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Chapter 1

Convolutions

1.1. Definition of Convolutions

If f and g are two complex-valued, measurable functions on Rd, their convolu-
tion f � g is defined by

f � gpxq �
»
Rd

fpx� yqgpyq dy

for those values of x P Rd for which the integral exists. We will in this chapter
give a number of conditions on f and g under which the convolution f � g exists at
least a.e.

1.2. Basic Properties of Convolutions

We begin by showing that the convolution between two functions in L1pRdq is
defined and belongs to L1pRdq.
Proposition 1.2.1. If f, g P L1pRdq, then the convolution f � g is defined a.e.
on Rd. Moreover, f � g P L1pRdq with }f � g}1 ¤ }f}1}g}1.

Proof. We will use the fact that the function px, yq ÞÑ fpx� yqgpyq, px, yq P R2d,
is measurable on R2d without a proof. According to Tonelli’s theorem (Theo-
rem A.7.2),¼

R2d

|fpx� yq||gpyq| dx dy �
»
Rd

�»
Rd

|fpx� yq||gpyq| dx


dy

�
»
Rd

�»
Rd

|fpx� yq| dy


|gpyq| dy (1.1)

�
»
Rd

|fpzq| dz
»
Rd

|gpyq| dy   8,

so it follows that h P L1pR2dq. Fubini’s theorem (Theorem A.7.1) then shows that
it follows that f �g P L1pRdq and, in particular, that the convolution f �gpxq exists
for a.e. x P Rd. The last assertion, finally, follows directly from (1.1).

The next proposition shows that convolution is both commutative and associa-
tive.

Proposition 1.2.2. Suppose that f, g, h P L1pRdq. Then

(i) f � g � g � f ;

(ii) pf � gq � h � f � pg � hq.
Proof.

(a) Making the substitution z � x� y, we obtain

f � gpxq �
»
Rd

fpx� yqgpyq dy �
»
Rd

fpzqgpx� zq dz � g � fpxq.

2
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(b) The associativity property follows from Fubini’s theorem and (a):

pf � gq � hpxq �
»
Rd

�»
Rd

fpzqgpx� y � zq dz


hpyq dy

�
»
Rd

fpzq
�»

Rd

gpx� z � yqhpyq dy


dz

� f � pg � hqpxq.

Definition 1.2.3. The support of a function f , defined a.e. on Rd, is the set

supp f � tx P Rd : f |Bδpxq � 0 for every δ ¡ 0u.
Remark 1.2.4. A few remarks are in order.

(a) If x does not belong to supp f , then there exists a ball Bδpxq such that f � 0 a.e.
on Bδpxq. This implies that the complement of supp f is open, so supp f is
closed.

(b) Notice also that f � 0 a.e. on the complement of supp f .

(c) It follows that if f is integrable on Rd, then
³
Rd fpxq dx �

³
suppf

fpxq dx.

(d) One can show that if f is continuous, then supp f � tx P Rd : fpxq � 0u. In
general, however, this is not true. Take for instance f � χQ. Then supp f �∅,

but tx P Rd : fpxq � 0u � R.

Proposition 1.2.5. If f, g P L1pRdq, then supppf � gq � supp f � supp g.

Here, supp f � supp g is the algebraic sum of supp f and supp g, i.e.,

supp f � supp g � tx� y : x P supp f and y P supp gu.
It follows from the theorem that if supp f and supp g are compact, then supp f � g
is also compact.

Proof (Proposition 1.2.5). Let F be a closed superset to supp f � supp g. If x0

does not belong to F , then there exists a number δ ¡ 0 such that Bδpx0q does not
intersect F since F is closed. It follows that if x P Bδpx0q, then x� y R supp f for
any point y P supp g, which implies that f �gpxq � 0. Hence, the restriction of f �g
to Bδpx0q is 0, so x0 does not belong to supppf � gq. Thus, supppf � gq � F . This
holds for every set F , thus proving the proposition.

1.3. Young’s Inequality

Our next result about convolutions — often called Young’s inequality — gener-
alizes Theorem 1.2.1 considerably.

Theorem 1.3.1. Suppose that 1 ¤ p, q ¤ 8 satisfy 1
p � 1

q ¥ 1 and let 1 ¤ r ¤ 8
be defined by 1

p� 1
q � 1� 1

r . If f P LppRdq and g P LqpRdq, then f �g is defined a.e.

on Rd and belongs to LrpRdq with }f � g}r ¤ }f}p}g}q.
Remark 1.3.2. Before proving the theorem, let us mention a few special cases.
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(a) If p � q � 1, then r � 1, and we retrieve the result in Theorem 1.2.1.

(b) More generally, if 1 ¤ p ¤ 8 and q � 1, then r � p, so f � g P LppRdq
with }f � g}p ¤ }f}p}g}1.

(c) Finally, if q � p1, then r � 8, so f � g P L8pRdq with }f � g}8 ¤ }f}p}g}p1 .
Proof (Theorem 1.3.1). We first consider the case r � 8. Then q � p1, and
Hölder’s inequality shows that»

Rd

|fpx� yq||gpyq| dy ¤ }f}p}g}p1 for a.e. x P Rd,

from which it follows that f � g exists a.e. and }f � g}8 ¤ }f}p}g}p1 .
We next turn to the case 1 ¤ r   8. Notice that p and q are finite in this case

and that r ¥ p, q. Thus, if α � 1�p{r, then 0 ¤ α   1. Let also β � r{q, so that β
satisfies 1 ¤ β   8. It now follows from Hölder’s inequality that

hpxq �
»
Rd

|fpx� yq||gpyq| dy �
»
Rd

|fpx� yq|1�α|gpyq||fpx� yq|α dy

¤
�»

Rd

|fpx� yq|p1�αqq|gpyq|q dy

1{q

}|f |α}q1

for a.e. x P Rd, which implies that

hpxqq ¤ }f}αqp
»
Rd

|fpx� yq|p1�αqq|gpyq|q dy.

Using this and Minkowski’s integral inequality (Theorem A.6.4), it follows that

}h}qβq � }hq}β ¤ }f}αqp
�»

Rd

�»
Rd

|fpx� yq|p1�αqq|gpyq|q dy

β

dx


1{β

¤ }f}αqp
»
Rd

�»
Rd

|fpx� yq|p1�αqβq dx

1{β

|gpyq|q dy

� }f}αqp }f}p1�αqqp1�αqβq}g}qq
since αq1 � p. Finally, since βq � r and p1� αqβq � p, we obtain that

}h}r ¤ }f}αp }f}1�αp }g}q � }f}p}g}q.

1.4. Regularity of Convolutions

We next study regularity properties, i.e., continuity and differentiability, of con-
volutions. We shall use the fact that translation is a continuous operation on
LppRdq for 1 ¤ p   8. Here, the translate τhf of a function f on Rd in the
direction h P Rd is defined by

τhfpxq � fpx� hq, x P Rd.

Lemma 1.4.1. If f P LppRdq, where 1 ¤ p   8, then τhf Ñ f in LppRdq
as hÑ 0.
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Proof. Let ε ¡ 0 be an arbitrary number and choose a step function φ on Rd such
that }f�φ}p   ε. Using direct calculations or the dominated convergence theorem,
it is easy to see that τhφÑ φ in LppRdq. It follows that

}f � τhf}p ¤ }f � φ}p � }φ� τhφ}p � }τhφ� τhf}p
� 2}f � φ}p � }φ� τhφ}p   3ε

if |h| is small enough.

As noticed in Remark 1.3.2 (c), f � g P L8pRdq if f P LppRdq and g P Lp1pRdq,
where 1 ¤ p ¤ 8. We next show that f � g is actually uniformly continuous in this
case and also that f � gpxq tends to 0 as |x| Ñ 8 if 1   p   8.

Theorem 1.4.2. Suppose that f P LppRdq and g P Lp1pRdq, where 1 ¤ p ¤ 8.
Then f � g is uniformly continuous on Rd. For 1   p   8, there also holds
that lim|x|Ñ8 f � gpxq � 0.

Proof. To prove that f �g is uniformly continuous, we may assume that 1 ¤ p   8
(if p � 8, we let f och g change roles). An application of Hölder’s inequality then
shows that

|f � gpx� hq � f � gpxq| ¤
»
Rd

|fpx� h� yq � fpx� yq||gpyq| dy
¤ }τ�hf � f}p}g}p1 .

According to Lemma 1.4.1, }τ�hf � f}p Ñ 0 as |h| Ñ 0, so it follows that the
convolution f � g is uniformly continuous. For the proof of the second assertion,
we let fn � χBnp0qf and gn � χBnp0qg for n � 1, 2, ... . Then fn Ñ f in LppRdq
and gn Ñ g in Lp

1pRdq. The first part of the proof together with Theorem 1.2.5
also shows that fn � gn P CcpRdq. Moreover,

}fn � gn � f � g}8 ¤ }f}p}gn � g}p1 � }fn � f}p}g}p1 .
This shows that fn � gn Ñ f � g uniformly, from which it follows that f � gpxq Ñ 0
as |x| Ñ 8.

We now consider differentiability of convolutions. In general, one expects f �g to
be at least as smooth as either f or g. Formally, this follows by differentiating f � g
under the integral sign:

Bαpf � gqpxq � Bα
»
Rd

fpx� yqgpyq dy �
»
Rd

Bαx fpx� yqgpyq dy � pBαfq � gpxq

if Bαf exists, so that Bαpf � gq � pBαfq � g. Similarly, Bαpf � gq � f � Bαg if Bαg
exists. We will now show that these formal calculations can be justified if certain
conditions are imposed on f and g.

Theorem 1.4.3. Suppose that f P LppRdq, where 1 ¤ p ¤ 8, and g P CmpRdq
with Bαg P Lp1pRdq for |α| ¤ m. Then f � g P CmpRdq and

Bαpf � gq � f � Bαg for |α| ¤ m. (1.2)
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Proof. It suffices to prove the theorem for m � 1; the general case follows by
induction. The fact that f � g is continuous is a consequence of Theorem 1.4.2. To
prove (1.2), we first consider the case p � 1. Let ej be one of the elements in the
standard basis for Rd. We will use the following notation:

Djpf � gqpx, hq � f � gpx� hejq � f � gpxq
h

,

where x P Rd and h P R r t0u. Using the assumptions on f and g together with
the dominated convergence theorem, we see that

Dpf � gqpx, hq �
»
Rd

fpx� yqgpy � hejq � gpyq
h

dy

ÝÑ
»
Rd

fpx� yqBjgpyq dy as hÑ 0,

which shows that Bjpf � gq � f � Bjg for j � 1, ... , d. Now suppose that 1   p ¤ 8.
Given ε ¡ 0, choose R ¥ 2 so large that»

|y|¥R{2

|gpyq|p1 dy   εp
1

.

According to the mean-value theorem,

|f � Bjgpxq �Djpf � gqpx, hq| ¤
»
|y| R

|fpx� yq||Bjgpyq � Bjgpy � θhejq| dy

�
»
|y|¥R

|fpx� yq||Bjgpyq � Bjgpy � θhejq| dy

for some θ P r0, 1s. In this inequality, the first integral in the right-hand side tends
to 0 as h Ñ 0 since the integrand tends to 0, f is locally integrable, and Bjg is
locally bounded. If |h| ¤ 1, we also have»

|y|¥R

|fpx� yq||Bjgpyq � Bjgpy � θhejq| dy ¤ 2}f}p
�»

|y|¥R{2

|Bjgpyq|p
1

dy


1{p1

  2}f}pε.

This establishes (1.2) in the case 1   p ¤ 8. Finally, f � Bjg P CpRdq according to
Theorem 1.4.2, so f � g P C1pRdq.

Remark 1.4.4. Using exactly the same technique, one can show that the assertion
in Theorem 1.4.3 also holds true if we assume that f P L1

locpRdq and g P Cmc pRdq.

1.5. Approximate Identities

According to Theorem 1.2.1 and Theorem 1.2.2 (a), L1pRdq is a commutative
Banach algebra1 with convolution as the product. A natural question to ask

1A Banach algebra is a Banach space B equipped with a product � such that }f � g} ¤ }f}}g}
for all elements f, g P B.
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is whether this algebra has an multiplicative identity, i.e., if there exists a func-
tion K P L1pRdq such that

K � f � f �K � f for every f P L1pRdq.

The answer to this question is in fact “no”. Indeed, suppose that K were such a
function. Then K � f � f for every function f P L1pRdq X L8pRdq. This is a
contradiction since K � f is continuous in this case according to Theorem 1.4.2.

There are, however, sequences pKnq8n�1 � L1pRdq that approximate a mul-
tiplicative identity in the sense that Kn � f Ñ f in L1pRdq as n Ñ 8 for ev-
ery f P L1pRdq. We will now see how such sequences can be constructed.

Definition 1.5.1. A sequence pKnq8n�1 of integrable functions on Rd is called an
approximate identity if

(i)
³
Rd Knpxq dx � 1 for every n;

(ii) there exists a constant C ¥ 0 such that
³
Rd |Knpxq| dx ¤ C for every n;

(iii) limnÑ8

³
|x|¥δ

|Knpxq| dx � 0 for every δ ¡ 0.

Notice that if K ¥ 0, then (ii) follows from (i). A simple recipe for constructing an
approximate identity is given by the following proposition:

Proposition 1.5.2. Suppose that K P L1pRdq satisfies the conditions K ¥ 0
and

³
Rd Kpxq dx � 1. Put

Knpxq � ndKpnxq, x P Rd, for n � 1, 2, ... . (1.3)

Then pKnq8n�1 is an approximate identity.

Proof. Changing variables y � nx, we see that
³
Rd Knpxq dx � 1 for every n. The

same change of variables shows that»
|x|¥δ

|Knpxq| dx �
»
|y|¥nδ

|Kpyq| dy ÝÑ 0 as nÑ8.

Theorem 1.5.3. Suppose that pKnq8n�1 is an approximate identity and moreover
that f P LppRdq, where 1 ¤ p   8. Then Kn � f P LppRq and Kn � f Ñ f
in LppRdq as nÑ8.

Proof. The fact that Kn � f P LppRq follows from Young’s inequality (see Re-
mark 1.3.2 (b)). Minkowski’s integral inequality (Theorem A.6.4) now shows that�»

Rd

|fpxq �Knfpxq|p dx

1{p

�
�»

Rd

����»
Rd

pfpxq � fpx� yqqKnpyq dy
����p dx
1{p

¤
»
Rd

�»
Rd

|fpxq � fpx� yq|p dx

1{p

|Knpyq| dy

�
»
Rd

}f � τyf}p|Knpyq| dy.
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We then split the last integral into two parts:»
|y| δ

}f � τyf}p|Knpyq| dy �
»
|y|¥δ

}f � τyf}p|Knpyq| dy.

Since }f�τyf}p Ñ 0 as y Ñ 0 according to Lemma 1.4.1 and (ii) in Definition 1.5.1
holds, the first integral can be made arbitrarily small by choosing δ sufficiently
small. Moreover, using the fact that }f�τyf}p ¤ 2}f}p and (iii) in Definition 1.5.1,
we see that the second integral tends to 0 as nÑ8.

The next result concerns pointwise and uniform convergence of convolutions with
approximate identities.

Theorem 1.5.4. Suppose that pKnq8n�1 is an approximate identity and moreover
that f P LppRdq, where 1 ¤ p ¤ 8. Suppose also that

}Kn}Lp1 ptxPRd:|x|¥δuq ÝÑ 0 as nÑ8 (1.4)

for every δ ¡ 0. Then Kn � f Ñ f uniformly as n Ñ 8 on a every compact
set K � Rd where f is continuous.

Remark 1.5.5.

(i) Notice that pointwise convergence corresponds to the case when K consists
of just one point.

(ii) Notice also that if p � 8, then (1.4) coincides with (iii) in Definition 1.5.1.

(iii) Suppose that K is of the form (1.3), where Kpxq � op|x|�dq as |x| Ñ 8,
i.e., Kpxq � |x|�drpxq, where rpxq Ñ 0 as |x| Ñ 8. Then, for p � 1,

}Kn}Lp8 ptxPRd:|x|¥δuq � sup
|x|¥δ

|rpnxq|
|x|δ ¤ δ�d sup

|y|¥nδ

|rpyq| ÝÑ 0 as nÑ8,

and, for 1   p ¤ 8,

}Kn}Lp1 ptxPRd:|x|¥δuq �
�»

|x|¥δ

|rpnxq|p1
|x|dp1 dx


1{p1

¤ Cd,p sup
|y|¥nδ

|rpyq| ÝÑ 0 as nÑ8.

Therefore, (1.4) holds.

Proof (Theorem 1.5.4). Given ε ¡ 0, choose δ ¡ 0 such that |fpxq�fpx�yq|   ε
for every x P K and every y P Rd that satisfies |y|   δ. Suppose that |fpxq| ¤ M
for every x P K. Then

|fpxq �Kn � fpxq| ¤
»
|y| δ

|fpxq � fpx� yq||Knpyq| dy

�|fpxq|
»
|y|¥δ

|Knpyq| dy �
»
|y|¥δ

|fpx� yq||Knpyq| dy

¤ Cε�M

»
|y|¥δ

|Knpyq| dy �
»
|y|¥δ

|fpx� yq||Knpyq| dy.
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The first integral in the last member tends to 0 as nÑ8 because of (iii). Also,»
|y|¥δ

|fpx� yq||Knpyq| dy ¤ }f}p}Kn}Lp1 ptyPRd:|y|¥δuq,

which shows that also the second integral tends to 0 as nÑ8. It easy to see that
the convergence is uniform.

Remark 1.5.6.

(a) In the definition of an approximate identity, the indices are the positive in-
tegers and the statements in the theorems just proved hold when n Ñ 8.
In many cases, however, the indices naturally belong to some other subset of
the reals. One can, for instance, consider sequences pKεq, where the index ε
belongs to p0,8q and the limiting value for ε is 0. We will also call such se-
quences approximate identities if they satisfy the properties in Definition 1.5.1
(with appropriate modifications). Let us also mention that Theorem 1.5.3 and
Theorem 1.5.4 hold true in such cases with identical proofs.

(b) In one dimension and under the assumption that every Kn is even, it is possi-
ble to modify the proof of Theorem 1.5.4 to handle jump discontinuities. Sup-
pose that f P L8pRq and that the one-sided limits fpx�q � limyÑ0� fpx � yq
and fpx�q � limyÑ0� fpx � yq exist. Using the fact that Kn is even, we see
that » 8

0

Knpyq dy � 1

2
for n � 1, 2, ... ,

from which it follows that

1

2
pfpx�q � fpx�qq �Kn � fpxq �

» 8
0

pfpx�q � fpx� yqqKnpyq dy

�
» 8

0

pfpx�q � fpx� yqqKnpyq dy.

As in the proof of Theorem 1.5.4, one then shows that both these integrals tend
to 0 as nÑ8, so Kn � fpxq Ñ 1

2 pfpx�q � fpx�qq.
Example 1.5.7. Put

P pxq � 1

π

1

1� x2
, x P R,

and

Pεpxq � ε�1P pε�1xq � 1

π

ε

ε2 � x2
, x P R, ε ¡ 0.

Notice that P P LppRq for 1 ¤ p ¤ 8. Since
³8
�8

P pxq dx � 1 and P ¥ 0, pPεqε¡0

is an approximate identity. We call Pε the Poisson kernel. The integral

Pε � fpxq �
» 8
�8

fptqPεpx� tq dt, x P R,

where f P LppRq, is called the Poisson integral of f . Let upx, yq � Py � fpxq,
where px, yq belongs to the upper half plane

H � tpx, yq P R2 : �8   x   8 and y ¡ 0u.
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Notice that Pypxq is the imaginary part of �z�1, where z � x � iy P C, so Pypxq
is harmonic in H. This fact together with Theorem 1.4.3 imply that

∆upx, yq �
» 8
�8

fptq∆Pypx� tq dt � 0 for px, yq P H,

which shows that u is harmonic in H. If moreover f P CpRq, then Theorem 1.5.4
shows that upx, yq Ñ fpxq as y Ñ 0 for every x P R. Thus, u is a solution to the
Dirichlet problem in H, i.e., a solution to Laplace’s equation ∆u � 0 in H
with boundary values f . �

Example 1.5.8. Put

W pxq � 1?
2π
e�x

2{2, x P R,

and

Wtpxq � t�1{2W pt�1{2xq � 1?
2πt

e�x
2{2t, x P R, t ¡ 0.

Then pWtqt¡0 is an approximate identity since
³8
�8

W pxq dx � 1 and W ¡ 0; the
kernel Wt is known as the Gauss kernel. If f P LppRq, where 1 ¤ p ¤ 8, then
the function upx, tq �Wt � fpxq, px, tq P H, solves the heat equation:

u1t � u2xx � 0 for px, tq P H.

If also f P CpRq, then upx, tq Ñ fpxq as tÑ 0 for every x P R, so u has boundary
values f . �

Example 1.5.9. Put

Kpxq � 1

π

�
sinx

x


2

, x P R,

and

Knpxq � nKpnxq � 1

π

sin2 x

nx2
, x P R, n � 1, 2, ... .

One can show that
³8
�8

Kpxq dx � 1, so pKnq8n�1 is an approximate identity. The
kernel Kn is called the Fejér kernel for the real line. If f P LppRq X CpRq,
where 1 ¤ p ¤ 8, then Kn � fpxq Ñ fpxq as nÑ8 for every x P R. �

1.6. Regularization

In many situations, it is important to be able to approximate an Lp-function with
smooth functions. The standard procedure for this is to use mollifiers.

Definition 1.6.1. A mollifier is a function φ P C8
c pRdq that satisfies the condi-

tions φ ¥ 0, suppφ � B1p0q, and
³
Rd φdx � 1.

