dense subspace to ..

Proof. Convergence in Z(R?) clearly implies convergence in .#, so Z(R%) sub-
space to .. To prove density, suppose that ¢ € .. Take x € Z(R?) such
that x = 1 on B1(0) and put x,(z) = x(z/n), v € RY, for n = 1,2,.... Then
the sequence ¢, = xn¢, n = 1,2,..., of functions belonging to Z(R%) converges to
¢ in & In fact,

|6 = Snllas = sup 270 (¢(2)(1 = xa(@))] < C ), sup [2°97¢()]. (13.2)

|z|zn ,Ys5|f£\2n

Moreover, if |z| > n, then |z;| > n/v/d for some j, so if o’ equals o with 1 added
at place 7, then

2907 6(x)| < Ven ™!z 8" ¢(x)] < Vi~ |Bar -
Together with (13.2), this shows that ¢,, converges to ¢ in .7. [ |
Proposition 13.2.6. The set .7 is a dense subspace to LP(R?) for 1 < p < co.

Proof. Suppose that ¢ € .. Then

d 1/p
ol = ([ 0+ ePyol ) < €10+ )0l
<O Y oo <o
|a|<2d

which shows that ¢ € LP(R%), so . is a subset to LP(R?). The density of .7
in LP(R?) follows from the fact that C*(R?) is dense in LP(R?). [ |

The importance of the Schwartz class in distribution theory stems from the following
theorem.

Theorem 13.2.7. The Fourier transform % is a continuous map from . to ..

Proof. Suppose that ¢ € .. Then $ e C*(R%) according to Proposition 6.2.11.
Moreover, ¢ € . satisfies (13.1) for all multi-indices o and f since

[6la,s = 1€2076(€)]lc = D (2P (x))]c < [D* (&P ()]s
< C[(1+ [2)* D (&P p(@)]or < c0.
This inequality also shows that the Fourier transform is continuous. ]

Suppose that ¢ € .. Then ¢ is bounded and continuous and $e < < LY(R%), so
it follows from Theorem 6.4.1 that

o) = —

@m)? Jr

This shows that t}}e Fourier transform .% : .¥ — . is invertible and the inverse
is # 1 = (2r) 2%. Theorem 13.2.6 also implies that the inverse is continuous.

q@({)eig'w d¢  for every z € R%.
d

Theorem 13.2.8. The Fourier transform is a homeomorphism from . to ..
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13.3. Tempered Distributions
We next define the dual space to ..

Definition 13.3.1. A tempered distribution is a sequentially continuous, linear
functional on .. We denote the class of tempered distributions by .#”.

Definition 13.3.2. A sequence (u,)¥_; c ./ converges to u € .7 if

(g, @) = u, ¢y for every ¢ € 7.

Notice that if u € .#, then since Z(R?) < .#, the restriction of u to 2(R%) belongs
to 2'(R?). We may thus consider .#” as a subspace to 2'(R?).
The proof of the following theorem is left as an exercise to the reader.

Theorem 13.3.3. A linear functional u on . belongs to . if and only if there
exist a constant C = 0 and an integer m = 0 such that

Ku ) <C Y5 6las (13.3)

lal,|Bl<m
for every function ¢ € .

It follows from Theorem 11.1.4 that (13.3) is satisfied if u € &'(R?). This shows
that &”(R?) is a subset to .#”. We thus have &' (R%) c .’ < 2'(R?).

Example 13.3.4. We will show that LP(R?) < ./ for 1 < p < . Suppose
that f e LP(R?). Then, for ¢ € .7,
Kuy, )l <f |f@)l¢(@)| dz < [ flpl¢ly < Clflp D, I¢lao

R la|<2d

according to the proof of Proposition 13.2.6. It thus follows from Theorem 13.3.3
that uy € 7. O

Example 13.3.5. Suppose that f € C(R?) is a function of polynomial growth,
meaning that there exist a constant C' > 0 and an integer m > 0 such that

|f(x)] < O+ |z|)™ for every z € R%.