The following example contains the standard example of a mollifier.
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Example 1.6.2. It is not so hard to show that the function ψ on R, defined by

ψptq �
#
e�1{t if t ¡ 0

0 if t ¤ 0

belongs to C8pRq; this comes down to showing that all right-hand derivatives of ψ
are 0 at t � 0. Now put φpxq � Cψp1 � |x|2q for x P Rd, where the constant C
is chosen so that

³
Rd φdx � 1. Then φ P C8

c pRdq with support in the closed unit

ball tx P Rd : |x| ¤ 1u. �

If φ is a mollifier and ε ¡ 0, put

φεpxq � ε�dφpε�1xq, x P Rd.

According to Proposition 1.5.7 and Remark 1.5.6, pφεqε¡0 is then an approximate
identity. Notice also that suppφε � Bεp0q.

The following theorem, which is a consequence of Theorem 1.2.5, Remark 1.4.4,
Theorem 1.5.3, and Theorem 1.5.4, summarizes a number of useful properties of
convolutions with mollifiers.

Theorem 1.6.3. Suppose that φ is a mollifier and moreover that f P LppRdq,
where 1 ¤ p ¤ 8. Then the following properties hold :

(i) the convolution φε � f exists a.e. on Rd and belongs to LppRdq;
(ii) φε � f P C8pRdq;

(iii) the support of φε � f is a subset of the closed ε-neighbourhood of supp f ;

(iv) if 1 ¤ p   8, then φε � f Ñ f in LppRdq as εÑ 0;

(v) φε � f Ñ f uniformly as ε Ñ 0 on every compact subset to Rd where f is
continuous.

Notice that if supp f is compact, then φε � f P C8
c pRdq. By an ε-neighbourhood

of a subset E to Rd, we mean the set

tx P Rd : distpx,Eq   εu.
Its closure, i.e., the set obtained by replacing strict inequality with inequality, is
called a closed ε-neighbourhood of E.

1.7. Partitions of Unity

The next proposition shows how the characteristic function of a compact set can
be regularized.

Proposition 1.7.1. Suppose that X � Rd is open and that K is a compact subset
to X. Then there exists a function ψ P C8

c pXq such that 0 ¤ ψ ¤ 1 and ψ � 1
on K.

Proof. Let 3δ be the distance from K to Xc and let χδ be the characteristic
function of a δ-neighbourhood of K. If φ is a mollifier and if ε satisfies 0   ε   δ,
then the function ψ � φε � χδ belongs to C8pXq with support in the closed 2δ-
neighbourhood of K. Moreover, it is easily checked that 0 ¤ ψ ¤ 1 and ψ � 1
on K.
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Corollary 1.7.2. Suppose that X1 ... , Xm � Rd are open and that φ P C8
c pXq,

where X � �m
j�1Xj. Then there exist functions φj P C8

c pXjq, j � 1, ... ,m, such
that

φ �
m̧

j�1

φj . (1.5)

If φ ¥ 0, then φj ¥ 0 for j � 1, ... ,m.

Proof. It is easy to see that there exist compact sets K1, ... ,Km � X such
that Kj � Xj for every j and suppφ � �m

j�1Kj . Now, using Proposition 1.7.1,
choose functions ψj P C8

c pXjq that satisfy 0 ¤ ψj and ψj � 1 on Kj , and put

φ1 � φψ1, φ2 � φψ2p1� ψ1q, ... , φm � φψmp1� ψ1q � ... � p1� ψm�1q.
Then these functions satisfy (1.5) since

m̧

j�1

φj � φ � �φ
m¹
j�1

p1� ψjq � 0.

By combining Proposition 1.7.1 with Corollary 1.7.2, we obtain following result.
The functions φj in the Proposition are called a partition of unity subordinate
to the covering

�m
j�1Xj of K.

Corollary 1.7.3. Suppose that X1 ... , Xm � Rd are open and that K is a compact
subset to

�m
j�1Xj. Then there exist functions φj P C8

c pXjq, j � 1, ... ,m, such

that 0 ¤ φj ¤ 1 for every j and
°m
j�1 φj ¤ 1 with equality on K.

1.8. A Density Theorem

The following density theorem is a consequence of Theorem 1.6.3.

Theorem 1.8.1. If 1 ¤ p   8 and X � Rd is open, then C8
c pXq is dense

in LppXq.
In the proof of the theorem, we use the following lemma.

Lemma 1.8.2. Suppose that X is an open subset to Rd and that f P LppXq,
where 1 ¤ p   8. Then there exists a sequence pfnq8n�1 such that every function fn
has compact support and fn Ñ f in LppXq.
Proof. Put Kn � tx P X : |x| ¤ n and distpx,Xcq ¥ 1{nu and fn � χKnf
for n � 1, 2, ... . Then every set Kn is compact and

}f � fn}pp �
»
X

|f � fn|p dx ÝÑ 0 as nÑ8

due to dominated convergence.

Proof (Theorem 1.8.1). Let f P LppRdq. Given ε ¡ 0, choose a function g with
compact support in X such that }f�g}p   ε. Then extend g to Rd by letting g � 0
outside X. If φ is a mollifier on Rd, then φη � g P C8

c pXq if η is chosen so small
that supppφη � gq � X. Moreover, }g � φη � g}p   ε for a possibly even smaller
value of η. Thus, for a sufficiently small η,

}f � φη � g}p ¤ }f � g}p � }g � φη � g}p   2ε.
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1.9. Periodic Convolutions

There is a corresponding convolution for functions f and g on R with period 2π,
namely

f � gptq � 1

2π

» π
�π

fpt� sqgpsq ds.

In this chapter, we will concentrate on the non-periodic case; let us just mention
that all results remain true in the periodic case.
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Fourier Series

14



Chapter 2

L1-theory for Fourier Series

2.1. Function Spaces

For 1 ¤ p ¤ 8, we let LppTq denote the class of measurable functions f , defined a.e.
on R, such that f has period 2π, i.e.,

fpt� 2πq � fptq for a.e. t P R,

and f P Lpp�π, πq. In the case 1 ¤ p   8, we equip LppTq with the norm

}f}p �
�

1

2π

» π
�π

|fptq|p dt

1{p

,

and for p � 8, we use the norm of L8p�π, πq:
}f}8 � inftC : |fptq| ¤ C a.e.u.

With these norms, LppTq are Banach spaces. Notice that if f belongs to LppTq,
where 1 ¤ p   8, then

1

2π

» π
�π

|fptq| dt ¤
�

1

2π

» π
�π

|fptq|p dt

1{p

,

according to Hölder’s inequality, which shows that LppTq � L1pTq. We similarly
have L8pTq � L1pTq.

For m � 0, 1, ... , we denote by CmpTq the class of m times continuously differ-
entiable functions on R with period 2π, equipped with the norm

}f}CmpTq �
m̧

j�0

}f pjq}8.

It is known that CmpTq is a Banach space which is dense in LppTq for 1 ¤ p   8.

2.2. Fourier Series and Fourier Coefficients

Definition 2.2.1. The Fourier series of a function f P L1pTq is the formal series

8̧

n��8

pfpnqeint, (2.1)

where the Fourier coefficients pfpnq are defined by

pfpnq � 1

2π

» π
�π

fptqe�int dt, n � 0,�1, ... . (2.2)

The series (2.1) is convergent at t P R with value S if

lim
NÑ8

Ņ

n��N

pfpnqeint � S. (2.3)

15
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Since we do not assume that the Fourier series of a function f is absolutely conver-
gent, it is necessary to define in what sense (2.1) should be interpreted. Interpreting
the Fourier series as the limit of symmetric partial sums as in (2.3) gives a satisfac-
tory theory with nice formulae and also allows for cancellation. Let us stress that
we — at this stage — consider the Fourier series of a function as a purely formal
object and that we do not assume that it converges in any sense.

Example 2.2.2. Let f P L1pTq be defined by fptq � t for �π ¤ t   π. Then

pfpnq � 1

2π

» π
�π

te�int dt �
#

0 if n � 0

i
p�1qn
n

if n � 0
.

The Fourier series of f is thus

i
¸
n�0

p�1qn
n

eint � 2
8̧

n�1

p�1qn�1

n
sinnt.

The last identity holds if either side converges because of the way we have defined
convergence for a Fourier series. We will return to this function and its Fourier
series in Example 2.6.3. �

2.3. Trigonometric Series

Definition 2.3.1. A trigonometric series is a formal series of the form

8̧

n��8

cne
int,

where pcnq8n��8 is some sequence of complex numbers.

Every Fourier series is of course a trigonometric series. There are, however, trigono-
metric series that are not Fourier series. We now give an example of a trigonometric
series that later will be shown not to be a Fourier series (see Example 2.10.4). To
prove convergence, we will use a little discrete analysis.

If panq8n�0 is a sequence of complex numbers, we define the forward differ-
ence ∆an by

∆an � an�1 � an, n � 0, 1, ... .

Then the following product rule holds:

∆panbnq � p∆anqbn � an∆bn, n � 0, 1, ...

for all sequences panq8n�1 and pbnq8n�1. Summing both sides in this identity from M
to N , where N ¡M ¥ 1, we obtain the formula for summation by parts:

Ņ

n�M

an∆bn � aN�1bN�1 � aMbM �
Ņ

n�M

p∆anqbn. (2.4)
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The reader should compare this formula with the formula for integration by parts.
Notice also that if we put

An �

$'&'%
n�1̧

k�0

ak for n � 1, 2, ...

0 for n � 0

,

then pAnq8n�1 is a primitive to panq8n�1 in the sense that ∆An � an for n � 0, 1, ... .

Proposition 2.3.2. Suppose that panq8n�0 is a decreasing sequence of real numbers
such that an Ñ 0 as nÑ8. Then the trigonometric series

°8
n�0 ane

int is conver-
gent for t R 2πZ. The series also converges uniformly on every compact subset K
to R such that K � p2kπ, 2pk � 1qπq for some number k P Z.

Proof. For t P R, put Bnptq �
°n�1
k�0 e

kt, n � 1, 2, ... , and B0ptq � 0. Using the
fact that |eit � 1| � 2| sin t

2 |, we see that

|Bnptq| �
����eint � 1

eit � 1

���� ¤ 1

| sin t
2 |

for every t R 2πZ and n � 0, 1, ... . It also follows from (2.4) that

Ņ

n�M

ane
int � aN�1BN�1ptq � aMBM ptq �

Ņ

n�M

p∆anqBnptq.

The first two terms in the right-hand side of this equation tend to 0 as M,N Ñ8.
This also applies to the third term since���� Ņ

n�M

p∆anqBnptq
���� ¤ 1

| sin t
2 |

Ņ

n�M

∆an � 1

| sin t
2 |
paN�1 � aM q.

The statement about uniform convergence on a compact subset K to R such
that K � p2nπ, 2pn� 1qπq holds since | sin t

2 |�1 is bounded on K.

Example 2.3.3. Proposition 2.3.2 shows that the series

8̧

n�2

eint

lnn

is convergent for t R 2πZ. It follows that the imaginary part of this series, namely
the series

8̧

n�2

sinnt

lnn
,

converges for every t P R. We will show in Example 2.10.4 that this series is in fact
not a Fourier series. �
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2.4. Properties of Fourier Coefficients

We next collect some useful properties of the Fourier coefficients of a function. The
mapping, which maps a function f P L1pTq to the sequence p pfpnqq8n��8 is called
the finite Fourier transform. According to the following result, which follows
directly from the definition, this map is linear.

Proposition 2.4.1. Suppose that f, g P L1pTq and α, β P C. Then

{αf � βgpnq � α pfpnq � βpgpnq for every n P Z.

The next proposition shows that the discrete Fourier transform of a convolu-
tion is the product of the transforms of the functions involved. Recall that the
convolution between two functions f and g with period 2π is defined by

f � gptq � 1

2π

» π
�π

fpt� sqgpsq ds,

and that f � g exists a.e. and belongs to L1p�π, πq; see Section 1.9.

Proposition 2.4.2. Suppose that f, g P L1pTq. Then f � g P L1pTq and

zf � gpnq � pfpnqpgpnq for every n P Z. (2.5)

Proof. We prove (2.5) by changing the order of integration and using the fact
that f has period 2π:

zf � gpnq � 1

p2πq2
» π
�π

�» π
�π

fpt� sqgpsq ds


e�int dt

� 1

p2πq2
» π
�π

�» π
�π

fpt� sqe�inpt�sq dt


gpsqe�ins ds

� pfpnqpgpnq.
The first part of the next proposition shows that the finite Fourier transform

maps L1pTq into `8 (the space of bounded sequences of complex numbers), while
the second shows that that the image of L1pTq is a subset of c0 (the space of
sequences of complex numbers that tend to 0 at �8). In Example 2.10.4, we will
show that the last inclusion in fact is proper. We will refer to second property in
the proposition as the Riemann–Lebesgue lemma.

Proposition 2.4.3. Suppose that f P L1pTq. Then the following properties hold :

(i) | pfpnq| ¤ }f}1 for every n P Z;

(ii) pfpnq Ñ 0 as nÑ �8.

Proof. The first property follows directly from the definition of pfpnq. To prove
the second property, notice that

2π pfpnq � » π
�π

fptqe�int dt � �
» π
�π

fptqe�inpt�π{nq dt

� �
» π
�π

fpt� π{nqe�int dt,
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so that

pfpnq � 1

4π

» π
�π

pfptq � fpt� π{nqqe�int dt. (2.6)

It now follows from (2.6) and Lemma 1.4.1 that

| pfpnq| ¤ 1
2}f � τπ{nf}1 ÝÑ 0 as nÑ �8.

Remark 2.4.4. Notice that if f P L1pTq, then

pfpnq � 1

2π

» π
�π

fptq cosnt dt� i

2π

» π
�π

fptq sinnt dt.

This identity together with the Riemann–Lebesgue lemma show that if f is real-
valued, then both integrals in the right-hand side tend to 0 as nÑ �8. By splitting
a complex-valued function into its real and imaginary parts, we see that this is also
true in general.

According to the Riemann–Lebesgue lemma, pfpnq � op1q as nÑ �8 for every

function f P L1pTq. We now show that if f has additional regularity, then pfpnq
will decay faster. The main tool used is integration by parts. The largest class of
functions, for which it is possible to integrate by parts, is the class of absolutely
continuous functions.

Definition 2.4.5. Denote by ACpTq the class of absolutely continuous functions
on R with period 2π.

Proposition 2.4.6. Suppose that f P Ck�1pTq and f pk�1q P ACpTq, where k ¥ 1.
Then yf pkqpnq � pinqk pfpnq, n P Z. (2.7)

Moreover, pfpnq � opn�kq as nÑ �8, i.e., limnÑ�8 n
k pfpnq � 0.

Proof. The identity (2.7) follows by integrating the left-hand side k times by parts
using the fact that f is periodic:

yf pkqpnq � 1

2π

» π
�π

f pkqptqe�int dt

� 1

2π

�
f pk�1qpπqe�inπ � f pk�1qp�πqeinπ�� in

2π

» π
�π

f pk�1qptqe�int dt

� ... � pinqk
2π

» π
�π

fptqe�int dt � pinqk pfpnq.
Since f pkq P L1pTq, this formula together with the Riemann–Lebesgue lemma shows

that pfpnq � opn�kq as nÑ �8.

Remark 2.4.7. The assertions in the proposition of course hold true if f P CkpTq.
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Definition 2.4.8. Suppose that the function f is defined on an interval I � R.
We say that f satisfies a Hölder condition at a point t P I if there exist con-
stants C ¥ 0, α ¡ 0, and δ ¡ 0 such that

|fpsq � fptq| ¤ C|s� t|α for every s P I satisfying |s� t| ¤ δ.

If f satisfies a Hölder condition at every t P I with the same constants C and α,
and if δ can be taken as the length of I, then we say that f is Hölder continuous.

When α � 1, one usually uses the terms Lipschitz condition and Lipschitz
continuous. Notice that if f satisfies a Hölder condition at t, then f is continuous
at t, and if f is Hölder continuous, then f is also uniformly continuous.

Example 2.4.9.

(a) The function fptq �a|t|, t P R, is Hölder continuous on R with exponent 1
2 :��a|s| �

a
|t|�� ¤a|s� t| for s, t P R.

(b) If f is differentiable on an interval I and |f 1ptq| ¤ C for every t P I, then f is
Lipschitz continuous on I; this follows directly from the mean value theorem:

|fpsq � fptq| � |f 1pξq||s� t| ¤ C|s� t| for s, t P I,
where ξ is some point between s and t. �

Definition 2.4.10. Denote by ΛαpTq the class of Hölder continuous functions on R
with period 2π. The norm of f P ΛαpTq is given by

}f}ΛαpTq � sup
s,tPR, s�0

|fpsq � fptq|
|s� t|α .

Notice that if α ¡ 1, then ΛαpTq contains only constants. The next result is a
direct consequence of (2.6).

Corollary 2.4.11. Suppose that f P ΛαpTq. Then there exists a constant C ¥ 0
such that

| pfpnq| ¤ C}f}ΛαpTq|n|�α for every n � 0.

Definition 2.4.12. Denote by BV pTq the class of 2π-periodic functions on R that
are of bounded variation.

Proposition 2.4.13. Suppose that f P BV pTq. Then

| pfpnq| ¤ Vpfq
2π|n| for every n � 0. (2.8)

Proof. The inequality (2.8) follows by integration by parts:

| pfpnq| � ���� 1

2π

» π
�π

fptqe�int dt
���� � ���� 1

2πn

» π
�π

e�int dfptq
���� ¤ Vpfq

2π|n| .



2.5. Partial Sums of Fourier Series 21

Remark 2.4.14. In Proposition 2.4.3, we saw that the Fourier coefficients of a
function f P L1pTq belong to c0, i.e., pfpnq Ñ 0 as nÑ �8. It is natural to ask if

anything more can be said about the rate of convergence of pfpnq. This is, in fact,
not possible; one can show that the Fourier coefficients of a L1-function can tend
to 0 arbitrarily slowly. To be more precise, if pcnq8n�0 is a sequence of nonnegative
numbers, such that limnÑ8 cn � 0, that satisfies the following convexity condition:

cn�1 � cn�1 ¥ 2cn for n ¥ 1,

then there exists a function f P L1pTq such that pfpnq � c|n| for every n P Z.

2.5. Partial Sums of Fourier Series

In the next section, we will prove a number of criteria for pointwise convergence
of Fourier series. As a preparation, we now study the partial sums of the Fourier
series for a function f P L1pTq. Denote by SNf the N -th symmetric partial sum of
the series (2.1), that is

SNfptq �
Ņ

n��N

pfpnqeint, N � 0, 1, ... .

We rewrite SNfptq as a convolution in the following way:

SNfptq �
Ņ

n��N

�
1

2π

» π
�π

fpsqe�ins ds


eint � 1

2π

» π
�π

fpsq
� Ņ

n��N

einpt�sq


ds

� 1

2π

» π
�π

fpsqDN pt� sq ds � 1

2π

» π
�π

fpt� sqDN psq ds (2.9)

� DN � fptq,
where DN is the Dirichlet kernel:

DN ptq �
Ņ

n��N

eint, t P R, N � 0, 1, ... . (2.10)

The next proposition summarizes some of the most important properties of the
Dirichlet kernel.

Proposition 2.5.1. The following properties hold for the Dirichlet kernel DN :

(i) DN ptq �

$'&'%
sinpN � 1

2 qt
sin t

2

for t P R r 2πZ

2N � 1 for t P 2πZ

;

(ii) DN is even;

(iii)
1

2π

» π
�π

DN ptq dt � 1.

Proof. The first property follows by summing the geometric series in (2.10), the
second is obvious, while the third is obtained by integrating both sides of (2.10)
over p�π, πq.
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Let us return to our investigation of the partial sums of a function f P L1pTq.
Since DN is even, we have that

SNfptq � 1

2π

» π
0

pfpt� sq � fpt� sqq sinpN � 1
2 qs

sin s
2

ds. (2.11)

Suppose now that 0   δ   π. Then

SNfptq � 1

π

» δ
0

fpt� sq � fpt� sq
s

sinpN � 1
2 qs ds

� 1

π

» π
δ

fpt� sq � fpt� sq
s

sinpN � 1
2 qs ds (2.12)

� 1

2π

» π
0

pfpt� sq � fpt� sqq
�

1

sin s
2

� 2

s



sinpN � 1

2 qs ds.

The second integral in (2.12) tends to 0 as N Ñ 8 according to the Riemann–
Lebesgue lemma (see Remark 2.4.4) since the integrand belongs to L1pδ, πq. This
also applies to the last integral since the function

gpsq � 1

sin s
2

� 2

s
, 0   s ¤ π,

is bounded (because g is continuous and gpsq Ñ 0 as s Ñ 0).1 We thus have the
following asymptotic representation for SNfptq.
Proposition 2.5.2. Suppose that f P L1pTq and 0   δ   π. Then

SNfptq � 1

π

» δ
0

fpt� sq � fpt� sq
s

sinpN � 1
2 qs ds� εN ptq (2.13)

for every t P R, where εN ptq Ñ 0 as N Ñ8.

Taking f � 1 in (2.13), we obtain that

1 � 2

π

» δ
0

sinpN � 1
2 qs

s
ds� εN , (2.14)

where εN Ñ 0 as N Ñ8. By combining (2.13) with (2.14), we obtain a necessary
and sufficient condition for the convergence of the Fourier series of f at a point t.

Proposition 2.5.3. Suppose that f P L1pTq. Then limNÑ8 SNfptq � S if and
only there exists a number δ ¡ 0 such that

lim
NÑ8

» δ
0

fpt� sq � fpt� sq � 2S

s
sinpN � 1

2 qs ds � 0. (2.15)

Proof. Multiply (2.14) with S and subtract from (2.13):

SNfptq � S � 1

π

» δ
0

fpt� sq � fpt� sq � 2S

s
sinpN � 1

2 qs ds� pεN ptq � SεN q.

Then use the fact that εN ptq � SεN Ñ 0 as N Ñ8.

1One can in fact show that |gpsq| ¤ π2{24 for 0 ¤ s ¤ π.
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2.6. Criteria for Pointwise Convergence

We now establish a number of corollaries to Theorem 2.5.3. The first is Dini’s
classical criterion.

Corollary 2.6.1 (Dini’s Criterion). Suppose that f P L1pTq satisfies a Dini
condition at t P R, meaning that there exist numbers δ ¡ 0 and S P C such that» δ

0

|fpt� sq � fpt� sq � 2S|
s

ds   8.

Then limNÑ8 SNfptq � S.

In particular, if » δ
0

|fpt� sq � fpt� sq � 2fptq|
s

ds   8 (2.16)

for some δ ¡ 0, then limNÑ8 SNfptq � fptq.
Proof (Corollary 2.6.1). The quotient in (2.15) belongs by the assumption to
the space L1p0, δq. The assertion therefore follows from the Riemann–Lebesgue
lemma.

The next corollary is the convergence criterion one usually meets in introductory
courses in Fourier analysis.

Corollary 2.6.2. Suppose that f P L1pTq. If the one-sided limits

fpt�q � lim
sÑ0�

fpt� sq and fpt�q � lim
sÑ0�

fpt� sq

and the one-sided derivatives

f 1pt�q � lim
sÑ0�

fpt� sq � fpt�q
s

and f 1pt�q � lim
sÑ0�

fpt� sq � fpt�q
�s

exist, then

lim
NÑ8

SNfptq � fpt�q � fpt�q
2

. (2.17)

Proof. Let S denote the right-hand side of (2.17). Then the quotient in (2.15) is
bounded for every δ ¡ 0.

Example 2.6.3. If we apply the result in Corollary 2.6.2 to the function in Ex-
ample 2.2.2, we see that

t � 2
8̧

n�1

p�1qn�1

n
sinnt for � π   t   π.

For t � �π, the series equals 0, which is in accordance with the corollary. �

Corollary 2.6.4. Suppose that f P L1pTq. If f satisfies a Hölder condition at a
point t P R, then limNÑ8 SNfptq � fptq.
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Proof. The assumption means that there exist numbers C ¥ 0, α ¡ 0, and δ ¡ 0
such that

|fpt� sq � fptq| ¤ C|s|α for |s|   δ.

This implies that the integrand in (2.16) is bounded by gpsq � 2Csα�1, 0   s   δ,
which is a integrable function on p0, δq.

Example 2.6.5. Let f P CpTq be defined by fptq � a|t| for �π ¤ t ¤ π. Notice
that we cannot apply Corollary 2.6.2 to show that the Fourier series of f is con-
vergent at t � 0 since both one-sided derivatives are infinite. However, f satisfies
a Hölder condition at 0:

|fpsq � fp0q| �
a
|s| � |s� 0|1{2 for � π ¤ s ¤ π,

so the Fourier series of f converges to 0 at t � 0. �

In the proof of our next result, we will use the Si function:

Siptq �
» t

0

sin τ

τ
dτ, 0 ¤ t   8.

The following lemma is often proved using calculus of residues. We will, however,
give a proof that uses techniques from this chapter.

Lemma 2.6.6. There holds limtÑ8 Siptq � π
2 .

Proof. Using integration by parts, we see that if t ¥ 1, then

Siptq �
» 1

0

sin τ

τ
dτ � cos 1� cos t

t
�
» t

1

cos τ

τ2
dτ.

Moreover, since the integral
³8
1
τ�2 cos τ dτ is absolutely convergent, it follows that

the limit limtÑ8 Siptq exists. From (2.14), we also have that» δ
0

sinpN � 1
2 qs

s
ds � π

2
� εN ,

where εN Ñ 0 as N Ñ8. The claim now follows if we change variables in the last
integral and let N Ñ8:

π

2
� lim

NÑ8

» δ
0

sinpN � 1
2 qs

s
ds � lim

NÑ8

» pN� 1
2 qδ

0

sin τ

τ
dτ �

» 8
0

sin τ

τ
dτ.

The following convergence criterion for functions of bounded variation was
proved by C. Jordan in 1881.

Theorem 2.6.7. Suppose that f P L1pTq. If f is of bounded variation on an
interval rt� δ, t� δs for some δ ¡ 0, then

lim
NÑ8

SNfptq � fpt�q � fpt�q
2

.
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Proof. Put F psq � 1
2 pfpt� sq � fpt� sqq for |s| ¤ δ, S � F p0�q, and m � N � 1

2 .
Then » δ

0

fpt� sq � fpt� sq � 2S

s
sinpN � 1

2 qs ds �
» δ

0

pF psq � Sq dSipmsq
� pF pδ�q � SqSipmδq

�
» δ

0

Sipmsq dF psq.

If we now use the fact that Sipmsq Ñ π
2 as mÑ8 and the dominated convergence

theorem, we obtain that

lim
NÑ8

» δ
0

fpt� sq � fpt� sq � 2S

s
sinpN � 1

2 qs ds �
π

2
pF pδ�q � Sq � π

2

» δ
0

dF psq
� 0.

Since every absolutely continuous function is of bounded variation, we have the
following corollary.

Corollary 2.6.8. Suppose that f P ACpTq. Then

lim
NÑ8

SNfptq � fptq for every t P R.

2.7. The Riemann Localization Principle

Although the Fourier coefficients of a function f P L1pTq depend on the global
behaviour of f , the convergence of the Fourier series of f at a point in fact only
depends on the behaviour of f in an arbitrarily small neighbourhood of the point.
This is the content of the following theorem, known as the Riemann localization
principle.

Theorem 2.7.1. Suppose that f, g P L1pTq. If f � g in a neighbourhood of a
point t0 P R, then the Fourier series of f and g either both converge to the same
value or both diverge.

Proof. Suppose that fptq � gptq for |t� t0|   δ. Then, according to (2.13),

SNfpt0q � 1

π

» δ
0

fpt0 � sq � fpt0 � sq
s

sinpN � 1
2 qs ds� op1q

� SNgpt0q � op1q.

2.8. A Uniqueness Theorem for Fourier Series

The following theorem shows that the Fourier coefficients determine a function
completely. Notice that we do not assume that the Fourier series are convergent; if
the series converge to the involved functions, the result is of course obvious.

Theorem 2.8.1. Suppose that f, g P L1pTq and pfpnq � pgpnq for every n P Z. Then
f � g a.e.
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Proof. By the linearity of the Fourier coefficients, we may assume that g � 0.
First put F ptq � ³t

�π
fpτq dτ�C, t P R, where C is chosen so that pF p0q � 0, i.e., C

has to satisfy the equation

1

2π

» π
�π

F ptq dt� C � 0.

The function F has period 2π since

F pt� 2πq � F ptq �
» t�2π

t

fpτq dτ �
» π
�π

fpτq dτ � 2π pfp0q � 0

for every t P R. Then put Gptq � ³t
�π

F psq ds, t P R. Since pF p0q � 0, G also has
period 2π. It now follows from Proposition 2.4.6 that

pinq2 pGpnq � xG2pnq � pfpnq � 0,

so pGpnq � 0 for every n � 0. Corollary 2.6.2 now shows that Gptq � pGp0q for
every t P R. Differentiating this identity twice, we obtain that f � 0 a.e.

2.9. Uniform Convergence of Fourier Series

We next consider uniform convergence of Fourier series. Suppose first that the
Fourier series

°8
n��8

pfpnqeint of a function f P L1pTq is absolutely convergent:

8̧

n��8

| pfpnq|   8.

It then follows from the Weierstrass M-test that the Fourier series converges uni-
formly, and hence that its sum, which we denote gptq, is a continuous function.
Integrating the series termwise, which is allowed because it converges uniformly, we
see that pgpnq � pfpnq for every n P Z. The uniqueness theorem (Theorem 2.8.1)
therefore shows that g � f a.e. In particular, the Fourier series of f converges
to f a.e. The following theorem summarizes these observations.

Theorem 2.9.1. Suppose that f P L1pTq. If the Fourier series of f is absolutely
convergent, then the series converges uniformly to a function belonging to CpTq,
which coincides with f a.e. In particular, the Fourier series of f converges to f a.e.
and everywhere if f is continuous.

For instance, if f P C2pTq, then pfpnq � opn�2q as n Ñ �8 according to Theo-

rem 2.4.6, so
°8
n��8 | pfpnq|   8, and we can apply Theorem 2.9.1 to conclude that

the Fourier series of f converges uniformly to f . It is possible to obtain precise
information about the rate of convergence of the series. Indeed, for every ε ¡ 0,
there exists a number M ¥ 0 such that

| pfpnq| ¤ ε

n2
if |n| ¥M.

Now, if N ¥M , then

|fptq � SNfptq| �
���� ¸
|n|¥N�1

pfpnqeint���� ¤ 2ε
8̧

n�N�1

1

n2
¤
» 8
N

dτ

τ2
� 2ε

N

for every t P R. It follows that }f � SNf}8 � opN�1q as N Ñ8.
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Theorem 2.9.2. If f P C2pTq, then }f � SNf}8 � opN�1q as N Ñ 8. In
particular, the Fourier series of f converges uniformly to f .

The result in the next theorem is much stronger than the previous one. As
expected, the proof is harder.

Theorem 2.9.3. Suppose that f P L1pTq is Hölder continuous on pa, bq. Then the
Fourier series of f converges uniformly to f on every interval pc, dq � pa, bq such
that pc, dq � pa, bq.
In particular, if f is Hölder continuous on R, then the Fourier series of f converges
uniformly to f on R.

Notce that if f is Hölder continuous, then pfpnq � Opn�αq as n Ñ �8 for
some number α ¡ 0 according to Corollary 2.4.11, so just looking at the Fourier
coefficients, it is not at all obvious that the Fourier series should converge uniformly
(or even pointwise). We will use the following definition and lemma.

Definition 2.9.4. A sequence pgnq8n�1 of functions on a set E � R is said to be
equicontinuous if the following condition is satisfied: For every ε ¡ 0 there exists
a δ ¡ 0 such that if s, t P E and |s� t|   δ, then

|gnpsq � gnptq|   ε for every n ¥ 1.

To put it differently, a sequence is equicontinuous if it is uniformly continuous,
where the continuity is uniform both with respect to the variable and the index.

Lemma 2.9.5. Suppose that pgnq8n�1 is a sequence of functions on a compact
set K � R. If gnptq Ñ 0 as n Ñ 8 for every t P K and pgnq8n�1 is equicon-
tinuous, then pgnq8n�1 converges uniformly to 0 on K.

Proof. The proof proceeds by contradiction. Suppose that there exists a num-
ber ε ¡ 0, indices n1   n2   ..., and points t1, t2, ... P K such that

|gnkptkq| ¥ ε for k � 1, 2, ... .

By compactness, there exists a subsequence to ptkq8k�1, which we may assume is
the whole sequence, that converges to some point t0 P K. We then have

ε ¤ |gnkptkq| ¤ |gnkptkq � gnkpt0q| � |gnkpt0q|.
This is a contradiction since the right-hand side can be made arbitrarily small by
choosing k sufficiently large.

Proof (Theorem 2.9.3). The assumption means that

|fptq � fpuq| ¤ C|t� u|α for all t, u P pa, bq.
For N � 1, 2, ... , put gN ptq � SNfptq � fptq, c   t   d. Since we know (Corol-
lary 2.6.4) that gN ptq converges to 0 as N Ñ 8 for c   t   d, it suffices to show
that the sequence pgN q8N�1 is equicontinuous. Let ε ¡ 0 be arbitrary. From (2.11)
and (iii) in Proposition 2.5.1, we have

gN ptq � 1

2π

» π
�π

pfpt� sq � fptqq sin pN � 1
2 qs

sin s
2

ds for c   t   d.
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It follows that if c   t, u   d, then

|gN ptq � gN puq| ¤ 1

2π

»
|s| η

|fpt� sq � fptq| � |fpu� sq � fpuq|
| sin s

2 |
ds

� 1

2π

»
η¤|s| π

|fpt� sq � fpu� sq| � |fptq � fpuq|
| sin s

2 |
ds,

where 0   η   π satisfies η ¤ minpc � a, b � dq. Using this ineqality and the fact
that | sin s| ¥ 2

π |s| for |s| ¤ π
2 , we obtain

|gN ptq � gN puq| ¤ Cηα � Cη�1|t� u|α.

Finally choose η so small that the first term in the right-hand side is less than ε{2
and then δ so small that the second term is less than ε{2 whenever |t� u|   δ.

Corollary 2.9.6. Suppose that f P CpTq with piecewise continuous derivative.
Then the Fourier series of f converges uniformly to f on R.

In Theorem 4.5.1, we will show that the convergence is also absolute.

Proof (Corollary 2.9.6). It follows from the assumption, that there exist points

�π � t1   t2   ...   tn � π

such that f is continuously differentiable on each interval rti, ti�1s, 1 � 1, 2, ... , n�1.
But then f is Lipschitz continuous on every interval rti, ti�1s. This implies that f
is Lipschitz continuous on r�π, πs and therefore on R.

2.10. Termwise integration of Fourier Series

A quite surprising result is the fact that the Fourier series of a L1-function may
be integrated termwise and the resulting series is pointwise convergent everywhere
(even uniformly convergent), irrespective if the original series is convergent or not.
Suppose that f P L1pTq. Then the function

F ptq �
» t
�π

pfpτq � pfp0qq dτ, t P R,

is absolutey continuous and satisfies F 1 � f a.e. Moreover, F has period 2π:

F pt� 2πq � F ptq �
» t�2π

t

pfpτq � pfp0qq dτ � » π
�π

fpτq dτ � 2π pfp0q � 0

for every t P R. According to Proposition 2.4.6, pfpnq � in pF pnq for every n � 0. It
now follows from Corollary 2.6.8 that

F ptq � pF p0q � ¸
n�0

pfpnq
in

eint for every t P R. (2.18)
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In Theorem 4.5.1, we will show that the series in (2.18) actually converges uniformly
on R. Now, if �8   s   t   8, then

F ptq � F psq �
¸
n�0

pfpnq
in

peint � einsq �
¸
n�0

pfpnq » t
s

einτ dτ,

so that» t
s

fpτq dτ � pfp0qpt� sq �
¸
n�0

pfpnq » t
s

einτ dτ �
8̧

n��8

pfpnq » t
s

einτ dτ.

Theorem 2.10.1. Suppose that f P L1pTq. Then» t
s

fpτq dτ �
8̧

n��8

pfpnq » t
s

einτ dτ for �8   s   t   8. (2.19)

Formally, the equation (2.19) may be written» t
s

� 8̧

n��8

pfpnqeinτ
 dτ � 8̧

n��8

pfpnq » t
s

einτ dτ.

Notice also that it follows from (2.19) that» t
s

fpτq dτ � lim
NÑ8

» t
s

SNfpτq dτ.

This fact, however, does not imply that SNf Ñ f in L1pTq.
Example 2.10.2. From Example 2.6.3, we know that

t � 2
8̧

n�1

p�1qn�1

n
sinnt for � π   t   π.

Integrating this identity from 0 to t, we obtain that

t2

2
� 2

8̧

n�1

p�1qn�1

n2
� 2

8̧

n�1

p�1qn
n2

cosnt for � π ¤ t ¤ π.

To evaluate the first series in the right-hand side, we integrate both sides once more,
this time from �π to π:

π3

3
� 4π

8̧

n�1

p�1qn�1

n2
, which shows that

8̧

n�1

p�1qn�1

n2
� π2

12
.

We have thus shown that

t2 � π2

3
� 4

8̧

n�1

p�1qn
n2

cosnt for � π ¤ t ¤ π.

Putting t � π in this identity, we obtain that

8̧

n�1

1

n2
� π2

6
. �
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The following corollary is a consequence to (2.18).

Corollary 2.10.3. Suppose that f P L1pTq. Then the series¸
n�0

pfpnq
n

eint

is convergent for every t P R.

Example 2.10.4. In Example 2.3.3, we saw that the trigonometric series

8̧

n�2

sinnt

lnn
(2.20)

is convergent for every t P R. However, since

8̧

n�2

1

n lnn
� 8,

this is not the Fourier series of any function belonging to L1pTq. It is not so hard to
show that the function, defined by (2.20), in fact does not belong to L1pTq. Notice
that this also shows that the image of L1pTq under the finite Fourier transform is
not the whole of c0. �

2.11. Divergence of Fourier Series

Let us end this chapter with a few comments and results about divergence of Fourier
series. The first convergence criterion for Fourier series was proved by L. Dirichlet
in 1829. Dirichlet and many others in this period seem to have believed that
the Fourier series of a continuous function converges to the function everywhere.
In 1873, P. du Bois-Reymond however proved that there exists a continuous function
whose Fourier series diverges on a dense subset to R. Dirichlet’s construction was
later simplified by L. Fejér in 1909. In 1923, A. Kolmogorov proved that there
even exists a L1-function (although not continuous) whose Fourier series diverges
everywhere. It was therefore not unreasonable to expect that there could exist a
continuous function with an everywhere divergent Fourier series.

On the other hand, N. Lusin conjectured in 1915 that the Fourier series of
a L2-function and, in particular, of a continuous function, converges a.e. Lusin’s
conjecture was proved by L. Carleson as late as 1966. According to Carleson’s
theorem, the Fourier series of a continuous thus converges a.e. Carlesons result
was generalized in 1968 by R. A. Hunt to Lp for 1   p   8, and a new proof
of Carleson’s theorem was given by C. Fefferman in 1973. In this connection, we
should mention that J.-P. Kahane and Y. Katznelson in 1966 showed that, for any
set E � R with measure 0, there exists a continuous function whose Fourier series
diverges at every point of E.

We will here prove that there exists a continuous function with the the property
that the Fourier series of the function diverges at one point. Although the existence
of such a function can be proved constructively, we prefer to use a “soft” argument,
which is due to Kolmogorov, based on the Banach–Steinhaus theorem which we
state without a proof.
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Theorem 2.11.1 (Banach–Steinhaus). Suppose that X is a Banach space, Y
is a normed linear space, and pTnq8n�1 is a sequence of bounded, linear operators
from X to Y . Then either there exists a constant C such that

}Tn} ¤ C for every n ¥ 1

or
sup
n¥1

}Tnx} � 8

for every x that belongs to a dense Gδ set in X.

Theorem 2.11.2. There exists a function in CpTq whose Fourier series diverges
at a point.

In the proof, we will use the following notation: For f P CpTq, put

S�fptq � sup
N¥1

|SNfptq|, t P R.

Since every convergent sequence is bounded, it is obvious that the Fourier series
of f diverges at t if S�fptq � 8.2 We also need to know something about the norms
of the Dirichlet kernels. Put LN � }DN }1 for N � 0, 1, ... . The numbers LN are
known as the Lebesgue constants.

Lemma 2.11.3. The Lebesgue constants have the following asymptotics:

LN � 4

π2
lnN �Op1q as N Ñ8. (2.21)

The asymptotic behavior of the Lebesgue constants was first investigated by L. Fejér
in 1910. In the proof, presented below, we use a technique due to L. Lorch (1954).

Proof. Using the fact that psin s
2 q�1 � 2s�1 is bounded for 0   s ¤ π, we see that

LN � 1

π

» π
0

| sin pN � 1
2 qs|

sin s
2

ds

� 2

π

» π
0

| sin pN � 1
2 qs|

s
ds� 1

π

» π
0

| sin pN � 1
2 qs|
� 1

sin s
2

� 2

s

	
ds

� 2

π

» π
0

| sin pN � 1
2 qs|

s
ds�Op1q.

We then change variables in the last integral and split it into two parts:

LN � 2

π

» pN� 1
2 qπ

0

| sin s|
s

ds�Op1q

� 2

π

» pN� 1
2 qπ

1

| sin s|
s

ds� 2

π

» 1

0

| sin s|
s

ds�Op1q

� 2

π

» pN� 1
2 qπ

1

| sin s|
s

ds�Op1q.
2The converse is in fact also true: If the Fourier series of f diverges at t, then S�fptq � 8.
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Let m � 1
π

³π
0
| sin t| dt � 2

π be the mean-value of t ÞÑ | sin t|, t P R, over a period.
Then, according to the second mean-value theorem of integral calculus,» pN� 1

2 qπ

1

| sin s| �m

s
ds � 1

π

» η
1

p| sin s| �mq ds

for some number η such that 1 ¤ η ¤ pN � 1
2 qπ. The integral in the right member

is easily seen to be bounded with respect to N . Hence,

LN � 2

π

» pN� 1
2 qπ

1

m

s
ds� 2

π

» pN� 1
2 qπ

1

| sin s| �m

s
ds�Op1q

� 4

π2
ln pN � 1

2 qπ �Op1q � 4

π2
lnN �Op1q.

Proof (Theorem 2.11.2). For N � 1, 2, ... , define the functional TN : CpTq Ñ C
by TNf � SNfp0q for f P CpTq. It is not so hard to show that }TN } � }DN }1. So,
according to Lemma 2.11.3, supN¥1 }TN } � 8. It thus follows from the Banach–
Steinhaus theorem that S�fp0q � 8 for every f that belongs to a dense Gδ set
in CpTq. For any of these functions f , the Fourier series diverges at 0.

The result in Theorem 2.11.2 can be strengthened considerably. There is of
course nothing special with the point t � 0 in the proof, so for every t P R,
there exists a dense Gδ set Et � CpTq such that S�fptq � 8 for every f P Et.
Let ptiq8i�1 be a dense subset to R and put E � �8

i�1Eti . Then, according to
Baire’s theorem, E is also a dense Gδ set and has the property that for every f P Et,

S�fptiq � 8 for all points ti.