Then, for ¢ € .7,

d
< C [ A+l @ o <€ % 1ol

d+1 =
(1 + |x|) |a|€m+d+1
This shows that uy € /. In particular, every polynomial belongs to .7 O

The next proposition shows that .’ is invariant under multiplication with polyno-
mials and differentiation.

Proposition 13.3.6. Suppose that ue .. Then
(i) x®u e S for every multi-index «;
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(ii) 0Pu e S for every multi-index 3.

Proof. The proof of these properties are almost identical, so let us just prove (i).
Suppose that ¢, — ¢ in . Then, by Proposition 13.2.3,

<l,au7 ¢n> = <u7 xa¢n> - <u7 xa¢> = <mau7 ¢> u

The next example shows that there are regular tempered distributions that are not
of polynomial growth.

Example 13.3.7. The function f(z) = sin(e*), = € R, belongs to .’ since f
is bounded. It therefore follows from Proposition 13.3.6 that f’ € /. How-
ever, f'(x) = e®cos(e*), x € R, is not of polynomial growth. As a comparison,
notice that the function g(x) = e*, x € R, does not belong to .’. In fact, if ¢ € .~
and ¢(z) = e~ 1*l/2 for |z| > 1, then

v'e] 1
j o(2)6(x) das = L ¢ é(z) dr + j e o

— 0

13.4. The Fourier Transform

We are now ready to define the Fourier transform of a tempered distribution.

Definition 13.4.1. The Fourier transform u of a tempered distribution u is
defined through

@, 0y = (u, 8y, ¢e..

Remark 13.4.2.

(a) Notice that if v € .7, then @ € .’ since the Fourier transform is continuous
on . according to Theorem 13.2.7.

(b) The Fourier transform is also continuous on .%’. Indeed, if u,, = v in ., then

(i, ¢y = (n, 6y —> (u, by = (T, ¢

for every function ¢ € .% since 6 € ., which shows that @, — @ in .7".
(c) If f e LY(RY), then

@y = Cupndy = | @)ia)de = | o) de = Cug.)

for every function ¢ € ., which shows that the distributional Fourier transform
of f coincides with the ordinary transform.

Example 13.4.3.
1. Let us first calculate the Fourier transform of ¢:

@ oy =0.0)=90) = | #la)de =<1

for every function ¢ € ., which shows that 5 =1.
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2. We next calculate the Fourier transform of 1. If ¢ € .7, then
Ay =dy=| e = m)00) = (20)5.0)

according to the inversion formula, which shows that 1 = (2m)46. O

13.5. Properties of the Fourier Transform

The properties of the Fourier transform on the Schwartz class immediately carry
over to tempered distributions.

Proposition 13.5.1. Suppose that u € #'. Then the following properties hold:
(i) if h € R?, then Thu = e~ ¢4;
(ii) if h € RY, then eihoy = 1,
(iii) (@) = (a);
(iv) ifte R and t # 0, then Uy = [t|~%0y1;
(v) 0oy = (i&)*u for every multi-index «;
(vi) zou = il*6°0 for every multi-indez o.
Proof. We will prove (v) and leave the other properties as exercises to the reader.
Suppose that ¢ € .. Then

(u, ¢y = (=1)*Nu, 0% ¢y = (=), (=iz)d(z)) = ((i€)*T, ). n

Example 13.5.2. We make two applications of Proposition 6.2.2.
1. Let us first calculate the Fourier transform of z¢:

o~

26 = zo1 = i19°1 = (2m)4il*loes.