Notice that the set tt P R : S�fptq � 8u is Gδ in R for every continuous function f
since S�f is lower semicontinuous (being the supremum of a sequence of continuous
functions). Let us summarize:

Theorem 2.11.4. There exists a a dense Gδ set E � CpTq such that, for every
function f P E, the set tt P R : S�fptq � 8u is a dense Gδ set in R.

We can rephrase the theorem in the following way: There exists a dense subset E
to CpTq, which is Gδ and has the property that for any function in E, the Fourier
series diverges on a dense Gδ set. Let us mention that it follows from Baire’s
theorem that E is even uncountable.

We end this section by briefly returning to Theorem 2.8.1. This theorem may
also be formulated by saying that the finite Fourier transform, which maps L1pTq
into c0, is injective. As we saw Example 2.10.4, there are sequences in c0 that
are not Fourier coefficients of any function in L1pTq, i.e., the Fourier transform is
not surjective. We shall now prove this by an abstract argument. Suppose that
the Fourier transform were surjective and hence bijective. Then, according to the
inverse mapping theorem, the inverse of the Fourier transform would be bounded,
so there would exist a constant C ¥ 0 such that

}f}1 ¤ C} pf}8 for every f P L1pTq.
But if f � DN , then the right-hand side is 1 since the Fourier coefficients of DN

are either 1 or 0, while the left-hand side tends to 8 as N Ñ 8, which then gives
a contradiction.
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Hilbert Spaces

Let X denote a complex vector space.

3.1. Inner Product Spaces, Hilbert Spaces

Inner Products

Definition 3.1.1. A function p � , � q : X �X Ñ C is called an inner product if

(i) the function p � , zq : X Ñ C is linear for every z P X, that is,

pαx� βy, zq � αpx, zq � βpy, zq for all x, y P X, α, β P C;

(ii) px, yq � py, xq for all x, y P X;

(iii) px, xq ¥ 0 for every x P X;

(iv) px, xq � 0 if and only if x � 0.

Equipped with an inner product, X is called an inner product space.

It follows from (i) and (ii) that

px, y � zq � px, yq � px, zq and px, αyq � αpx, yq
for x, y, z P X and α P C. This means that p � , � q is sesquilinear (linear in the
first argument, but only additive in the second).

For the rest of this chapter, X will always denote an inner product space.

Example 3.1.2. Let us give a few examples of inner product spaces:

(a) The space Cd with

px, yq �
ḑ

j�1

xjyj , x, y P Cd;

(b) The space `2 with

pc, dq �
8̧

n��8

cndn, c, d P `2;

the series is absolutely convergent since 2|cndn| ¤ |cn|2 � |dn|2 for all n;

(c) The space L2pTq with

pf, gq � 1

2π

» π
�π

fptqgptq dt, f, g P L2pTq;

this definition makes sense since fg is measurable and belongs to L1pTq be-
cause 2|fg| ¤ |f |2 � |g|2, where |f |2 � |g|2 P L1pTq.

(d) The space L2pRdq with

pf, gq �
»
Rd

fpxqgpxq dx, f, g P L2pRdq.

33
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The Cauchy–Schwarz Inequality

Theorem 3.1.3 (The Cauchy–Schwarz Inequality). For x, y P X,

|px, yq| ¤
a
px, xq

a
py, yq.

Equality holds if and only if x and y are linearly dependent.

Proof. The inequality obviously holds true if y � 0. If y � 0, put e � ty,
where t�1 �apy, yq. Then pe, eq � 1, and

0 ¤ px� px, eqe, x� px, eqeq � px, xq � |px, eq|2 � px, xq � |px, yq|2
py, yq ,

from which the Cauchy–Schwarz inequality follows directly. Equality holds if and
only if x � px, eqe � x � t2px, yqy � 0, which means that x and y are linearly
dependent.

Example 3.1.4. The Cauchy–Schwarz inequality for L2pTq is���� 1

2π

» π
�π

fptqgptq dt
���� ¤ � 1

2π

» π
�π

|fptq|2 dt

1{2�

1

2π

» π
�π

|gptq|2 dt

1{2

for f, g P L2pTq. Notice that this inequality coincides with Hölder’s inequality. �

The Norm on an Inner Product Space

Definition 3.1.5. For x P X, we define }x} �apx, xq.
With this notation, the Cauchy–Schwarz inequality may be written

|px, yq| ¤ }x}}y}, x, y P X.
Proposition 3.1.6. The function } � } is a norm on X, that is,

(i) }x} ¥ 0 for every x P X and }x} � 0 if and only if x � 0;

(ii) }αx} � |α|}x} for every α P C and every x P X;

(iii) }x� y} ¤ }x} � }y} for all x, y P X.

The third property is called the triangle inequality.

Proof. It is only the triangle inequality that really requires a proof. We deduce
this from the Cauchy–Schwarz inequality in the following way:

}x� y}2 � }x}2 � 2 Repx, yq � }y}2 ¤ }x}2 � 2|px, yq| � }y}2
¤ }x}2 � 2}x}}y} � }y}2 � p}x} � }y}q2.

Example 3.1.7. The norm of a function f P L2pTq is

}f}2 �
�

1

2π

» π
�π

|fptq|2 dt

1{2

�
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The next simple, but useful corollary follows directly from the Cauchy–Schwarz
inequality.

Corollary 3.1.8. The function p � , zq : X Ñ C is Lipschitz continuous for every
fixed z P X:

|px, zq � py, zq| ¤ }x� y}}z} for all x, y P X.

In vector algebra, the following identity is known as the parallelogram law.

Proposition 3.1.9. For x, y P X, }x� y}2 � }x� y}2 � 2p}x}2 � }y}2q.

Proof. Expand the left-hand side as in the proof of Proposition 3.1.6.

Hilbert Spaces

With the norm, there comes a notion of convergence.

Definition 3.1.10.

(a) A sequence pxnq8n�1 in X is said to be convergent if there exists a vector x P X
such that }x� xn} Ñ 0 as nÑ8.

(b) A sequence pxnq8n�1 is said to be a Cauchy sequence if }xm � xn} Ñ 0
as m,nÑ8.

(c) The space X is said to be complete if every Cauchy sequence is convergent.

(d) A Hilbert space is a complete inner product space.

Example 3.1.11. One can show that the spaces in Example 3.1.2 are all Hilbert
spaces. �

3.2. Orthogonality

Orthogonality, Orthonormal Sets

Definition 3.2.1. Two vectors x, y P X are said to be orthogonal if px, yq � 0.
This relation is denoted x K y.

The next proposition generalizes Pythagoras’ Theorem in classical geometry.

Proposition 3.2.2 (Pythagoras’ Theorem). If x1, ... , xN P X are pairwise or-
thogonal, that is, pxm, xnq � 0 if m � n, then���� Ņ

n�1

xn

����2 � Ņ

n�1

}xn}2.

Proof. Just expand the left-hand side in the identity using the properties of the
inner product and the fact that the vectors are pairwise orthogonal:���� Ņ

n�1

xn

����2 � � Ņ

m�1

xm,
Ņ

n�1

xn



�

Ņ

m,n�1

pxm, xnq �
Ņ

n�1

pxn, xnq �
Ņ

n�1

}xn}2.
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Orthonormal Sets

Definition 3.2.3. A subset E to X is called orthonormal if the elements in E are
pairwise orthogonal and have all norm 1. A sequence penq8n�1 � X is orthonormal
if the corresponding set E � te1, e2, ...u is orthonormal.

Example 3.2.4. The sequence peintq8n��8 � L2pTq is orthonormal:

peimt, eintq � 1

2π

» π
�π

eipm�nqt dt �
"

1 if m � n

0 if m � n
. �

Lemma 3.2.5. Suppose that H is a Hilbert space and that penq8n�1 is a orthonor-
mal sequence in H. Let pcnq8n�1 be a sequence of complex numbers. Then the
series

°8
n�1 cnen is convergent in H if and only if

°8
n�1 |cn|2   8.

We remark that the convergence of the series
°8
n�1 cnen means that there exists

an element x P H such that }x�°N
n�1 cnen} Ñ 0 as N Ñ8.

Proof. According to Pythagoras’ theorem (Theorem 3.2.2),���� M̧

n�N

cnen

����2 � M̧

n�N

|en|2

for M ¡ N . It follows that the series
°8
n�1 cnen is convergent in H if and only

if
°8
n�1 |cn|2 is convergent.

Example 3.2.6. If the sequence pcnq8n��8 � C satisfies
°8
n��8 |cn|2   8, then

the function fptq � °8
n��8 cne

int, t P R, belongs to L2pTq. Compare this with

the following result: If we assume that
°8
n��8 |cn|   8 (a stronger assumption),

then it follows from Weierstrass’ theorem that f is continuous on R. �

3.3. Least Distance, Orthogonal Projections

Distance to a Subspace

In this and the following subsection, H will denote a Hilbert space. A subspace Y
to H is said to be closed if Y contains all its limit points, i.e., if pynq8n�1 is a
sequence in H and yn Ñ y P H, then, in fact, y P Y .

Theorem 3.3.1. Let Y be a closed subspace to H. Then, for every x P H, there
exists a unique vector y P Y such that

}x� y} � inf
zPY

}x� z}.

Proof. First choose pynq8n�1 � Y such that }x� yn} Ñ d � infzPY }x� z}. By the
parallelogram law (Theorem 3.1.9),

4
���x� ym � yn

2

���2 � }ym � yn}2 � 2p}x� ym}2 � }x� yn}2q.
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Notice that the first term in the left-hand side is at least 4d2. On the other hand,
the right-hand side tends to 4d2, so it follows that }ym � yn} Ñ 0. If y denotes the
limit of the sequence pynq8n�1, then y P Y since Y is closed. Moreover, since

d ¤ }x� y} ¤ }x� yn} � }yn � y} ÝÑ d as nÑ8,
it follows that }x � y} � d. To prove that y is unique, suppose that }x � y1} � d
for some y1 P Y . Then, as above,���x� y � y1

2

���2 � }y � y1}2 � 2p}x� y}2 � }x� y1}2q.

Since the first term in the left member is at least 4d2 and the right member is
exactly 4d2, it follows that }y � y1} � 0, so y � y1.

Theorem 3.3.2. Suppose that Y is a closed subspace to H. Then

}x� y} � inf
zPY

}x� z} if and only if px� y, zq � 0 for every z P Y.

Proof. Suppose first that }x � y} � d � infzPY }x � z}. Given z P Y , choose a
scalar λ P C such that px� y, λzq � �|px� y, zq|. Then

d2 ¤ }px� yq � tλz}2 � }x� y}2 � 2tRepx� y, λzq � t2|λ|2}z}2
� d2 � 2t|px� y, zq| � t2|λ|2}z}2

for every t P R. This implies that 2|px � y, zq| ¤ t|λ|2}z}2 for every t ¥ 0, from
which it follows that px� y, zq � 0.

The converse is easier; in fact, by Pythagoras’ theorem (Theorem 3.2.2),

}x� z}2 � }px� yq � py � zq}2 � }x� y}2 � }y � z}2 ¥ }x� y}2

for every z P Y since x� y and y � z are orthogonal.

Orthogonal Projections

Definition 3.3.3. Let Y be a closed subspace to H and let x P H. The unique
vector y P Y , that satisfies px� y, zq � 0 for every z P Y , is called the orthogonal
projection of x on Y . We will denote this vector by PY x.

Example 3.3.4. Suppose that te1, ... , eNu � H is orthonormal and let Y be the
linear span of te1, ... , eNu. Then the orthogonal projection of a vector x P H on Y

is PY x �
°N
n�1px, enqen since x� PY x K em for m � 1, 2, ... , N :

px� PY x, emq � px, emq �
Ņ

n�1

px, enqpen, emq � px, emq � px, emq � 0. �

Example 3.3.5. The Fourier coefficients of f P L2pTq are defined by

f̂pnq � 1

2π

» π
�π

fptqe�int dt, n � 0,�1,�2, ... .

Notice that f̂pnq � pf, enq, where enptq � eint, t P R. It follows that the partial sum°N
n��N f̂pnqeint to the Fourier series of f is nothing but the orthogonal projection

of f on the linear span of the functions eiNt, ... , e�iNt. �
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3.4. Orthonormal Bases

The Finite-Dimensional Case

Suppose that dimpXq � d   8 and that te1, ... , edu is an orthonormal basis for X.
Then every vector x P X can be written

x �
ḑ

n�1

xnen.

Taking the inner product of both sides in this identity with en, n � 1, ... , d, we
find that xn � px, enq, so that

x �
ḑ

n�1

px, enqen.

It now follows from Pythagoras’ theorem that

}x}2 �
ḑ

n�1

|px, enq|2.

We shall next investigate to what extent these observations can be generalized to
infinite-dimensional spaces.

Bessel’s Inequality

Theorem 3.4.1 (Bessel’s Inequality). If penq8n�1 � X is orthonormal, then,
for every x P X,

8̧

n�1

|px, enq|2 ¤ }x}2.

Proof. According to Example 3.3.4, the orthogonal projection of x on the sub-
space spante1, ... , eNu to X is the vector

°N
n�1px, enqen. Two applications of Pytha-

goras’ theorem now shows that

}x}2 �
����x� Ņ

n�1

px, enqen
����2 � ���� Ņ

n�1

px, enqen
����2

�
����x� Ņ

n�1

px, enqen
����2 � Ņ

n�1

|px, enq|2 ¥
Ņ

n�1

|px, enq|2.

Since this inequality holds for any N , Bessel’s inequality follows.

Example 3.4.2. For L2pTq, Bessel’s inequality takes the form

8̧

n��8

|f̂pnq|2 ¤ 1

2π

» π
�π

|fptq|2 dt, f P L2pTq. �

Combining Bessels inequality with Lemma 3.2.5, we obtain the following result.

Corollary 3.4.3. If penq8n�1 � X is orthonormal, then the series
°8
n�1px, enqen

is convergent for every x P X.



3.4. Orthonormal Bases 39

Orthonormal Bases, Parseval’s Identity

Let H be a Hilbert space.

Definition 3.4.4. An orthonormal sequence penq8n�1 � H is said to be an or-
thonormal basis for H if every x P H can be written

x �
8̧

n�1

px, enqen.

Theorem 3.4.5. For an orthonormal sequence penq8n�1 � H, the following condi-
tions are equivalent.

(i) The sequence penq8n�1 � H is an orthonormal basis for H.

(ii) For every x P H, }x}2 � °8
n�1 |px, enq|2.

(iii) If px, enq � 0 for every n, then x � 0.

The identity in (ii) is known as Parseval’s identity.

Proof. We first assume that (i) holds true and deduce (ii). As in the proof of
Bessel’s inequality,

}x}2 �
Ņ

n�1

|px, enq|2 �
����x� Ņ

n�1

px, enqen
����2.

The right-hand side tends to 0 as N Ñ8, so Parseval’s identity holds.
The fact that (ii) implies (iii) is self-evident.
Finally, suppose that (iii) holds. Then, according to Corollary 3.4.3, the se-

ries
°8
n�1px, enqen is convergent; denote the sum by y. Since

px� y, emq � px, emq � px, emq � 0

for every m, we have that y � x, and hence that x � °8
n�1px, enqen.



Chapter 4

L2-theory for Fourier Series

In the present chapter, we first establish Parseval’s identity for L2pTq. A conse-
quence is the fact that peintq8n��8 is an orthonormal basis for L2pTq, another is a
for L2pTq. We also prove the so called Riesz–Fischer theorem and a result about
uniform convergence of Fourier series.

4.1. The Space L2pTq

Let us summarize the definitions and results in Chapter 3 that concerned Fourier
series.

(a) In Example 3.1.2, we defined an inner product for L2pTq:

pf, gq � 1

2π

» π
�π

fptqgptq dt, f, g P L2pTq.

(b) With this inner product, L2pTq becomes a Hilbert space.

(c) We also saw that peintq8n��8 is an orthonormal sequence in L2pTq in Exam-
ple 3.2.4.

(d) Then, using the fact that pfpnq � pfptq, eintq for n P Z and f P L2pTq, we
showed in Example 3.4.2 that Bessel’s inequality for L2pTq has the form

8̧

�8

| pfpnq|2 ¤ 1

2π

» π
�π

|fptq|2 dt for f P L2pTq. (4.1)

In particular, the sequence p pfpnqq8n��8 of Fourier coefficients of f P L2pTq
belongs to `2.

Notice that Bessel’s inequality implies that pfpnq Ñ 0 as n Ñ �8 for every func-
tion f P L2pTq; this is a weaker form of the Riemann–Lebesgue lemma (Proposi-
tion 2.4.3).

4.2. Parseval’s Identity

Theorem 4.2.1 (Parseval’s Identity). Suppose that f, g P L2pTq. Then

1

2π

» π
�π

fptqgptq dt �
8̧

n��8

pfpnqpgpnq.
Taking g � f , where f P L2pTq, in Parseval’s identity, we see that

1

2π

» π
�π

|fptq|2 dt �
8̧

n��8

| pfpnq|2.
Proof. We first assume that f belongs to C2pTq. Then pfpnq � opn�2q as nÑ �8
according to Theorem 2.4.6, which implies that the Fourier series of f is uniformly

40
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convergent. Using this fact together with Corollary 2.6.2, we obtain that» π
�π

fptqgptq dt �
» π
�π

� 8̧

n��8

pfpnqeint
 gptq dt � 8̧

n��8

pfpnq » π
�π

gptqeint dt

� 2π
8̧

n��8

pfpnqpgpnq.
In the general case, we choose as a sequence pfkq8k��8 of functions in C2pTq such
that }f � fk}2 Ñ 0 as k Ñ8. Bessel’s inequality (4.1) then shows that

} pf � pfk}`2 ¤ }f � fk}2,

so pfk Ñ pf in `2. We finally obtain from the first case that

1

2π

» π
�π

fptqgptq dt � lim
kÑ8

1

2π

» π
�π

fkptqgptq dt � lim
kÑ8

8̧

n��8

pfkpnqpgpnq
�

8̧

n��8

pfpnqpgpnq.
Example 4.2.2. In Example 2.2.2, we showed that the Fourier series of the func-
tion f P L2pTq, defined by fptq � t, �π ¤ t   π, is

i
¸
n�0

p�1qn
n

eint.

Parseval’s inequality now shows that

¸
n�0

1

n2
� 1

2π

» π
�π

t2 dt, which implies that
8̧

n�1

1

n2
� π2

6
. �

The next two results are consequences of Theorem 3.4.5. Notice that the second
corollary is a special case of the more general Theorem 2.8.1.

Corollary 4.2.3. The sequence peintq8n��8 is an orthonormal basis for L2pTq.

The statement means that if f P L2pTq, then fptq � °8
n��8

pfpnqeint in the sense
of L2pTq, that is,

}f � SNf}2 Ñ 0 as N Ñ8.
Corollary 4.2.4. Suppose that f, g P L2pTq and pfpnq � pgpnq for every n P Z.
Then f � g a.e.

4.3. The Riesz–Fischer Theorem

As noticed in Section 4.1, the finite Fourier transform F , defined by

Ffpnq � pfpnq, n P Z, for f P L2pTq,
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maps L2pTq into `2. This mapping is obviously linear. According to Parseval’s
identity, it is also an isometry:

}Ff}`2 � } pf}`2 � }f}2 for f P L2pTq,

and according to the uniqueness theorem, it is injective (this, of course, also follows
from the fact that every linear isometry is injective). To show that F is surjective,
we assume that pcnq8n��8 is an arbitrary sequence in `2. Lemma 3.2.5 then shows
that the function fptq � °8

n��8 cne
int belongs to L2pTq. Moreover, since the inner

product is continuous according to Corollary 3.1.8,

pfpmq � pfptq, eimtq �
8̧

n��8

cnpeint, eimtq � cm for every m P Z,

which shows that Ffpnq � cn for every n P Z. These observations are summarized
in the following theorem.

Theorem 4.3.1 (The Riesz–Fischer Theorem). The space L2pTq is isometri-
cally isomorphic to `2.

The isomorphism in the theorem is thus the finite Fourier transform.

4.4. Characterization of Function Spaces

In some cases, function spaces can be characterized in terms of Fourier coefficients.
For instance, a function f P L1pTq belongs to L2pTq if and only if

8̧

n��8

| pfpnq|2   8.

The necessity of this condition follows from Bessel’s inequality and the sufficiency
from Riesz–Fischer’s Theorem in conjunction with the uniqueness theorem.

Now suppose that f P ACpTq with f 1 P L2pTq. According to Proposition 2.4.6,

we have pf 1pnq � in pfpnq for every n P Z, so Parseval’s identity shows that

8̧

n��8

n2| pfpnq|2 � }f 1}2   8.

We shall now adress the converse.

Theorem 4.4.1. Suppose that f P L1pTq satisfies

8̧

n��8

n2| pfpnq|2   8. (4.2)

Then there exists a function g P ACpTq with g1 P L2pTq such that f � g a.e.

Thus, if f P L1pTq, then f P ACpTq with f 1 P L2pTq if and only if (4.2) holds (in
the sufficiency part, we assume that f is redefined on a set of measure 0).
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Proof. Using Riesz–Fischer’s theorem, it follows from (4.2) that there exists a

function h P L2pTq such that phpnq � in pfpnq for every n P Z. If

Hptq �
» t
�π

gpτq dτ, t P R,

then H has period 2π since php0q � 0. Moreover, H is absolutely continuous
with H 1 � h a.e. We also have

in pfpnq � phpnq � xH 1pnq � in pHpnq for every n P Z,

so pHpnq � pfpnq for n � 0. The uniqueness theorem (Theorem 2.8.1) now shows

that H � f � pHp0q � pfp0q a.e. Finally, put g � H � p pHp0q � pfp0qq.
4.5. More About Uniform Convergence

In Theorem 2.9.2, we proved that if f P C2pTq, then the Fourier series for f is
uniformly and absolutely convergent. We shall now show that this also holds under
the weaker assumption that f P ACpTq with f 1 P L2pTq. This of course implies
that the same conclusion holds if f P C1pTq.
Theorem 4.5.1. Suppose that f P ACpTq with f 1 P L2pTq. Then the Fourier
series of f is absolutely convergent. Moreover,

}f � SNf}8 ¤
c

2

N
}f 1}2. (4.3)

In particular, the Fourier series of f converges uniformly to f .