2. We next calculate the Fourier transform of ¢?®¢, where a € R? is a constant:

—

ciaé = ein€] = 1,1 = (21) %76 = (27)%5,

so that .
0 = (2m) " deia-€,
If we apply this identity to a test function ¢ € ., we obtain

o) = = [ de)eeede,

- 2T Rd
which gives us a new proof of the inversion formula for .#. O

Tt follows from Proposition 6.2.2 that if u € .9 is even/odd, then @ is also even/odd.
For instance, if u is even, i.e., % = u, then

(@) = (@) = .
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Example 13.5.3. We next calculate the Fourier transform of the Cauchy principal
value u = pv % Notice that

1 . P(x) o(x)
v —, ¢(x)) = lim —dzr —dzx
wv .00 =l | o ¥ Ll;l

e—0 x X

for ¢ € .. This shows that u is the sum of a distribution with compact support
and a L?-function, and thus belongs to .#’. If we now apply the Fourier transform
to the identity xu = 1, we obtain

iéu = 27, thatis @' = —2mid.

Every solution to the last differential equation can be written @ = —27i(H + C) for
some constant C'. According to Example 9.3.8, u is odd, so the same holds for .
This shows that C' = —%, SO

J—

1 .
pv— = —imsgné. O
x

13.6. The Inversion Formula

The inversion formula for the Fourier transform of course generalizes to .%”.

Theorem 13.6.1. Suppose that u € .. Then u = (2r) *(a).

Proof. Suppose that ¢ € .. Then, according to Corollary 7?7 and Theorem 6.4.1,
(@), ) = Cu, (9)) = {(u, §)) = (2m)Cu, ). =

Example 13.6.2. It follows from the inversion formula and Example 13.5.3 that

1 x 1 1. 1
= (pv=) =2n—(pv—) = —2ipv —.
(sgna) = —(pv—) = 27— (pv ) ipv—
Since H = 3(sgnx + 1), this implies that

~ 1
H = —ipv— + 7. O
x
Corollary 13.6.3. The Fourier transform is a continuous homeomorphism on ..

13.7. The Convolution Theorem

The next theorem shows that the Fourier transform of a distribution with compact
support is a smooth function that can be calculated in essentially the same way as
the Fourier transform of a L!-function.

Theorem 13.7.1. Suppose that u € &' (R?). Then 4 € &R?) and

a(€) = (u(z), e ), e R (13.4)
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Proof. Suppose that ¢ € Z(R%). Then, according to Proposition 12.3.3 (see Re-
mark 12.3.8),

@, 6y = (u, @) = Cu(x),{p(€), ey = (u(z) @ ¢(€), e ¢
= ($(&) ®u(x), e = JRd<u(x)7 e ENG(E) dE.

This establishes (13.4) since 2(R?) is dense in . by Proposition 13.2.5. The fact
that 4 € &(R?) follows from Remark 12.2.2. [ |
Theorem 13.7.2. Suppose that u,v € &' (R?). Then
UV = UD. (13.5)
Proof. Theorem 13.7.1 shows that
uro(§) = Cuwv(z), e ) = (ulx) @v(y), e TV
= Cul@), e EXu(y), €™V = a(€)0(€)
for £ e R%. ]

We will next show that (13.5) in fact holds true if u € ./ and v € &'(R?). For this,
we need to know something about multipliers on .#’. We begin by a definition.

Definition 13.7.3. Denote by @);(R?) the class of functions f € &(R?) such
that f and all of its derivatives are of polynomial growth.

The following lemma shows that the functions, belonging to &/ (R?), are multipli-
ers on ..

Lemma 13.7.4. Suppose that u € .7’ and f € Oy (R?Y). Then fue ..

Proof. We will just sketch the proof. One first shows that
(i) f¢ € 7 for every function ¢ € 7
(ii) if ¢, = ¢ in .7, then fo,, — f¢ in 7.

It then follows that

<fu7 ¢n> = <ua f¢n> - <u7 f¢> = <fu7 ¢> u

Lemma 13.7.5. Suppose that v € &'(R?). Then v € Oy (R?).
Proof. According to Theorem 13.7.1,
() = (ul@),e™™¢), £eR™
Remark 12.2.2 then shows that
0°0(€) = (=) *Nav(x), e %),
Using the fact that 2%v € &’(R?), we now apply the semi-norm estimate (11.1):

0°0(8)] = [ v().e” O < C Y suplafe T < C(L+ )™ m

18)<m “EK
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Theorem 13.7.6. Suppose that ue ' and ve &' (R?). Then u+ve .S and
WU = Uv.

Proof. It follows from Lemma 13.7.5 that uv € .%’, so 40 = @ for some w € ..
Let ¢ € 2(R?). Then, according to the inversion formula,

(w, 8y = (2m)~%uw, by = (2m)~ K, &) = (2n)~KaD, By = (2m)~ @, 53).
Theorem 13.7.6 now shows that
(2m) @, 88) = (2m) K@, 0w B = (2m) U, 0 # @) = (u, (v % B)).

Notice that

(v 9)(2) = v e p(—z) = (v(y), d(=z = y)) = (u(y), ¢(x +y))

for x € R4, Tt follows that

(w, ¢y = (u(x), (v(y), d(z +y)) = (u v, ).

Since [ |
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Appendix A

The Lebesgue Integral

In the following appendix, we summarize some facts from integration theory that
is used in the main text.

A.1. Measurable Sets, Measure, Almost Everywhere

Without going into detail, we assume that there exists a class .# of subsets to RY,
which is large enough to contain all open and all closed subsets to R% and which
also is a o-algebra:

(i) 9, Rie ;

(ii) if E € A, then E° € .# (E° being the complement of E);

(i) if By, Eo,...€ A, then |J)_ E, € A.
The elements of .# are called measurable subsets to R?. Let us remark that all
subsets to R?, that one may run into in applications, are measurable and that is
very hard to construct non-measurable sets.

To every measurable subset set E to RY, one can assign a number m(E) € [0, 0],
called the measure of F, which measures the ”size” of the set. For instance, the
measure of an interval is just the length of the interval. Some sets have measure
zero. The following subsets to R? are examples of sets with measure 0: all finite
subsets to R?, Q?, and more generally all countable subsets to R?, the standard
Cantor set C' c R (even though it is uncountable). One should think of a set with
measure 0 as very small and — in most contexts — negligible.

One says that a property holds almost everywhere — abbreviated a.e. —
on R? if the property holds for every z € R?% except for = belonging to a set E,
where E is a measurable set with measure 0.

A.2. Step Functions

Definition A.2.1. The characteristic function xz of a subset E to R? is de-
fined by
1 ifzeFE

XE(x)={ 0 ifz¢ B

Definition A.2.2. A function ¢ : R* - C of the form ¢ = Z?zl a;XE;, where
every a; € C and the sets E; are measurable and pairwise disjoint, is called a step
function. By T and T, we denote the class of step functions and the subclass of
non-negative step functions, respectively.

Definition A.2.3. The integral of ¢ = Z?=1 a;Xg; € T is defined as

Jd)dw = j;ajm(Ej)~

One can prove that the integral of a step function is independent of which repre-
sentation is used (there are infinitely many representations).
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A.3. Measurable Functions

If f is a real-valued function on R?, then its positive and negative parts f*
and f~ are defined by f* = max{f,0} and f~ = max{—f, 0}, respectively. Notice
that f = f — ™.

Definition A.3.1. A function f : R — R is said to be measurable if there
exists a sequence (¢,);_; < T such that ¢, T f a.e. A real-valued function f is
called measurable if fT and f~ are measurable and a complex-valued function is
called measurable if its real and imaginary parts are measurable. If £ € .# and f
is a complex-valued function on E, then f is measurabe if xyg f is measurable.

It is not so hard to show that every continuous function on R? and every piecewise
continuous function on R is measurable. It is also easy to show that the set of
measurable functions on R% or on a measurable subset to R? is a vector space
with lattice structure (the maximum and minimum of two measurable functions is
measurable).