Proof. Using the identity in pfpnq � pf 1pnq together with the Cauchy–Schwarz in-
equality for `2 and Corollary 2.6.8, we obtain that

}f � SNf}8 ¤
¸

|n|¥N�1

| pfpnq| � ¸
|n|¥N�1

1

|n| |in
pfpnq|

¤
� ¸
|n|¥N�1

1

n2


1{2� ¸
|n|¥N�1

|pf 1pnq|2
1{2

.

The inequality (4.3) now follows from Bessel’s inequality (4.1) and the fact that

8̧

n�N�1

1

n2
¤
» 8
N

dt

t2
� 1

N
.
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Summation of Fourier Series

5.1. Cesàro Convergence

Given a sequence panq8n�0 of complex numbers, we denote by σN the arithmetic
mean of the first N � 1 terms in the sequence, i.e.,

σN � a0 � a1 � ...� aN
N � 1

, N � 0, 1, ... .

Definition 5.1.1. Let panq8n�0 be a sequence of complex numbers.

(a) The sequence panq8n�0 is said to be Cesàro convergent with (Cesàro) limit a
if σN Ñ a as N Ñ8.

(b) The series
°8
k�0 ak is said to be Cesàro summable with (Cesàro) sum S if

the sequence of partial sums Sn �
°n
k�0 ak, n � 0, 1, ... , is Cesàro convergent

with limit S.

Sequences and series, that are divergent in the usual sense, may in fact be convergent
in this new sense as the following examples show.

Example 5.1.2. The sequence 1, 0, 1, 0, ... is Cesàro convergent with limit 1
2 . In-

deed,

σ2k�1 � 1

2
and σ2k � k � 1

2k � 1
for k � 0, 1, ... . �

Example 5.1.3. The series 1� 1� 1� 1� ... is Cesàro summable with sum 1
2 . In

fact, the sequence of partial sum is S0 � 1, S1 � 0, S2 � 1, S3 � 0, ... , which has
Cesàro limit 1

2 according to the previous example. �

The following proposition shows that if a sequence is convergent, then it is also
Cesàro convergent with the same limit. The converse is false according to Exam-
ple 5.1.2.

Proposition 5.1.4. Suppose that panq8n�0 is a convergent sequence of complex
numbers with limit a. Then limNÑ8 σN � a.

Proof. Let ε ¡ 0 be arbitrary and choose M so large that |a� an|   ε if n ¡ M .
For N ¡M , we then have

|a� σN | � 1

N � 1

���� Ņ
n�0

pa� anq
���� ¤ 1

N � 1

���� M̧
n�0

pa� anq
����� N � pM � 1q

N � 1
ε.

The second term in the right-hand side of this inequality is less than ε. The claim
thus follows if we choose N so large that the first term is also less than ε.

44
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5.2. The Fejér Kernel

We next consider Cesàro summability of Fourier series. The Cesàro means or Fejér
means σNf for the Fourier series of a function f P L1pTq are defined by

σNfptq � 1

N � 1

Ņ

n�0

Snfptq, t P R, N � 0, 1, ... .

Using Equation (2.9), we see that

σNfptq � 1

N � 1

Ņ

n�0

Dn � fptq �
�

1

N � 1

Ņ

n�0

Dn



� fptq.

The expression within brackets in the right-hand side of this equation is known as
the Fejér kernel and denoted KN , N � 0, 1, ... . To obtain an explicit expression
for KN , we use (2.10):

pN � 1q sin2 t
2KN ptq �

Ņ

n�0

sin t
2 sin pN � 1

2 qt �
1

2

Ņ

n�0

pcosnt� cos pn� 1qtq

� 1

2
p1� cos pN � 1qtq � sin2N�1

2 t

for every t P R. We thus have

KN ptq �

$'&'%
1

N � 1

�
sin N�1

2 t

sin t
2


2

for t R 2πZ

N � 1 for t P 2πZ

.

Proposition 5.2.1. The Fejér kernel KN has the following properties:

(i) KN ¥ 0;

(ii) 1
2π

³π
�π

KN ptq dt � 1;

(iii) for every δ ¡ 0,
³
δ¤|t| π

KN ptq dtÑ 0 as N Ñ8;

(iv) KN is even;

(v) KN ptq ¤ N � 1 for every t P R.

Properties (i)–(iii) show that pKN q8N�1 is an approximate identity (see Defini-
tion 1.5.1).

Proof. Out of these five properties, the first and the fourth are obvious. The
second holds because the same is true for the Dirichlet kernel. If we use the fact
that | sin t{2| ¥ |t|{π for |t| ¤ π, we obtain that

KN ptq ¤ π2

pN � 1qt2 for 0   |t| ¤ π, (5.1)

form which the third property follows. Finally, to prove the fifth property, notice
that

|Dnptq| �
����1� 2

ņ

k�1

cos kt

���� ¤ 1� 2n
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for t P R and n � 0, 1, ... , so that

KN ptq �
���� 1

N � 1

Ņ

n�0

Dnptq
���� ¤ 1

N � 1

Ņ

n�0

p1� 2nq � N � 1 for t P R.

Proposition 5.2.2. Suppose that f P L1pTq. Then

σNfptq �
Ņ

n��N

�
1� |n|

N � 1


 pfpnqeint for t P R and N � 0, 1, ... . (5.2)

Proof. The identity (5.2) is proved by changing the order of summation:

σNfptq � 1

N � 1

Ņ

n�0

Snfptq � 1

N � 1

Ņ

n�0

ņ

k��n

pfpkqeikt
� 1

N � 1

Ņ

k��N

Ņ

n�|k|

pfpkqeikt � Ņ

k��N

�
1� |k|

N � 1


 pfpkqeikt.

5.3. Fejér’s Theorem

The next theorem, which was proved by L. Fejér in 1904, is a consequence of the
fact that pKN q8N�1 is an approximate identity. The theorem shows that the Fourier
series of a L1-function f is Cesàro summable at every point, where f has one-sided
limits (and, in particular, at every point where f is continuous) and uniformly
Cesàro summable on every compact set, where f is continuous.

Theorem 5.3.1. Suppose that f P L1pTq.
(a) If the one-sided limits fpt�q and fpt�q exist at some point t P R, then σNfptq

converges to pfpt�q � fpt�qq{2 as N Ñ8.

(b) If f is continuous on a closed set F � R, then σNf converges uniformly to f
on F as N Ñ8.

According to du Bois-Reymond’s example (see Theorem 2.11.2), the corresponding
theorem with σNf replaced by SNf is false. We have, however, the corollary below,
which follows directly from Proposition 5.1.4 and Theorem 5.3.1.

Corollary 5.3.2. Suppose that f P L1pTq. If the Fourier series of f converges at
a point t P R, where the one-sided limits fpt�q and fpt�q exist, then

8̧

n��8

pfpnqeint � fpt�q � fpt�q
2

.

Suppose, for instance, that f P CpTq and the Fourier series of f is absolutely
convergent. It then follows from Corollary 5.3.2 that

8̧

n��8

pfpnqeint � fptq for every t P R.
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Compare this result with Theorem 2.9.1.

The corollaries are two versions of Weierstrass’ approximation theorem,
one for trigonometric approximation and one for polynomial approximation. By a
trigonometric polynomial we here mean a function of the form

pptq �
Ņ

n��N

cne
int, t P R.

Corollary 5.3.3. The class of trigonometric polynomials is dense in CpTq.

Proof. If f P CpTq, then σNf converges uniformly to f as N Ñ 8 according to
Theorem 5.3.1. But σNf is a trigonometric polynomial for every N (see Proposi-
tion 5.2.2).

Corollary 5.3.4. Suppose that �8   a   b   8. Then the class of polynomials
is dense in Cpra, bsq.

Proof. The proof is readily reduced to the case ra, bs � r�1, 1s by a linear change of
variables. Suppose that f P Cpr�1, 1sq. Then the function gpsq � fpcos sq, s P R,
belongs to CpTq. Theorem 5.3.1 then shows that the trigonometric polynomials

σNgpsq �
Ņ

n��N

�
1� |n|

N � 1


pgpnqeins � pgp0q � Ņ

n�1

�
1� n

N � 1


pgpnq cosns

tend to g uniformly as N Ñ 8. If we now make the substitution t � cos s,
where 0 ¤ s ¤ π, we see that the functions

PN ptq � pgp0q � Ņ

n�1

�
1� n

N � 1


pgpnq cospn arccos tq

tend to f uniformly as N Ñ 8. To finish the proof, we need to show that the
function pnptq � cospn arccos tq, t P R, actually is a polynomial for n � 1, 2, ... .
First of all, p0ptq � 1 and p1ptq � t. Moreover, for n ¥ 2,

cospn arccos tq � 2 cosparccos tq cosppn� 1q arccos tq � cosppn� 2q arccos tq. (5.3)

It therefore follows by induction that the right-hand side is a polynomial.

The polynomials pn, that we encountered in the proof of Corollary 5.3.4, are known
as the Chebyshev polynomials. Notice that (5.3) shows that these polynomials
satisfy the recursive formula

pnptq � 2tpn�1ptq � pn�2ptq, n � 2, 3, ... .

Since p0ptq � 1 and p1ptq � t, we see for instance that

p2ptq � 2t2 � 1, p3ptq � 4t3 � 3t, and p4ptq � 8t4 � 8t2 � 1.
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5.4. Convergence in Lp

The next theorem, which deals with convergence in LppTq of the Fejér means, is a
consequence of Theorem 1.5.3. The corresponding result for p � 8 is false since
the uniform limit of a sequence of continuous functions is continuous. With SNf
instead of σNf , the result is false for p � 1, but true for 1   p   8. The proof in
the latter case is much harder, except, of course, for p � 2.

Theorem 5.4.1. Suppose that f P LppTq, where 1 ¤ p   8. Then σNf converges
to f in LppTq as N Ñ8.

With the aid of Theorem 5.4.1, we obtain a new proof of Corollary 4.2.3.

Corollary 5.4.2. Suppose that f P L2pTq. Then SNf converges to f in L2pTq
as N Ñ8.

Proof. Since SNf is the orthogonal projection on the linear span of of the func-
tions eiNt, ... , e�iNt (see Example 3.3.5), we have that

}f � SNf}2 ¤ }f � σNf}2 for N � 0, 1, ... .

We also get a new proof of the uniqueness theorem for Fourier series (Theo-
rem 2.8.1).

Corollary 5.4.3. Suppose that f, g P L1pTq and pfpnq � pgpnq for every n P Z.
Then f � g a.e.

Proof. It follows from the assumption that σNf � σNg for every N . This implies
that

}f � g}1 ¤ }f � σNf}1 � }σNg � g}1 ÝÑ 0 as N Ñ8,
from which it follows that }f � g}1 � 0, so f � g a.e.

5.5. Lebesgue’s Theorem

To prove our next theorem, we will need the concept of a Lebesgue point.

Definition 5.5.1. Suppose that f P L1pTq. A point t P R is said to be a Lebesgue
point for f if

lim
hÑ0

1

h

» h
0

|fps� tq � fptq| ds � 0.

Every point of continuity of f is obviously a Lebesgue point. The Lebesgue points
appear in the theory of differentiation in the following way. Let a P R and put

F ptq �
» t
a

fpsq ds, t P R.

Then F is differentiable at every Lebesgue point t of f with derivative fptq since����F pt� hq � F ptq
h

� fptq
���� ¤ ���� 1h

» h
0

|fps� tq � fptq| ds
���� ÝÑ 0 as hÑ 0.

The basic result about Lebesgue points, which we state without a proof, is due to
H. Lebesgue.
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Theorem 5.5.2. Suppose that f P L1pa, bq. Then almost every t P pa, bq is a
Lebesgue point of f .

The next theorem is also due to Lebesgue.

Theorem 5.5.3. Suppose that f P L1pTq. Then σNfptq Ñ fptq as N Ñ 8 at
every Lebesgue point t P R of f .

Notice that it is not true that the Fourier series of a function in L1pTq converges
to the function almost everywhere; this follows from Kolmogorov’s example (see
Section 2.11),

Proof. Let t P R be a Lebesgue point of f . Using (ii) and (iv) in Proposition 5.2.1,
we see that

|σNfptq � fptq| ¤ 1

2π

» π
0

|fpt� sq � fpt� sq � 2fptq|KN psq ds for a.e. t P R.

Put gpsq � |fpt� sq � fpt� sq � 2fptq| for 0 ¤ s ¤ π. Also put

Gpuq �
» u

0

gpsq ds, 0 ¤ u ¤ π.

Then, since t is a Lebesgue point of f ,

F puq
u

¤ 1

u

» u
0

|fpt� sq � fptq| ds� 1

u

» u
0

|fpt� sq � fptq| ds ÝÑ 0 as uÑ 0.

For an arbitrary ε ¡ 0, one can therefore find a number δ ¡ 0 such that u�1F puq   ε
if 0   u   δ. Using this and (v) in Proposition 5.2.1, we then obtain that» 1{N

0

gpsqKN psq ds ¤ pN � 1qF p1{Nq   2ε if N ¡ δ�1.

It also follows from (5.1) that» δ
1{N

gpsqKN psq ds ¤ π2

N

» δ
1{N

gpsq
s2

ds

� π2

N

�
F pδq
δ2

� F p1{Nq
N�2

� 2

» δ
1{N

F psq
s

ds

s2



¤ π2

N

�ε
δ
� 2εN

	
  3π2ε.

Finally, » π
δ

gpsqKN psq ds ¤ π2

Nδ2

» π
δ

gpsq ds ¤ π2

Nδ2
p4π}f}1 � 2π|fptq|q   ε

for sufficiently large N .

Corollary 5.5.4. Suppose that f P L1pTq and that
°8
n��8

pfpnqeint is conver-

gent a.e. Then fptq � °8
n��8

pfpnqeint a.e.
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Proof. Let gptq denote the sum of the Fourier series of f at t P R. The state-
ment in the theorem then follows by combining the theorems 5.5.2 and 5.5.3 with
Proposition 5.1.4:

fptq � lim
NÑ8

σNfptq � lim
NÑ8

SNfptq � gptq a.e.

5.6. Hardy’s Tauberian Theorem

We have above seen that if panq8n�0 is a sequence of complex numbers and an Ñ a,
then σN Ñ a, but also that the converse in general is not true. Results, describing
situations when the converse is in fact true, are called Tauberian theorems after
Tauber who was the first to establish results of this type. We will now prove
Hardy’s Tauberian theorem.

Theorem 5.6.1. Suppose that f P L1pTq satisfies pfpnq � Opn�1q as n Ñ �8.
If σNfptq converges for some t P R, then SNfptq converges to the same limit.
Morover, if σNf converges uniformly on some set, the same holds for SNf .

Proof. It is not so hard to show that

SNfptq � σNfptq � M � 1

M �N
pσMfptq � σNfptqq

� M � 1

M �N

¸
N |n|¤M

�
1� |n|

M � 1


 pfpnqeint,
if M ¡ N ¥ 1. Denote the sum in the right-hand side by SM,N ptq. Let ε ¡ 0 be
arbitrary and put M � rp1� εqN s (where rrs is the integer part of r P R plus 1).
Then

M � 1

M �N
¤ p1� εqN � 2

p1� εqN �N
� 1� ε� 2

N

ε
.

It follows that

lim sup
NÑ8

���� M � 1

M �N
pσMfptq � σNfptqq

���� � 0.

By the assumption, | pfpnq| ¤ C|n|�1, so���� M � 1

M �N
SM,N ptq

���� ¤ C
M � 1

M �N

M̧

n�N�1

�
1

n
� 1

M � 1



¤ C

M � 1

M �N

�
ln
M

N
� M �N

M � 1



  C

�1� ε� 2
N

ε
lnp1� ε� 1

N q � 1
	
,

which shows that

lim sup
NÑ8

���� M � 1

M �N
SM,N ptq

���� ¤ C
�1� ε

ε
lnp1� εq � 1

	
  Cε.

Since ε was arbitrary, the limit in the left-hand side has to be 0. This proves the
first assertion. Because all estimates so far are independent of t, we see that SNf
converges uniformly whenever σNf does.
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Corollary 5.6.2. Suppose that f P ACpTq. Then the Fourier series of f is uni-
formly convergent on R.

Proof. According to Proposition 2.4.6, pfpnq � opn�1q as nÑ �8, and according
to Theorem 5.3.1, σNf Ñ f uniformly on R as N Ñ 8. The result therefore
follows from Hardy’s Tauberian theorem.
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Fourier Transforms
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Chapter 6

L1-theory for Fourier Transforms

6.1. The Fourier Transform

Definition 6.1.1. The Fourier transform pf of a function f P L1pRdq is de-
fined by

pfpξq � »
Rd

fpxqe�ix�ξ dx, ξ P Rd.

Here, x � ξ � °d
j�1 xjξj , x, ξ P Rd, is the standard inner product in Rd. Notice

that the Fourier transform is absolutely convergent since

|fpxqe�ix�ξ| � |fpxq| for every x P Rd and every ξ P Rd.

Example 6.1.2. Let f be the characteristic function of the interval p�1, 1q � R.
Then pfpξq � » 1

�1

e�ixξ dx � 2 sin ξ

ξ
for ξ � 0

and pfp0q � 2. Notice that pf R L1pRq. �

Example 6.1.3. Let fpxq � e�|x|, x P R. Then

pfpξq � » 8
�8

e�|x|e�ixξ dx �
» 8

0

e�p1�iξqx dx�
» 0

�8

ep1�iξqx dx

� 1

1� iξ
� 1

1� iξ
� 2

1� ξ2
for ξ P R. �

Example 6.1.4. Let fpxq � e�|x|
2{2, x P Rd. To calculate the Fourier transform

of f , we first consider the case d � 1. Then

pfpξq � » 8
�8

e�x
2{2e�ixξ dx � e�ξ

2{2

» 8
�8

e�px�iξq
2{2 dx

� e�ξ
2{2

» 8
�8

e�x
2{2 dx �

?
2πe�ξ

2{2 for ξ P R.

Here, the penultimate equality follows from Cauchy’s theorem. For the general

case, we put fjpxq � e�x
2
j {2, x P Rd, for j � 1, ... , d. Then f � f1 � ... � fd, from

which it follows that

pfpξq � pf1pξ1q � ... � pfdpξdq � ?
2πe�ξ

2
1{2 � ... �

?
2πe�ξ

2
d{2

� p2πqd{2e�|ξ|2{2 for ξ P Rd. �
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Example 6.1.5. Suppose that f P L1pRdq is a radial function, i.e., fpxq � gp|x|q
for x P Rd, where g is some function on r0,8q. Then pf is also a radial function.
Indeed, if T is any rotation of Rd, then

pfpTξq � »
Rd

gp|x|qe�ix�Tξ dx �
»
Rd

gp|x|qe�ipT�1xq�ξ dx �
»
Rd

gp|Ty|qe�iy�ξ dy

�
»
Rd

gp|y|qe�iy�ξ dy � pfpξq for ξ P Rd.

This shows that pfpξq only depends on |ξ|, so pf is radial. Using polar coordina-
tes x � ρω, where 0 ¤ ρ   8 and ω P Sd�1, we see that

pfpξq � » 8
0

gpρq
�»

Sd�1

e�iρω�ξ dω



ρd�1 dρ, ξ P Rd.

One can show that the integral within brackets actually is a Bessel function. �

6.2. Properties of the Fourier Transform

The mapping F , which maps a function f P L1pRdq onto the function pf , is also
called the Fourier transform. The Fourier transform is obviously linear being an
integral:

Proposition 6.2.1. Suppose that f, g P L1pRdq and α, β P C. Then

{αf � βgpξq � α pfpξq � βpgpξq for every ξ P Rd.

In the next proposition, we summarize some simple, but useful properties of the
Fourier transform. We will use the following notation:

ehpxq � eih�x, x P Rd, h P Rd.

As before, τh is the translation operator in direction h P Rd, defined by

τhfpxq � fpx� hq, x P Rd.

We also use the reflection operator R and the dilation operator Dt, where t
is a non-zero real number, defined by

Rfpxq � fp�xq, x P Rd, and Dtfpxq � fptxq, x P Rd,

respectively. Here, f denotes a function on Rd.

Proposition 6.2.2. Suppose that f P L1pRdq. Then the following properties hold
for h P Rd and t � 0:

(i) yehf � τhf ;

(ii) yτhf � e�h pf ;

(iii) xRf � R pf ;

(iv) yDtf � |t|�dDt�1
pf ;
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(v) pf � R pf .

The proof is left to the reader as an exercise.
Suppose that f P L1pRdq and that A is a non-singular d� d matrix. Put

A�fpxq � fpAxq, x P Rd.

Proposition 6.2.3. Suppose that f P L1pRdq and that A is a non-singular d � d
matrix. Then yA�fpξq � |detA|�1ppA�1qtq� pfpξq, ξ P Rd. (6.1)

Proof. Changing variables y � Ax, we see that

yA�fpξq � »
Rd

fpAxqe�ix�ξ dx � |detA|�1

»
Rd

fpyqe�ipA�1yq�ξ dy.

Now, since pA�1yq � ξ � y � ppA�1qtξq, we have

yA�fpξq � |detA|�1

»
Rd

fpyqe�iy�ppA�1qtξq dy � |detA|�1ppA�1qtq� pfpξq.
Notice that if A � �I, where I is the identity matrix, then A� is the reflection
operator R, and if A � tI, where t is a non-zero real number, then A� is the dilation
operator.

Proposition 6.2.4. Suppose that f P L1pRdq. Then the following properties hold :

(i) pf is bounded on Rd: | pfpξq| ¤ }f}1 for every ξ P Rd;

(ii) pf is uniformly continuous on Rd;

(iii) pfpξq Ñ 0 as |ξ| Ñ 8.

As for Fourier coefficients, we shall refer to the last property as the Riemann–
Lebesgue lemma. The first property in this proposition shows that the Fourier
transform maps L1pRdq into L8pRdq, while the second and the third properties
show that the image of L1pRdq is a subset to C0pRdq.
Proof (Proposition 6.2.4).

(i) This follows directly from the definition of pf .

(ii) Notice that

| pfpξ � hq � pfpξq| ¤ »
Rd

|fpxq||e�ix�h � 1| dx for ξ, h P Rd.

The claim now follows from the dominated convergence theorem since the in-
tegrand is less than or equal 2|fpxq| and tends to 0 as hÑ 0. The convergence
is uniform because the integral is independent of ξ.

(iii) As in the proof of (ii) in Proposition 2.4.3, we have

pfpξq � 1

2

»
Rd

pfpxq � τπξ{|ξ|2fpxqqe�ix�ξ dt for ξ � 0.

Finally apply the triangle inequality and Lemma 1.4.1.
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Example 6.2.5. A consequence of Proposition 6.2.4 is that none of the following
functions on R:

ξ ÞÑ 1

ξ
, ξ ÞÑ χp�1,1qpξq, ξ ÞÑ 1

is the Fourier transform of a L1-function. �

One of the most important properties of the Fourier transform is that the trans-
form of a convolution is the product of the transforms of the functions involved.
Recall from Theorem 1.2.1 that the convolution f � g is defined a.e. on Rd and
belongs to L1pRdq if f, g P L1pRdq.
Proposition 6.2.6. Suppose that f, g P L1pRdq. Then

zf � gpξq � pfpξqpgpξq for ξ P Rd. (6.2)

Proof. One proves (6.2) simply by changing the order of integration and perform-
ing a linear change of variables:

zf � gpξq � »
Rd

�»
Rd

fpx� yqgpyq dy


e�ix�ξ dx

�
»
Rd

�»
Rd

fpx� yqe�ipx�yq�ξ dx


gpyqe�iy�ξ dy

� pfpξqpgpξq for ξ P Rd.

Example 6.2.7. In Section 1.5, we showed that the Banach algebra L1pRdq has
no multiplicative unit, i.e., there is no function K P L1pRdq such that

K � f � f for every f P L1pRdq. (6.3)

Let us give a new proof of this fact using the Fourier transform. Suppose that such
a function K existed. Let f be the Gauss function in Example 6.1.4. Taking the
Fourier transform of both sides in (6.3), we would then have that pK pf � pf . Since pf
has no zeroes, this would imply that pKpξq � 1 for every ξ P Rd, which contradicts
the Riemann–Lebesgue lemma. �

Proposition 6.2.8. Suppose that f, g P L1pRdq. Then»
Rd

fpxqpgpxq dx � »
Rd

pfpxqgpxq dx. (6.4)

Notice that both integrals in (6.4) are defined since pf and pg are continuous and
bounded.

Proof. The identity (6.4) follows directly by changing the order of integration.

Proposition 6.2.9. Suppose that f P L1pRdq and that Bαf exists a.e. and belongs
to L1pRdq for some multi-index α. Then

yBαfpξq � piξqα pfpξq for every ξ P Rd. (6.5)
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Proof. Using induction, the proof reduces to showing that (6.5) holds when |α| � 1,
i.e., when Bα � Bj for some index j with 1 ¤ j ¤ d. Without loss of generality, we
may assume that j � 1. We shall write a point x P Rd as x � px1, x

1q, where x1 P R
and x1 P Rd�1. Notice that the function x1 ÞÑ fpx1, x

1q belongs to L1pRq for almost
every x1 P Rd�1 according to Fubini’s theorem. For such points x1 P Rd�1, we have
that

fpx1, x
1q � fp0, x1q �

» x1

0

B1fpt, x1q dt for �8   x1   8.

This identity shows that the limits limx1Ñ�8 fpx, x1q exist. These limits have to
be 0 since fpx1, x

1q P L1pRq. We now obtain (6.5) by integrating the one-dimesional
Fourier transform of B1fpx1, x

1q by parts:

yBjfpξq � »
Rd�1

�» 8
�8

B1fpx1, x
1qe�ix1ξ1 dx1



e�ix

1�ξ1 dx1

� iξ1

»
Rd�1

�» 8
�8

fpx1, x
1qe�ix1ξ1 dx1



e�ix

1�ξ1 dx1

� iξ1 pfpξq.
The Riemann–Lebesgue lemma shows that pfpξq � op1q as |ξ| Ñ 8 if f P L1pRdq.
As for Fourier coefficients, the Fourier transform will decay faster the more regular
the function f is:

Corollary 6.2.10. Suppose that f P L1pRdq and that Bαf exists a.e. and belongs
to L1pRdq for some multi-index α. Then

pfpξq � op|ξ|�|α|q as |ξ| Ñ 8.

Proof. Since Bαf P L1pRdq, |ξ||α|| pfpξq| � |yBαfpξq| Ñ 0 as |ξ| Ñ 8.

Proposition 6.2.11. Suppose that f P L1pRq and that
³
Rd |x|k|fpxq| dx   8 for

some integer k ¥ 1. Then pf P CkpRdq and

Bα pfpξq � »
Rd

p�ixqαfpxqe�ix�ξ dx for |α| ¤ k and ξ P Rd. (6.6)

We remark that (6.6) is exactly what one obtains by formally differentiating pf
under the integral sign:

Bα pfpξq � Bα
»
Rd

fpxqe�ix�ξ dx �
»
Rd

fpxqBαξ e�ix�ξ dx

�
»
Rd

p�ixqαfpxqe�ix�ξ dx.

Proof. It suffices to prove (6.6) for k � 1 and we may assume that α � p1, 0, ... , 0q.
Writing x � px1, x

1q and ξ � pξ1, ξ1q, where x1, ξ1 P Rd�1, we then have that

pfpξ1 � h, ξ1q � pfpξ1, ξ1q
h

�
»
Rd

» 8
�8

p�ix1qfpx1, x
1qe

�ix1h � 1

�ix1h
e�ipx1ξ1�x

1�ξ1q dx1dx
1.
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Since the differential quotient tends to 1 as hÑ 0 and its absolute value is less than
or equal 1, (6.6) follows from the dominated convergence theorem. The continuity

of B1
pf is a consequence of the fact that the right-hand side in (6.6) is a continuous

function of ξ (this also follows from the dominated convergence theorem).

Example 6.2.12. We shall calculate the Fourier transform of the function

fpxq � e�x
2{2, x P R,

in Example 6.1.4 in a another way. Notice that f 1pxq � �xfpxq for every x P R.
If we apply the Fourier transform to this identity, using (6.5) and (6.6), we obtain
that

iξ pfpξq � �i pf 1pξq for every ξ P R.

Every solution to this differential equation has the form pfpξq � Ce�t
2{2, ξ P R, for

some constant C. In this case,

C � pfp0q � » 8
�8

e�x
2{2 dx �

?
2π,

so that pfpξq � ?
2πe�ξ

2{2 for ξ P R. �

6.3. Inversion of Fourier Transforms in One Dimension

We next turn our attention to inversion of Fourier transforms and begin with the
simpler one-dimensional case. The results (and the methods used for obtaining
them) are very similar to the results about pointwise convergence of Fourier series
in Chapter 2.

Let us first define an operator that corresponds to the symmetric partial sum
for the Fourier series of a periodic function. For f P L1pRq and N ¥ 0, put

SNfpxq � 1

2π

» N
�N

pfpξqeiξx dξ, x P R.

Using the definition of pf , we see that

SNfpxq � 1

2π

» N
�N

�» 8
�8

fpyqe�iyξ dy


eiξx dξ � 1

2π

» 8
�8

fpyq
�» N

�N

eiξpx�yq dξ



dy

�
» 8
�8

fpyq sinNpx� yq
πpx� yq ds � DN � fpxq,

where DN is the Dirichlet kernel for the real line:

DN pxq � sinNx

πx
, x P R, N ¥ 0.

Using the fact that DN is an even function, we can also write SNf as

SNfpxq � 1

π

» 8
0

fpx� yq � fpx� yq
y

sinNy dy.

The following results are proved in the same way as the corresponding results for
Fourier series.
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Proposition 6.3.1. Suppose that f P L1pRq and δ ¡ 0. Then

SNfpxq � 1

π

» δ
0

fpx� yq � fpx� yq
y

sinNy dy � εN pxq

for every x P R, where εN pxq Ñ 0 as N Ñ8.

Proposition 6.3.2. Suppose that f P L1pRq. Then limNÑ8 SNfpxq � S if and
only there exists a number δ ¡ 0 such that

lim
NÑ8

1

π

» δ
0

fpx� yq � fpx� yq � 2S

y
sinNy dy � 0.

Theorem 6.3.3. Suppose that f P L1pRq satisfies a Dini condition at x P R, i.e.,
there exist numbers δ ¡ 0 and S P C such that» δ

0

|fpx� yq � fpx� yq � 2S|
y

dy   8.

Then limNÑ8 SNfpxq � S.

In particular, if » δ
0

|fpx� yq � fpx� yq � 2fpxq|
y

dy   8

for some number δ ¡ 0, then

fpxq � lim
NÑ8

1

2π

» N
�N

pfpξqeiξx dξ.
One calls the limit in the right-hand side a principal value integral. Notice that
the principal value cannot be replaced with an integral over R, since pf in general
does not belong to L1pRq (cf. Example 6.1.2).

Corollary 6.3.4. Suppose that f P L1pRq. If the one-sided limits

fpx�q � lim
yÑ0�

fpx� yq and fpx�q � lim
yÑ0�

fpx� yq

and the one-sided derivatives

f 1px�q � lim
yÑ0�

fpx� yq � fpx�q
y

and f 1px�q � lim
yÑ0�

fpx� yq � fpx�q
�y

exist, then

lim
NÑ8

SNfpxq � fpx�q � fpx�q
2

.

Example 6.3.5. According to Example 6.1.2 and Corollary 6.3.4,

lim
NÑ8

1

2π

» N
�N

2 sin ξ

ξ
eiξx dξ �

$'&'%
1 if �1   x   1
1
2 if x � �1

0 if x ¡ 1 or x   �1

. �
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Example 6.3.6. According to Example 6.1.3 and Corollary 6.3.4,

e�|x| � lim
NÑ8

1

2π

» N
�N

2

1� ξ2
eiξx dξ � 1

π

» 8
�8

1

1� ξ2
eiξx dξ for x P R,

where the last equality holds because the integrand belongs to L1pRq. If we now
replace x with �x and let x and ξ change roles in this identity, we obtain that» 8

�8

1

1� x2
e�ixξ dx � πe�|ξ| for ξ P R.

This shows that the Fourier transform of the function

fpxq � 1

1� x2
, x P R, is pfpξq � πe�|ξ|, ξ P R. �

Corollary 6.3.7. Suppose that f P L1pRq. If f satisfies a Hölder condition at a
point x P R, then limNÑ8 SNfpxq � fpxq.

6.4. Inversion of Fourier Transforms in Several Dimensions

Inversion of Fourier transforms in more than one dimension is considerably harder
than in the one-dimensional case, the main reason being the fact the Fourier trans-
form pf of a L1-function f not necessarily is integrable, which makes the interpre-
tation of the inversion formula, i.e.,

fpxq � 1

p2πqd
»
Rd

pfpξqeiξ�x dξ, x P Rd,

very delicate. We will therefore focus on the simpler case when pf P L1pRdq.
Theorem 6.4.1. Suppose that both f and pf belong to L1pRdq. Then

fpxq � 1

p2πqd
»
Rd

pfpξqeiξ�x dξ for a.e. x P Rd. (6.7)

If f , in addition, is bounded on Rd, then (6.7) holds at every x P Rd, where f is
continuous.

Proof. For y P Rd, put

φpyq � p2πq�de�|y|2{2 and ψpyq � eix�yφpεyq,
where ε ¡ 0 and x P Rd are parameters. Then

pφpξq � p2πq�d{2e�|ξ|2{2 and pψpξq � pφεpξ � xq

for ξ P Rd, where pφεpξq � ε�dpφpε�1ξq. Notice that pφε is even. Proposition 6.2.8
now shows that»

Rd

fpξqpφεpx� ξq dξ � 1

p2πqd
»
Rd

pfpξqe�ε2|ξ|2{2eiξ�x dξ. (6.8)
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Letting ε Ñ 0, the right-hand side in this identity tends to the right-hand side
in (6.7) due to dominated convergence. Since ppφεqε¡0 is an approximate identity,
the left-hand side tends to f in L1pRdq (see Theorem 1.5.3). If we now choose a

subsequence εk such that pφεk � f Ñ f a.e. as k Ñ 8 and replace ε by εk in (6.8),
we obtain (6.7). The final statement also follows from Theorem 1.5.3.

Definition 6.4.2. The inverse Fourier transform f̌ of a function f P L1pRdq
is defined by qfpxq � 1

p2πqd
»
Rd

fpξqeiξ�x dξ, x P Rd.

The inverse Fourier transform shares most properties with the Fourier transform.
With this notation, Theorem 6.4.1 may be reformulated as

qpfpxq � fpxq for a.e. x P Rd

assuming that f and pf belong to L1pRdq.
As a corollary to Theorem 6.4.1, we obtain the following uniqueness theorem

for the Fourier transform.

Theorem 6.4.3. Suppose that f, g P L1pRdq. If pf � pg, then f � g a.e.

Proof. Put h � f � g. Then ph � 0 P L1pRdq, so it follows from Theorem 6.4.1
that h � 0 a.e. and thus that f � g a.e.

We end this section by giving a simple criterion for when the Fourier transform of
a L1-function belongs to L1pRdq.
Proposition 6.4.4. Suppose that f P L1pRdq, that there exist positive constants C

and M such that |fpxq| ¤ C for |x| ¤M , and that pf ¥ 0. Then pf P L1pRdq.

Proof. The proof is quite similar to that of Theorem 6.4.1. Put

φpxq � p2πq�de�|x|2{2, x P Rd,

and
ψpxq � φpεxq, x P Rd,

where ε ¡ 0. Then pψpξq � pφεpξq for ξ P Rd. Proposition 6.2.8 now shows that

1

p2πqd
»
Rd

pfpξqe�ε2|ξ|2{2 dξ � ����»
Rd

fpξqpφεpξq dξ���� ¤ »
Rd

|fpξq|pφεpξq dξ. (6.9)

We next split the integral in the right member of (6.9) as follows:»
Rd

|fpξq|pφεpξq dξ � »
|ξ| M

|fpξq|pφεpξq dξ � »
|ξ|¥M

|fpξq|pφεpξq dξ
¤ C

»
Rd

pφεpξq dξ � p2πq�d{2 e
�M2{2ε2

εd

»
|ξ|¥M

|fpξq| dξ

¤ p2πq�d{2pC � }f}1q,
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where the last inequality holds for sufficiently small ε. This shows that»
Rd

pfpξqe�ε2|ξ|2{2 dξ ¤ p2πqd{2pC � }f}1q

for every sufficiently small ε ¡ 0. If we now let ε Ñ 0 and apply the monotone
convergence theorem, we obtain that pf P L1pRdq.



Chapter 7

L2-theory for Fourier Transforms

In this chapter, we will show how the Fourier transform can be extended to func-
tions f P L2pRdq. We also prove the celebrated Plancherel formula and show how
inversion of Fourier transforms works in L2pRdq.

7.1. Definition of the Fourier Transform

The strategy for extending the Fourier transform to L2pRdq is the following: One
first chooses a sequence of functions fn P L1pRdq X L2pRdq such that fn Ñ f

in L2pRdq. Since each fn belongs to L1pRdq, it has a Fourier transform pfn. The

next step is to prove that the sequence pfn is convergent in L2pRdq. The limit of

this sequence is then defined as the Fourier transform pf of f . To prove that this
extension is consistent with the previous definition, one has to verify that the two
definitions coincide for functions in L1pRdq X L2pRdq. One also needs to verify

that pf is independent of the choice of the sequence fn.
Given a function f P L2pRdq, we define let fn � f |Bnp0q, i.e.,

fnpxq �
"
fpxq if |x|   n

0 if |x| ¥ n
(7.1)

for n � 1, 2, ... . Every function fn of course belongs to L2pRdq. We first show
that fn is integrable, and thus has a Fourier transform, and that the sequence
approximates f in L2pRdq.
Lemma 7.1.1. Suppose that f P L2pRdq and that fn is given by (7.1). Then

(a) fn P L1pRdq X L2pRdq for every n;

(b) fn Ñ f in L2pRdq.
Proof.

(a) This follows directly from Hölder’s inequality:

}fn}1 �
»
|x| n

|fpxq| dx ¤ Cnd{2}f}2   8.

(b) Notice that

}f � fn}22 �
»
|x|¥n

|fpxq|2 dx �
»
Rd

χnpxq|fpxq|2 dx,

where χn is the characteristic function of Rd r Bnp0q. The integral in the
right-hand side tends to 0 as nÑ 8 since the integrand tends to 0 a.e. and it
is dominated by the integrable function |f |2.

We next prove a weak form of the Plancherel formula.

Lemma 7.1.2. Suppose that f P L1pRdq X L2pRdq. Then pf P L2pRdq and»
Rd

|fpxq|2 dx � 1

p2πqd
»
Rd

| pfpξq|2 dξ. (7.2)

63
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Proof. Let g � f � Rf be the so called autocorrelation function, where Rf is
defined as before by Rfpxq � fp�xq, x P Rd. Thus,

gpxq �
»
Rd
fpyqfpy � xq dy for x P Rd.

Then g P L1pRdq since f P L1pRdq (see Theorem 1.2.1). The Fourier transform

of the function Rf is pf according to Proposition 6.2.2, so it follows from Propo-
sition 6.2.6 that pg � | pf |2. The assumption that f P L2pRdq moreover implies
that g is bounded: |gpxq| ¤ }f}22 for every x P Rd. Proposition 6.4.4 thus shows
that pg P L1pRdq. This means that we can apply the inversion formula in Theo-
rem 6.4.1:»

Rd
fpyqfpy � xq ds � 1

p2πqd
»
Rd

| pfpξq|2eiξ�x dξ for a.e. x P Rd. (7.3)

But since both sides of this identity are continuous functions (see Theorem 1.4.2
for the left-hand side and Proposition 6.2.4 for the right-hand side), it holds for
every x P Rd. Hence, (7.2) follows if we take x � 0 in (7.3).

Lemma 7.1.3. Suppose that f P L1pRdq and that fn is given by (7.1). Then the

sequence p pfnq8n�1 is convergent in L2pRdq.

Proof. Using (7.2) and the fact that fn converges to f , we see that p pfnq8n�1 is a
Cauchy sequence in L2pRdq:

} pfm � pfn}2 � p2πqd{2}fm � fn}2 ÝÑ 0 as m,nÑ8.

Definition 7.1.4. If f P L2pRdq and fn is given by (7.1), we define pf P L2pRdq as

the limit in L2pRdq of the sequence p pfnq8n�1.

Remark 7.1.5.

(a) Notice that the Fourier transform maps L2pRdq into L2pRdq.
(b) By definition,

pfpξq � lim
nÑ8

»
|x| n

fpxqe�ix�ξ dx in L2pRdq, (7.4)

which means that»
Rd

���� pfpξq � »
|x| n

fpxqe�ix�ξ dx
����2 dξ ÝÑ 0 as nÑ8.

(c) In the case f P L1pRdq X L2pRdq, the transform pf defined by (7.4) coincides
with Definition 6.1.1. In fact, there exists a subsequence nk such that nk Ñ8
as k Ñ8 and

pfpξq � lim
kÑ8

»
|x| nk

fpxqe�ix�ξ dx for a.e. ξ P Rd.

But since f P L1pRdq, the right-hand side equals
³
Rd fpxqe�ix�ξ dx.



7.2. Plancherel’s Formula 65

(d) If we choose another sequence of functions gn P L1pRdq X L2pRdq, that con-
verges to f in L2pRdq, then

} pf � pgn}2 ¤ } pf � pfn}2 � } pfn � pgn}2 � } pf � pfn}2 � p2πqd{2}fn � gn}2,

which shows that pgn converges to pf in L2pRdq. This means that the definition
is independent of the sequence fn.

Example 7.1.6. Let fpxq � sinx{x, x P R. Notice that f belongs to L2pRq, but
not to L1pRq. According to Example 6.3.5,

lim
nÑ8

» n
�n

sinx

x
e�ixξ dx � πχp�1,1qpxq for x � �1.

It thus follows from (7.4) that pf � πχp�1,1q. �

Notice that this example shows that the Fourier transform of an L2-function is not
necessarily continuous as was the case for L1-functions.

7.2. Plancherel’s Formula

We next extend the Plancherel formula to L2pRdq.

Theorem 7.2.1. Suppose that f P L2pRdq. Then»
Rd

|fpxq|2 dx � 1

p2πqd
»
Rd

| pfpξq|2 dξ. (7.5)

Proof. Since fn and pfn converge to f and pf in L2pRdq, respectively, and Planche-
rel’s formula holds for fn, we obtain that

}f}22 � lim
nÑ8

}fn}22 � lim
nÑ8

1

p2πqd }
pfn}22 � 1

p2πqd }
pf}22.