A.4. Integrable Functions and the Lebesgue Integral

Definition A.4.1. If E is a measurable subset to R? and f : E — R is measur-
able, then the integral of f over F is defined by
J fdz = lim | ¢,dz,
E n—w

where (¢y,)_, < T4 is some sequence such that ¢, T xgf a.e.

One can prove that SE fdz is independent of the sequence (¢,,)i_,. Notice that
the integral of a measurable function may be infinite.

Definition A.4.2. Suppose that E € .#. A measurable function f : £ — R is
said to be integrable on FE if SE ftdzr and SE f~ dx are finite. The Lebesgue
integral of f is then defined as

JEfdxszfJ“dx—fEf*dm.

A measurable function f : E — C is said to be integrable if Re f and Im f are
integrable, and one puts

JEfd$=JERefdx+iJEImfdx.

Let L'(F) denote the set of integrable functions on E.

The next two theorems summarize some simple but important properties of the
Lebesgue integral.

Theorem A.4.3. Suppose that f,g € L'(E). Then the following properties hold:
(a) af + Bg € LY(E) with §(af + Bg)de = o, fdx+ 8§, gdx for all a, 5 € C;
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(b) if f<g, then §, fdx <, gdr;

(c) |fl € L'(E) and |, fdz| < § |f] dz.

It is also true that if |f| € L'(E), then f € L'(E). This follows from the fact
that (Re f)£, (Im £)* < |f].

Theorem A.4.4. If f € L'(E), then . |f|dx = 0 if and only if f =0 a.e. on E.

Theorem A.4.5. If f is Riemann integrable on [a,b], then f € L*([a,b]), and the
Riemann integral of f equals the Lebesgue integral of f.

The converse to this theorem is false. Indeed, the function f, defined by

1 ifzef0,1]nQ
~1 ifze[0,1]\Q

b

) = |

is not Riemann integrable on [0,1]. However, since |f| = 1 € L([0,1]), it follows
that f e L([0,1]).

A.5. Convergence Theorems

The following two theorems, known as the monotone and dominated conver-
gence theorem, respectively, are among the most useful results in integration
theory. These theorems are also true in the context of Riemann integration, but
then considerably harder to prove.

Theorem A.5.1 (Beppo Levi). Suppose that (fn)i_, is an increasing sequence
in L'(E) such that f, — f a.e. on E and sup,,», §, fdx < 0. Then f € L'(E)
and

f fdx = lim fndz.
E E

n—o0
Theorem A.5.2 (Lebesgue). Suppose that (f,)%_; is an sequence in L'(E) such
that f, — f and |fn| < g € LY(E) a.e. on E for everyn > 1. Then f € L*(E) and

J fdx = lim fndz.

A.6. LP-spaces

The so called LP-spaces appear everywhere in modern analysis. We will be mostly
interested in the cases p = 1,2, c0.

Definition A.6.1. Suppose that £ < R% is measurable. For 1 < p < o0, let LP(E)
denote the class of measurable functions f : £ — C such that

f | f|P dx < 0.
B

Let also L™ (E) denote the class of measurable functions f for which there exists
a constant C' > 0 such that |f(z)| < C for a.e. x € E. The functions, belonging
to L*(F), are said to be essentially bounded.
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Since |f + g|P < 2P(|f|P + |g|?) for 1 < p < o0, we see that f + g€ LP(E) if f,g €
LP(E). Obviously, af € LP(E) for every a € C if f € LP(E). Thus, LP(E) is a
vector space. It is also easy to see that L*(FE) is a vector space.