Example 7.2.2. If we apply Plancherel’s formula to the function in Example 7.1.6,
we see that » 8

�8

sin2 x

x2
dx � 1

2π

» 1

�1

π2 dξ � π. �

Corollary 7.2.3. Suppose that f, g P L2pRdq. Then»
Rd

fpxqgpxq dx � 1

p2πqd
»
Rd

pfpξqpgpξq dξ.
Proof. Apply Plancherel’s formula to f � g and f � ig.
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7.3. Properties of the Fourier Transform

The Fourier transform on L2pRdq shares many properties with the Fourier trans-
form on L1pRdq.
Proposition 7.3.1. Suppose that f P L2pRdq. Then the following properties hold
in L2pRdq:

(i) yτhf � e�h pf for h P Rd;

(ii) yehf � τhf for h P Rd;

(iii) xRf � R pf ;

(iv) yDtf � |t|�dDt�1
pf for t � 0;

(v) pf � R pf
(vi) if Bjf P L2pRdq for some j, then yBjfpξq � iξj pfpξq.
Proposition 7.3.2. Suppose that f, g P L2pRdq. Then»

Rd

fpxqpgpxq dx � »
Rd

pfpxqgpxq dx.
Proof. Let pfnq8n�1 and pgnq8n�1 be any two sequences in L1pRdq X L2pRdq such
that fn Ñ f and gn Ñ f . Then»

Rd

fpxqpgpxq dx � lim
nÑ8

»
Rd

fnpxqxgnpxq dx � lim
nÑ8

»
Rd

xfnpxqgnpxq dx
�
»
Rd

pfpxqgpxq dx,
where the second equality follows from Proposition 6.2.8.

7.4. The Inversion Formula

Recall the inversion formula proved in Section 6.4: If f, pf P L1pRdq, then
qpf � f ,

where qfpxq � 1

p2πqd
»
Rd

fpξqeiξ�x dξ, x P Rd.

Notice also that qf � p2πq�dR pf . This motivates the following definiteion.

Definition 7.4.1. The inverse Fourier transform qf of f P L2pRdq is defined

by qf � p2πq�dR pf .

Theorem 7.4.2. Suppose that f P L2pRdq. Then
qpf � f .

Combining this result with (7.4), we see that

fpxq � lim
nÑ8

1

p2πqd
»
Rd

pfpξqeiξ�x dξ in L2pRdq.
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Proof. Put g � qpf . We will prove that f � g a.e. by showing that }f � g}2 � 0.
To this end, notice that

}f � g}22 � pf � g, f � gq � }f}22 � pf, gq � pf, gq � }g}22.

Using the fact that g � p2πq�d ppf (see property (v) in Proposition 7.3.1) together
with Proposition 7.3.2, we obtain that

pf, gq �
»
Rd

fpxqgpxq dx � 1

p2πqd
»
Rd

fpxq ppfpxq dx � 1

p2πqd
»
Rd

pfpxq pfpxq dx
� }f}22

and consequently pf, gq � }f}22. Finally, two applications of the Plancherel formula
yield }g}22 � }f}22. This shows that }f � g}2 � 0.

Example 7.4.3. Let us check the inversion formula for the function f � χp�1,1q.
Then

pfpξq � 2
sin ξ

ξ
and

ppfpxq � 2πχp�1,1qpxq, so that qfpxq � fpxq. �

Let F denote the operator with maps a function f P L2pRdq onto its Fourier

transform pf . By combining Plancherel’s formula with the inversion formula, we
obtain the following theorem.

Theorem 7.4.4. The operator p2πqd{2F from L2pRdq to L2pRdq is an isometric
isomorphism.
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Chapter 8

Distributions

In this chapter, X and K will denote open and compact subsets to Rd, respectively.

8.1. Test functions

In the context of distribution theory, the class of infinitely continuously differen-
tiable functions on X with compact support is traditionally denoted DpXq instead
of C8

c pXq and the functions, that belong to DpXq, are called test functions.

Example 8.1.1. In Example 1.6.2, we gave the following example of a function φ
that belongs to DpRdq:

φpxq �
#
e�1{p1�|x|2q if |x|   1

0 if |x| ¥ 1
. �

Definition 8.1.2. A sequence pφnq8n�1 � DpXq converges to φ P DpXq if

(i) there exists a compact subset K to X such that suppφn � K for every n;

(ii) Bαφn converges uniformly to Bαφ on X for every multi-index α.

We denote this by writing φn Ñ φ.

Remark 8.1.3.

(a) We remark that there are corresponding definitions for sequences like pφhqh¡0,
where hÑ 0, etc.

(b) Notice that if φn Ñ φ and suppφn � K for every n, then suppφ � K.

Example 8.1.4. Suppose that φ P DpRdq. Then τhφ Ñ φ as h Ñ 0. Indeed, the
support of τhφ is a subset of the closed |h|-neighbourhood of suppφ. Also, if α is
some multi-index and x P Rd, then

|Bαφpx� hq � Bαφpxq| � |∇Bαφpx� θhq � h| ¤ |∇Bαφpx� θhq||h| ¤ }∇Bαφ}8|h|
according to the mean-value theorem and the Cauchy-Schwarz inequality, where θ
is some number between 0 and 1, so that

}Bατhφ� Bαφ}8 ¤ }∇Bαφ}8|h|.
This shows that Bατhφ tends uniformly to Bαφ as hÑ 0. �

Example 8.1.5. Let ej be the j-th vector in the standard basis for Rd. We claim
that if φ P DpXq, then

φpx� hejq � φpxq
h

ÝÑ Bjφpxq as hÑ 0

in DpXq. Two applications of the mean-value theorem show that if x P Rd, then����Bjφpxq � φpx� hejq � φpxq
h

���� � |Bjφpxq � Bjφpx� θhejq|

� |B2
jφpx� ηθhejq||θh|

¤ }B2
jφ}8|h|,
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where θ, η P r0, 1s, from which the claim follows. �

8.2. Distributions

Definition 8.2.1. A distribution on DpXq is a linear functional u : DpXq Ñ C
that is sequentially continuous, meaning that if

φn Ñ φ in DpXq, then upφnq Ñ upφq.
We denote the class of distributions on DpXq by D 1pXq.
Remark 8.2.2.

(a) Notice that D 1pXq is a vector space with the addition and multiplication with
scalars defined pointwise.

(b) We shall most of the time write

xu, φy instead of upφq,
where u P D 1pXq and φ P DpXq.

8.3. Examples of Distributions

We next give a number examples of distributions.

Example 8.3.1. Every function f P L1
locpXq gives rise to a so-called regular

distribution uf on X through integration:

xuf , φy �
»
X

fpxqφpxq dx, φ P DpXq.

This mapping is obviously linear. To show that it is sequentially continuous, notice
that if φ P DpXq with suppφ � K, then

|xuf , φy| ¤
»
X

|fpxqφpxq| dx ¤ }φ}8
»
K

|fpxq| dx.

It follows that if φn Ñ φ in DpXq and suppφn � K for every n, then

|xuf , φy � xuf , φny| ¤ }φ� φn}8
»
K

|fpxq| dx,

which shows that xuf , φny Ñ xuf , φy. �

The following proposition shows that there is no need to distinguish between a
function f P L1

locpXq and the regular distribution uf generated by f . We will
therefore sometimes denote the distribution uf by just f .

Proposition 8.3.2. Suppose that f, g P L1
locpXq and

xuf , φy � xug, φy for every φ P DpXq.
Then f � g a.e. on X.
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Proof. Put h � f � g. Then xuh, φy � 0 for every φ P DpXq. Let K � X be com-
pact and choose a function ψ P DpXq such that ψ � 1 on K (see Proposition 1.7.2).
Then ψh P L1pRdq. Moreover, if φ is a mollifier on Rd (see Definition 1.6.1), then

φε � pψhqpxq �
»
Rd

φεpx� yqψpyqhpyq dy � 0

for every x P Rd and every sufficiently small ε ¡ 0. But φε � pψhq Ñ ψh in L1pRdq
as ε Ñ 0, so ψh � 0 in L1pRdq. Thus, ψh � 0 a.e. on Rd, so h � 0 a.e. on K.
Notice that X � �8

n�1Kn, where

Kn � tx P X : |x| ¤ n and distpx,Xcq ¥ n�1u for n � 1, 2, ... .

Since every set Kn is compact and h � 0 a.e. on Kn, it follows that h � 0 a.e. on X
and therefore that f � g a.e. on X.

Example 8.3.3. The Dirac delta δa at a point a P X is defined by

xδa, φy � φpaq, φ P DpXq.
One usually denotes δ0 by just δ. The continuity of δa follows as in Example 8.3.1
from the fact that

|xδa, φy| ¤ }φ}8 for every φ P DpXq.
This distribution is not regular. In fact, suppose that δa were regular. Then there
would exist a function f P L1

locpXq such that»
X

fpxqφpxq dx � φpaq for every φ P DpXq.

Let φ be the test function in Example 8.1.1. Then

φp0q � φpnpa� aqq �
����»
X

fpxqφpnpx� aqq dx
���� ¤ »

|x�a|¤n�1

|fpxq| dx

for n � 1, 2, ... . This gives us a contradiction since the left-hand side is non-zero,
while the right-hand side tends to 0 as nÑ8. �

Example 8.3.4. In one dimension, the Cauchy principal value pv 1
x is de-

fined by A
pv

1

x
, φpxq

E
� lim
εÑ0

»
|x|¥ε

φpxq
x

dx, φ P DpRq.

The limit in the right-hand side is also denoted

pv

» 8
�8

φpxq
x

dx.

To show that this limit exists, first notice that if x P R, then

φpxq � φp�xq �
» x
�x

φ1ptq dt � x

» 1

�1

φ1psxq ds � xψpxq,
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where the function ψ is easily seen to smooth on R. Suppose that suppφ � r�R,Rs
for some number R ¡ 0. It then follows that»

|x|¥ε

φpxq
x

dx �
» R
ε

φpxq � φp�xq
x

dx �
» R
ε

ψpxq dx ÝÑ
» R

0

ψpxq dx

as εÑ 0. This also shows that pv 1
x is sequentially continuous:���Apv

1

x
, φpxq

E��� � ����» R
0

ψpxq dx
���� ¤ R max

0¤x¤R
|ψpxq| ¤ 2R}φ1}8. (8.1)

The principal value distribution is not regular. In fact, let φ be a mollifier on R
and x0 � 0. Theorem 1.6.3 then shows thatA

pv
1

x
, φεpx0 � xq

E
�
» 8
�8

φεpx0 � xq
x

dx ÝÑ 1

x0
as εÑ 0.

This shows that the only possible candidate for a function, that could generate the
principal value, is fpxq � x�1, x � 0. But f is not locally integrable. �

8.4. Distributions of Finite Order

In Example 8.3.1, we showed that the functional uf , generated by a locally inte-
grable function f , is continuous by establishing that, for every compact set K � X,
there exists a constant CK (� ³

K
|f | dx) such that

|xuf , φy| ¤ CK}φ}8
for every function φ P DpXq with support in K. Basically the same technique was
employed in Example 8.3.3 and Example 8.3.4. The next theorem shows that the
existence of such an inequality is not only sufficient for a linear functional to be
continuous on DpXq, but also necessary.

Theorem 8.4.1. A linear functional u on DpXq belongs to D 1pXq if and only if,
for every compact subset K of X, there exist a constant C ¥ 0 and an integer m ¥ 0
such that

|upφq| ¤ C
¸

|α|¤m

}Bαφ}8 (8.2)

for every function φ P DpXq with support in K.

Proof. The sufficiency of the condition (8.2) is obvious. To prove necessity, we
suppose that there exists a compact subset K of X such that (8.2) is not satisfied
for any constant C and any integer m. One can then find functions φn P DpXq
with support in K for which

|upφnq| ¡ n
¸

|α|¤n

}Bαφn}8 for n � 1, 2, ... .

By homogeneity, we may assume that |upφnq| � 1 for every n. It then follows
that }Bαφn}8   1{n if |α| ¤ n, which shows that φn Ñ 0 in DpXq. This is a
contradiction since upφnq does not tend to 0.
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Definition 8.4.2. A distribution u P D 1pXq is said to be of finite order if (8.2)
holds with an integer m that is independent of the set K. The minimal integer m
for which (8.2) holds is then called the order of u. We denote by D 1

mpXq the class
of distributions on X of order less than or equal m.

We remark that if u is of order m, then the constant C in (8.2) will in general
depend on K (as in Example 8.3.1 and Example 8.3.4).

Example 8.4.3. The distributions in Example 8.3.1 and Example 8.3.3 are of
order 0. The order of the Cauchy principal value in Example 8.3.4 is according
to (8.1) not more than 1; we will show that the order is exactly 1. Suppose that
the order were 0. This means that there, for every compact set K � R, would exist
a constant CK such that ����Apv

1

x
, φpxq

E���� ¤ CK}φ}8

for every function φ P DpRq with support in K. Now take K � r0, 2s and
let pφnq8n�1, be a sequence of function in DpRq with support in K that satis-
fies 0 ¤ φnpxq ¤ 1 for every x P R, φnpxq � 0 for 0 ¤ x ¤ 1{2n, and φnpxq � 1
for 1{n ¤ x ¤ 1. It then follows that

CK ¥
����Apv

1

x
, φnpxq

E���� � » 2

1{2n

φnpxq
x

dx ¥
» 1

1{n

dx

x
� lnn,

which is a contradiction. �

Example 8.4.4. Let the linear functional u on DpRq be defined by

xu, φy �
8̧

j�0

φpjqpjq, φ P DpRq.

If suppφ � r�k, ks for some positive integer k, then

|xu, φy| ¤
k�1̧

j�0

}φpjq}8,

which proves that u P D 1pRq according to Theorem 8.4.1. Suppose that u were of
finite order m ¥ 0. Then, for a given compact subset K to R, there would exist a
constant CK such that

|xu, φy| ¤ CK

m̧

j�0

}φpjq}8 (8.3)

for every test function φ with support in K. Now, take φ P DpRq with support
in p�1, 1q such that φpm�1qp0q � 0 and put φnptq � n�mφpnpt�pm� 1qqq for t P R

and n � 1, 2, ... . Then suppφn � pm,m � 2q for every n, }φpjqn }8 ¤ }φpjq}8 for j

satisfying 0 ¤ j ¤ m, and φ
pm�1q
n pm � 1q � nφpm�1qp0q. If we now apply (8.3)

to K � rm,m � 2s and the sequence pφnq8n�1, we get a contradiction since the
right-hand side is bounded with respect to n, while the left-hand side is unbounded.
This shows that u is not of finite order. �
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Remark 8.4.5. One can show that if u P D 1
mpXq, then u can be extended to

a sequentially continuous functional on CmpXq in a unique way. It follows that
distributions of order 0 are measures on X.

8.5. Convergence in D 1pXq

Convergence in D 1pXq is defined as pointwise convergence.1

Definition 8.5.1. A sequence punq8n�1 � D 1pXq converges to u P D 1pXq if

xun, φy Ñ xu, φy for every φ P DpXq.

We denote this by writing un Ñ u.

Example 8.5.2. Suppose that φ P DpRq. According to the Riemann–Lebesgue
lemma for the Fourier transform (see Proposition 6.2.4),

xeinx, φpxqy �
» 8
�8

φpxqeinx dx � pφp�nq ÝÑ 0 as nÑ8,

which shows that einx Ñ 0 in D 1pRq. �

Example 8.5.3. For n � 1, 2, ... , let fn P L1pRq be defined by

fnpxq �
"
n if 0   x   1{n
0 if x ¤ 0 or x ¥ 1{n .

Then ufn Ñ δ in D 1pRq. Indeed, if φ P DpRq, then

xufn , φy � n

» 1{n

0

φpxq dx � n

» 1{n

0

pφpxq � φp0qq dx� φp0q ÝÑ φp0q � xδ, φy

as nÑ8 since

n

����» 1{n

0

pφpxq � φp0qq dx
���� ¤ max

0¤x¤1{n
|φpxq � φp0q| ÝÑ 0. �

Example 8.5.4. Suppose that pKnq8n�1 is an approximate identity on Rd (see
Definition 1.5.1). Theorem 1.5.4 then shows that uKn Ñ δ in D 1pRdq. Notice also
that the function fn in that Example 8.5.3 can be written fnpxq � nKpnxq, x P R,
where K � χp0,1q. �

Example 8.5.5. We will show that

8̧

n��8

einx � 2πδ in D 1p�π, πq, (8.4)

1In the sense of topological vector spaces, D 1pXq is the dual of DpXq. Convergence in D 1pXq
thus coincides with weak� convergence.
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where the series is interpreted as the limit of its symmetric partial sums. This is
the Fourier series expansion of 2πδ, which we will return to later. The identity (8.4)
holds sinceB Ņ

n��N

einx, φpxq
F
�

Ņ

n��N

» π
�π

φpxqeinx dx � 2π
Ņ

n��N

pφp�nq
ÝÑ 2π

8̧

n��8

pφpnq � 2πφp0q � x2πδ, φy as N Ñ8

for every function φ P Dp�π, πq. �

Example 8.5.6. Essentially the same calculations as in Example 8.5.5 show that» 8
�8

e�ixξ dx � 2πδ in D 1pRq,

where the left-hand side is interpreted as the limit in D 1pRq of the integrals» n
�n

e�ixξ dx, where ξ P R and n � 1, 2, ... . �

Example 8.5.7. Suppose that fn Ñ f in L1
locpXq, i.e.,»

K

|f � fn| dxÑ 0 as nÑ8

for every compact subset K to X; this holds for instance if fn converges locally
uniformly to f on X. We will show that ufn Ñ uf in D 1pXq under this assumption.
Suppose that φ P DpXq with compact support K � X. Then

|xuf , φy � xufn , φy| �
���� »
X

pf � fnqφdx
���� ¤ }φ}8

»
K

|f � fn| dx ÝÑ 0. �

We end this section by stating without a proof a theorem which shows that the
space D 1pXq is complete.

Definition 8.5.8. A sequence punq8n�1 � D 1pXq is a Cauchy sequence in D 1pXq
if xun, φy, n � 1, 2, ... , is a Cauchy sequence in C for every φ P DpXq.
Theorem 8.5.9. Every Cauchy sequence in D 1pXq is convergent.

8.6. Restriction and Support

Definition 8.6.1. The restriction u|X1 of a distribution u P D 1pXq to an open
subset X 1 of X is defined by

xu|X1 , φy � xu, φy, φ P DpX 1q.
Notice that u|X1 P D 1pX 1q. The support of a distribution is defined as for functions
(see Definition 1.2.3).
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Definition 8.6.2. The support suppu of a distribution u P D 1pXq consists of
those points x P X for which u|X1 � 0 for every neighbourhood X 1 of x.

If x R suppu, then there exists a neighbourhood X 1 of x such that u|X1 � 0. Since
this implies that the complement of suppu is open, we see that suppu is closed.

Example 8.6.3. Let us show that the support of δa is tau. If φ P DpRd r tauq,
then xδa, φy � φpaq � 0, which shows that supp δa � tau. Conversely, if φ P DpRdq
and φpaq � 0, then xδa, φy � 0, which shows that tau � supp δa. �

The following proposition shows that the support of a regular distribution, gener-
ated by a locally integrable function, coincides with the support of the function.

Proposition 8.6.4. Suppose that f P L1
locpXq. Then suppuf � supp f .

Proof. Suppose first that x R suppuf . Then there exists a neighbourhood X 1 of x
such that uf |X1 � 0. Let K � X 1 be compact and choose a function ψ P DpXq
such that ψ � 1 on K. Now, if φ is a mollifier on Rd, then

φε � pψfqpx1q �
»
X

φεpx1 � yqψpyqfpyq dy � 0

for x1 P X 1 if ε is small enough. As in the proof of Proposition 8.3.2, it follows
that fpx1q � 0 for a.e. x1 P K and consequently for a.e. x1 P X 1. This shows
that x R supp f .

Conversely, suppose that x R supp f . Then there exists a neighbourhood X 1

of x such that f � 0 a.e. on X 1. This implies that xuf , φy � 0 for every φ P DpX 1q,
i.e., x R suppuf .

Proposition 8.6.5. Suppose that u P D 1pXq and φ P DpXq and that

suppuX suppφ �∅.

Then xu, φy � 0.

Proof. Denote the support of φ by K. Then, for every x P K, there exists a
neighbourhood X 1 � X of x such that u|X1 � 0. Since K is compact, it follows
that K can be covered by a finite number such neighborhoods X 1

1, ... X
1
m. Now

let φ1, ... , φm be a partition of unity subordinate to this of K (see Proposition 1.7.3).
Then

xu, φy �
m̧

j�1

xu, φjφy � 0

since supppφjφq � Xj and u|X1
j
� 0 for every j.
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Basic Operations on Distributions

In what follows, X denotes an open subset to Rd.

9.1. Vector Space Operations

As already noticed, D 1pXq is a vector space over the complex numbers with the
vector space operations defined pointwise: If u, v P D 1pXq and α, β P C, one defines
αu� βv through

xαu� βv, φy � αxu, φy � βxv, φy, φ P DpXq.

It is easily verified that αu � βv P D 1pXq, i.e., αu � βv is linear and sequentially
continuous.

9.2. Multiplication with C8-functions

We next define multiplication of distributions with C8-functions — first some no-
tation.

Definition 9.2.1.

(a) We denote by E pXq the class of infinitely continuously differentiable functions
on X.

(b) A sequence pφnq8n�1 in E pXq converges to a function φ P E pXq if Bαφn con-
verges uniformly to Bαφ on every compact subset K to X for every multi-
index α.

Suppose that u P L1
locpXq and f P E pXq. Then, since fu P L1

locpXq, the product fu
defines a regular distribution on X (here denoted fu) which acts on DpXq through
integration:

xfu, φy �
»
X

pfuqφdx �
»
X

upfφq dx � xu, fφy for φ P DpXq.

Here, we used the fact that fφ P DpXq. This shows that if u P D 1pXq, the product
of u with f P E pXq has to be defined in the following manner.

Definition 9.2.2. Suppose that u P D 1pXq and f P E pXq. Then the product fu
is defined by

xfu, φy � xu, fφy, φ P DpXq.