If we define
1/p
ity = ([ 1)
E

If]e = inf{C : |f(z)| < C ae. on E},

for 1 < p < oo, and

then | - ||, is a seminorm on LP(E) for 1 < p < oo, ie.,

() £l = 0;
(i) llaflp = lal[f]p for every a € C;

(i) [f + gl < 1£1lp + l9llp-
All these properties are easily verified except (iii) for 1 < p < o0; this third property
is known as Minkowski’s inequality. However, | - |, is not a norm on L?(E)
since |f|, = 0 only implies that f = 0 a.e. on E, not that f = 0 on E. For this
reason, one identifies functions that agree a.e. on E. In particular, every function,
that is 0 a.e. on E, is identified with 0. With this identification, LP(E) becomes
a normed space with the norm | - ||,. It is also common to consider the functions
in LP(F) as being defined just a.e. on E.

The following theorem shows that LP(E) is a Banach space, that is, a complete
normed space.

Theorem A.6.2 (F. Riesz). The space LP(E) is complete for 1 < p < o0.

Here, completeness means that if (f,); is a Cauchy sequence in LP(E),
ie., | fimn = fulp = 00 as m,n — oo, then the sequence is convergent, meaning that
there exists a function f € LP(E) such that | f — full, — 0.
A very useful inequality is Holder’s inequality. To formulate this, we use the

following notation. If 1 < p < 00, we denote by p’ the number defined by

1 1

4= =1, thatis p = ——.

P p—1
Notice that 1 < p’ < c0. We also write 1’ = 00 and oo’ = 1, which is consistent with
the limits one obtains by letting p — 1 and p — 0.

Theorem A.6.3 (Holder’s inequality). If f € LP(E) and g € L? (E), where p
satisfies 1 < p < o, then fge LY (E), and

[£glle < £ lplgle-

Another useful integral inequality is the following.

Theorem A.6.4 (Minkowski’s integral inequality). If the function f is mea-
surable on R?¢, then for 1 < p < o0,

(Lw (J;{d 7@ 9)l dx>p dy) : s JRd Um |/, y)I” dy) "
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A.7. The Fubini and Tonelli Theorems

According to Fubini’s theorem, an integral over R%*¢ of a function in L'(R%*¢)
may be evaluated as an iterated integral in two ways.

Theorem A.7.1 (Fubini). If f € L'(R%*®), then

R[ f tedsty= [ ([ semar)ae=[ ([ fandc)a

Fubini’s theorem is often used together with Tonelli’s theorem to reverse the order
of integration in a double integral. Appealing to Tonelli’s theorem, one first verifies
that the integrand belongs to L'(R%*+¢) by evaluating an iterated integral, where
the integrand is the absolute value of the original integrand. It then follows from
Fubini’s theorem that the two iterated integrals are equal, so the order of integration
may be reversed.

Theorem A.7.2 (Tonelli). Suppose that f is measurable on R4*¢. Then f be-
longs to L' (R*€) if and only if

Ldgelf(x,y)ldy>dx<oo or fe(fRd|f(x,y)|dx)dy<oo,

A.8. Lebesgue’s Differentiation Theorem

The Lebesgue integral may be differentiated in essentially the same way as the
Riemann integral.

Theorem A.8.1 (Lebesgue). If f € L'([a,b]), then the function
t
)= [ s6)ds. asis<o,

is differentiable a.e. on [a,b] with F' = f a.e.

A.9. Change of Variables

Sometimes we shall need to perform linear changes of variables.

Theorem A.9.1. Suppose that A: R* — R% is an invertible, linear mapping and
let be R Then, for every function f € L*'(R%),

fAz+byde = [ fay,
. A J

where |A| denotes the determinant of A.

A.10. Density Theorems

For an open subset G to R?, let C*(G) denote the class of infinitely differentiable
functions on G. Let also C(G) denote the subclass of functions ¢ € C*(G) with
compact support, that is, such that ¢ = 0 outside a compact subset to G.
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Theorem A.10.1. IfG is an open subset to R%, then CZ(G) is dense in LP(G) for
1 <p< oo, that is, if f € LP(G), then for every € > 0, there exists a function ¢ €
C*(G) such that ||f — @, < e.