Remark 9.2.3.

(a) It is easy to see that fu is linear and sequentially continuous, so that fu
belongs to D 1pXq. This is a consequence of the fact that if φn Ñ φ in DpXq,
then fφn Ñ fφ in DpXq which is not hard to verify.

(b) Multiplication with a function f P C8pXq is a continuous operation on D 1pXq
in the sense that un Ñ u in D 1pXq implies that fun Ñ fu in D 1pXq.

77
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Example 9.2.4. If f P C8pRdq, then

xfδ, φy � xδ, fφy � fp0qφp0q � xfp0qδ, φy
for every test function φ P DpRdq, which shows that fδ � fp0qδ. �

Example 9.2.5. Let us show that xpv 1
x � 1 in D 1pRq. This holds sinceA

xpv
1

x
, φpxq

E
� lim
εÑ0

»
|x|¥ε

xφpxq
x

dx �
» 8
�8

φpxq dx � x1, φy

for every φ P DpRq. �

In general, is impossible to define the product of two distributions in a meaningful
way. Let us illustrate this with an example.

Example 9.2.6. Suppose that we could define a product on D 1pRq which were
both commutative and associative. Due to commutativity, we would then have

x
�
δ
�

pv
1

x

		
� x
��

pv
1

x

	
δ
	
.

But, since the product is assumed to be associative,

x
�
δ
�

pv
1

x

		
� pxδq pv

1

x
� 0 pv

1

x
� 0,

while

x
��

pv
1

x

	
δ
	
�
�
xpv

1

x

	
δ � 1δ � δ. �

Proposition 9.2.7. Suppose that f P E pXq and u P D 1pXq. Then

supppfuq � supp f X suppu.

Proof. Suppose first that x R supp f . Then there exists a neighbourhood X 1 � X
of x such that f � 0 on X 1, which implies that

xfu, φy � xu, fφy � 0

for every φ P DpXq with support in X 1 since fφ � 0, and hence that x R supppfuq.
Next suppose that x R suppu. Then u|X1 � 0 in a neighbourhood X 1 � X
of x, which implies that xfu, φy � 0 for every φ P DpXq with support in X 1

since supppfφq � X 1. It follows that x R supppfuq.

9.3. Affine Transformations

Suppose that u P L1
locpRdq and let h P Rd. Then

xτhu, φy �
»
Rd

upx� hqφpxq dx �
»
Rd

upxqφpx� hq dx � xu, τ�hφy

for every φ P DpRdq. This identity motivates the following definition.
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Definition 9.3.1. If u P D 1pRdq and h P Rd, then the translate τhu is defined by

xτhu, φy � xu, τ�hφy, φ P DpRdq.
Remark 9.3.2.

(a) One easily verifies that τhu P D 1pRdq by showing that τhu is linear and sequen-
tially continuous. The second property follows from the fact that if φn Ñ φ
in DpXq, then τhφn Ñ τhφ in DpXq.

(b) One can also show that translation is a continuous operation on D 1pRdq:
If un Ñ u in D 1pXq, then τhun Ñ τhu in D 1pXq.

The next example illustrates how translation shifts the support of a distribution.

Example 9.3.3. If h P Rd, then

xτhδ, φy � xδ, τ�hφy � φphq � xδh, φy
for every φ P DpRdq, which shows that τhδ � δh. �

Now suppose that u P L1
locpRdq and that A is a non-singular d� d matrix. Recall

that we have used the notation

A�upxq � upAxq, x P Rd.

Then, changing variables y � Ax, we have that

xA�u, φy �
»
Rd

upAxqφpxq dx � |detA|�1

»
Rd

upyqφpA�1yq dy

� |detA|�1xu, pA�1q�φy
for every φ P DpRdq. We therefore make the following definition.

Definition 9.3.4. If u P D 1pRdq and A is a non-singuar d � d matrix, then the
functional A�u is defined by

xA�u, φy � |detA|�1xu, pA�1q�φy, φ P DpRdq.
Remark 9.3.5. It is easy to show that A�u belongs to D 1pRdq and that the
map u ÞÑ A�u is a continuous operation on D 1pRdq.
Some special cases are worth mentioning. The matrix A � �I corresponds to the
reflection operator R, defined by

xRu, φy � xu,Rφy, φ P DpRdq,
for u P D 1pRdq.
Definition 9.3.6. A distribution u P D 1pRdq is called even if Ru � u and odd
if Ru � �u.

Example 9.3.7. If φ P DpRdq, then

xRδ, φy � xδ,Rφy � φp0q � xδ, φy,
which shows that δ is even. �
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Example 9.3.8. The Cauchy principal value is odd sinceA
R pv

1

x
, φpxq

E
�
A

pv
1

x
,Rφpxq

E
� lim
εÑ0

»
|x|¥ε

φp�xq
x

dx � � lim
εÑ0

»
|x|¥ε

φpxq
x

dx

�
A
� pv

1

x
, φpxq

E
for every φ P DpRq. �

The matrix A � tI, where t � 0, gives the dilation operator Dt, defined by

xDtu, φy � xu, |t|�dDt�1φy, φ P DpRdq,

for u P D 1pRdq.
Definition 9.3.9. A distribution u P D 1pRdq is said to be homogeneous of de-
gree λ P C if

Dtu � tλu for t ¡ 0.

For a function u P L1
locpRdq, this means that

uptxq � tλupxq for every x P Rd.

Example 9.3.10. The Dirac δ is homogeneous of degree �d:

xDtδ, φy � xδ, t�dDt�1φy � t�dφp0q � xt�dδ, φy

for t ¡ 0 and φ P DpRdq. �

Example 9.3.11. The Cauchy principal value is homogeneous of degree �1 (which
of course is no big surprise since x�1 is homogeneous of degree �1):A

Dt pv
1

x
, φpxq

E
�
A

pv
1

x
, t�1Dt�1φpxq

E
� t�1 lim

εÑ0

»
|x|¥ε

φpt�1xq
x

dx

� t�1 lim
εÑ0

»
|y|¥tε

φpyq
y

dy �
A
t�1 pv

1

x
, φpxq

E
for t ¡ 0 and φ P DpRq. �
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Differentiation of distributions

As before, X wil demote an open subset to Rd.

10.1. Definition

To motivate the definition of derivatives of distributions, assume that u P C1pXq
and let φ P DpXq. Using integration by parts, we see that

xBju, φy �
»
X

pBjuqφdx � �
»
X

upBjφq dx � �xu, Bjφy

for j � 1, 2, ... , d. The first order partial derivatives of a distribution on X thus
have to be defined in the following way.

Definition 10.1.1. The partial derivative Bju, where j � 1, 2, ... , d, of a distri-
bution u P D 1pXq is defined by

xBju, φy � �xu, Bjφy, φ P DpXq. (10.1)

Remark 10.1.2.

(a) It follows directly from the definition of convergence in DpXq that if u P D 1pXq,
then Bju P D 1pXq for j � 1, 2, ... , d.

(b) It follows from the previous remark that a distribution u P D 1pXq has deriva-
tives of every order. Also, if α is a multi-index, then (10.1) implies that

xBαu, φy � p�1q|α|xu, Bαφy for φ P DpXq.
(c) Notice that supp Bαu � suppu for every multi-index α.

(d) For a regular distribution uf , the derivatives of uf are often called weak
derivatives.

(e) In the one-dimensional case, the derivates of a distribution u will be deno-
ted u1, u2 etc.

10.2. Examples of Derivatives

Example 10.2.1. The derivative Bαδa acts on DpRdq in the following way:

xBαδa, φy � p�1q|α|xδa, Bαφy � p�1q|α|Bαφpaq, φ P DpRdq. �

The next example shows that the weak derivative of a absolutely continuous func-
tion on R coincides with the ordinary derivative.

Example 10.2.2. Suppose that f P ACpRq. Integrating by parts, we the see that

xu1f , φy � �xuf , φ1y � �
» 8
�8

fpxqφ1pxq dx �
» 8
�8

f 1pxqpxqφdx � xuf 1 , φy.

for every φ P DpRq. This shows that u1f � uf 1 . �
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In the previous example, the function is continuous and differentiable a.e. The fol-
lowing example illustrates what could happen if we drop the continuity assumption.

Example 10.2.3. Let us determine the first derivative of the Heaviside functionH:

xu1H , φy � �xuH , φ1y � �
» 8

0

φ1pxq dx � φp0q � xδ, φy

for every φ P DpRq. This shows that u1H � δ. �

The next example generalizes Example 10.2.3.

Example 10.2.4. Suppose that f P C1pR r tauq has a jump discontinuity at a
and that f 1 P L1

locpRq. Then

xu1f , φy � �xuf , φ1y � �
» 8
�8

fpxqφ1pxq dx

� �
» 8
a

fpxqφ1pxq dx�
» a
�8

fpxqφ1pxq dx

� pfpa�q � fpa�qqφpaq �
» 8
�8

f 1pxqφpxq dx

� xpfpa�q � fpa�qqδa � uf 1 , φy
for every φ P DpRq. This shows that u1f � pfpa�q � fpa�qqδa � uf 1 . �

The following example illustrates the fact that if the derivative of a function is
not locally integrable, then the weak derivative cannot coincide with the ordinary
derivative.

Example 10.2.5. Let fpxq � ln |x|, x P R. Then

xu1f , φy � �xuf , φ1y � �
» 8
�8

ln |x|φ1pxq dx � � lim
εÑ0

»
|x|¥ε

ln |x|φ1pxq dx

� lim
εÑ0

�
pφpεq � φp�εqq ln ε�

»
|x|¥ε

φpxq
x

dx



� lim
εÑ0

»
|x|¥ε

φpxq
x

dx �
A

pv
1

x
, φpxq

E
for every φ P DpRq. This shows that u1f � pv 1

x . �

Example 10.2.6. Consider the function f on R, defined by

fpxq �
#
x�1{2 if x ¡ 0

0 if x ¤ 0
.

The weak derivative of f is calculated in the following way:

xu1f , φy � �xuf , φ1y � �
» 8

0

φ1pxq
x1{2

dx � � lim
εÑ0

» 8
ε

φ1pxq
x1{2

dx

� �1

2
lim
εÑ0

�» 8
ε

φpxq
x3{2

dx� 2
φpεq
ε1{2



� �1

2
lim
εÑ0

�» 8
ε

φpxq � φp0q
x3{2

dx� 2
φpεq � φp0q

ε1{2



� �1

2

» 8
0

φpxq � φp0q
x3{2

dx,
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for every φ P DpRq. If we now define the finite part fp 1
x3{2 of x�3{2 byA

fp
1

x3{2
, φpxq

E
�
» 8

0

φpxq � φp0q
x3{2

dx, φ P DpRq,

we have u1f � � 1
2 fp 1

x3{2 . �

10.3. Differentiation Rules

Basically all differentiation rules from calculus hold in D 1pXq. Differentiation
on D 1pXq is for instance a linear operation. This follows from the definition of the
derivative and the way addition and multiplication with scalars is defined in D 1pXq.
Proposition 10.3.1. Suppose that u, v P DpXq. Then, for every multi-index α,

Bαpau� bvq � apBαuq � bpBαvq for all a, b P C.

Leibniz’ rule for differentiating products also holds in D 1pXq.
Proposition 10.3.2. Suppose that f P E pXq and u P D 1pXq. Then, for every
multi-index α,

Bαpfuq �
¸

0¤β¤α

�
α

β



Bβf Bα�βu. (10.2)

Proof. If α � 0, there is nothing to prove. Suppose that |α| � 1, so that Bα � Bj
for some j. Then

xBjpfuq, φy � �xu, fpBjφqy � �xu, Bjpfφq � pBjfqφy � xfpBjuq, φy � xpBjfqu, φy
� xpBjfqu� fpBjuq, φy

for every φ P DpXq, which shows that Bjpfuq � pBjfqu� fpBjuq. Using induction,
it follows that there exist constants Cαβ such that

Bαpfuq �
¸

0¤β¤α

Cαβ Bβf Bα�βu.

If we now apply this identity to fpxq � eξ�x, x P Rd, and upxq � eη�x, x P Rd,
where ξ P Rd and η P Rd are parameters, we obtain that

pξ � ηqαepξ�ηq�x �
� ¸

0¤β¤α

Cαβ ξ
βηα�β



epξ�ηq�x.

After canceling the common factors, this shows that Cαβ are the coefficients in the
binomial expansion of pξ � ηqα. This proves (10.2).

As for smooth functions, partial derivatives of distributions commute.

Proposition 10.3.3. Suppose that u P D 1pXq. Then

BαpBβuq � BβpBαuq
for all multi-indices α and β.
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Proof. If φ P DpXq, then

xBαpBβuq, φy � p�1q|α|�|β|xu, BβpBαφqy � p�1q|α|�|β|xu, BαpBβφqy
� xBβpBαuq, φy.

The operator Bα : D 1pXq Ñ D 1pXq is sequentially continuous for every multi-
index α:

Proposition 10.3.4. Suppose that un Ñ u in D 1pXq. Then

Bαun ÝÑ Bαu in D 1pXq

for every multi-indicex α.

Proof. If φ P DpXq, then

xBαun, φy � p�1q|α|xun, Bαφy ÝÑ p�1q|α|xu, Bαφy � xBαu, φy as nÑ8.

It follows from this proposition that every convergent series in D 1pXq can be dif-
ferentiated termwise:

Bα
� 8̧

n�1

un



�

8̧

n�1

Bαun.

Example 10.3.5. Notice that

txu �
8̧

n�1

Hpx� nq for x ¥ 0.

Since the series contains a finite number of terms for x belonging to a bounded in-
terval, it converges in L1

locp0,8q and hence in D 1p0,8q (see Example 8.5.7). Propo-
sition 10.3.4 and Example 10.2.3 now show that

txu1 �
8̧

n�1

pHpx� nqq1 �
8̧

n�1

δn. �

10.4. Antiderivatives

Let I � R be an open interval. A test function φ P DpIq has an antiderivative
belonging to DpIq if and only if

³
I
φdx � 0. Indeed, all antiderivatives Φ of φ are

given by

Φpxq �
» x
�8

φpyq dy � C, x P I,

where C P C is a constant. Every antiderivative Φ is of course smooth, but Φ has
compact support in I if and only if C � 0 and

³
I
φdx � 0. Below, we will show

that for every distribution u P D 1pIq, there exists a distribution U P D 1pIq which is
an antiderivative of u in the sense that U 1 � u and that the antiderivatives of u
are uniquely determined up to an additive constant.



10.4. Antiderivatives 85

Proposition 10.4.1. Suppose that I � R is an open interval and that u P D 1pIq.
Then u has a antiderivative U P D 1pIq. Moreover, every antiderivative V P D 1pIq
of u is given by V � U � C for some constant C P C.

Proof. We will use the operator T : DpIq Ñ DpIq, defined for φ P DpIq by

Tφpxq �
» x
�8

φpyq dy � x1, φy
» x
�8

ψpyq dy, x P I,

where ψ P DpIq satisfies
³
I
ψ dx � 1. We leave it to the reader to establish the

following properties of T :

(i) Tφ P DpIq;
(ii) Tφ1 � φ;

(iii) if φn Ñ φ in DpIq, then Tφn Ñ Tφ in DpIq.
Define U P D 1pIq by

xU, φy � �xu, Tφy, φ P DpIq.
Then U 1 � u since

xU 1, φy � �xU, φ1y � xu, Tφ1y � xu, φy

for every φ P DpIq. Suppose that V P D 1pIq satisfies V 1 � u and put W � V � U .
Then W 1 � 0, so

0 � xW 1, Tφy � �xW, pTφq1y � �xW,φ� x1, φyψy � xxW,ψy, φy � xW,φy

for every φ P DpIq, which shows that W � xW,ψy, i.e., V � U � xW,ψy.

Example 10.4.2. Let us calculate the antiderivatives of pv 1
x this using the tech-

nique employed in the proof of Proposition 10.4.1. We know that one antideriva-
tive U is given by

xU, φy � �
A

pv
1

x
, Tφpxq

E
� � lim

εÑ0

»
|x|¥ε

Φpxq � x1, φyΨpxq
x

dx

for φ P DpRq, where Φpxq � ³x
�8

φpyq dy, x P R, and Ψpxq � ³x
�8

ψpyq dy, x P R.
Integrating by parts, we see that

xU, φy � xln |x|, φpxqy � x1, φyxln |x|, ψpxqy � xln |x| � C, φpxqy,

where C � xln |x|, ψpxqy. Thus, all antiderivatives of pv 1
x are given by ln |x| �D,

where D is an arbitrary constant. This also follows from Example 10.2.5. �

The uniqueness part of Proposition 10.4.1 gives the following corollary.

Corollary 10.4.3. Suppose that I � R is an open interval and that u P D 1pIq
satisfies u1 � 0. Then u is a constant.
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10.5. Linear Differential Operators

Suppose that aα P E pXq for |α| ¤ m and that not all aα with |α| � m are
identically 0. Put

P pBq �
¸

|α|¤m

aαBα.

We call P pBq a linear differential operator on D 1pXq of order m. An equation
of the form

P pBqu � v,

where v P D 1pXq, is called a differential equation. In the case d � 1, this is an
ordinary differential equation and for d ¡ 1 a partial differential equation.
For X � Rd and v � δ, the solutions to this equation are called fundamental
solutions.

Below, we illustrate how one solves an ordinary differential equation with a
distribution in the right-hand side.

Example 10.5.1. Let us determine all solutions u P D 1pRq to the differential
equation

u1 � 2u � δ. (10.3)

Multiplying the equation with the integrating factor e2x, we obtain that

e2xu1 � 2e2xu � e2xδ � δ, so that pe2xuq1 � δ.

One solution to this equation is u � Hpxqe�2x. To find all solutions to the equation,
we solve the corresponding homogeneous equation, namely pe2xuq1 � 0, and find
that u � Ce�2x, where C is a constant. This shows that all solutions to (10.3) are
given by

u � Ce�2x �Hpxqe�2x �
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Distributions with Compact Support

11.1. Distributions on E pXq

Definition 11.1.1. A sequence pφnq8n�1 � E pXq converges to φ P E pXq if, for
every multi-index α and every compact subset K to X, Bαφn converges uniformly
to Bαφ on K. We denote this by writing φn Ñ φ.

Definition 11.1.2. A distribution on E pXq is a sequentially continuous, linear
functional on E pXq. We denote the class of distributions on E pXq by E 1pXq.
As for distributions on E pXq, we shall write xu, φy instead of upφq if u P E 1pXq
and φ P E pXq.
Example 11.1.3.

(a) The Dirac δ at a P X and all its derivatives define distributions on E pXq.
(b) Every function f P L1pXq with compact support also defines a distribution on

E pXq. �

The following theorem is proved as Theorem 8.4.1. The proof is left to the reader.

Theorem 11.1.4. A linear functional u on E pXq belongs to E 1pXq if and only if
there exist a compact set K � X, a constant C ¥ 0, and an integer m ¥ 0 such
that

|xu, φy| ¤ C
¸

|α|¤m

sup
xPK

|Bαφpxq| (11.1)

for every function φ P E pXq.
This theorem shows that every distribution on E pXq has compact support.

11.2. Extension of Compactly Supported Distributions

Notice that DpXq is a subspace E pXq — not only as classes of functions, but also
from a topological point of view — since convergence in DpXq implies convergence
in E pXq. It follows that if u P E 1pXq, then u|DpXq P D 1pXq. A distribution on E pXq
may thus be considered as a distribution on DpXq with compact support. We will
conversely show that every distribution on DpXq with compact support can be
extended to E pXq.
Theorem 11.2.1. Suppose that u P D 1pXq has compact support K � X. Then
there exists a unique distribution ru P E 1pXq such that

(i) ru � u on DpXq;
(ii) xru, φy if φ P E pXq and suppφXK �∅.

Proof. According to Proposition 1.7.1, there exists a function χ P DpXq such
that χ � 1 on K. Define ru through

xru, φy � xu, χφy for φ P E pXq
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and let L � suppχ. Theorem 8.4.1 and Leibniz’ rule then shows that

|xru, φy| � |xu, χφy| ¤ C
¸

|α|¤m

sup
xPL

|Bαpχpxqφpxqq|

¤ C 1
¸

|α|¤m

sup
xPL

|Bαφpxq| (11.2)

for every φ P E pXq. It thus follows from Theorem 11.1.4 that ru P E 1pXq. We also
have

xru, φy � xu, χφy � xu, φy � xu, pχ� 1qφy � xu, φy for every φ P DpXq
since suppuX supppχ� 1qφ �∅ (see Proposition 8.6.5). Morover,

xru, φy � xu, χφy � 0

for every φ P E pXq with suppφ X K � ∅ since supppχφq � suppφ. To prove
uniqueness, suppose that v P E 1pXq is another extension of u to E pXq that satis-
fies (ii). Then

xv, φy � xv, χφy � xv, p1� χqφy � xv, χφy � xu, χφy for every φ P E pXq
since supppp1� χqφq XK �∅. This shows that v � ru.

Remark 11.2.2.

(a) This theorem and the preceding observations show that E 1pXq may be identi-
fied with the subspace to D 1pXq, that consists of distributions with compact
support, and we shall henceforth do that.

(b) We shall also write xu, φy instead of xru, φy if u P E 1pXq and φ P E pXq.
(c) In general, it is not possible to replace the set L in (11.2) with the support of u.

However, if suppu has a smooth boundary, this can be done.

It follows directly from (11.2) that a distribution with compact support is of finite
order.

Corollary 11.2.3. Suppose that u P E 1pXq. Then u is of finite order.

11.3. Distributions Supported at a Point

Theorem 11.3.1. Suppose that u P D 1pXq and that suppu � tau for some a P X.
Then there exist an integer m ¥ 0 and constants Cα, where |α| ¤ m, such that

u �
¸

|α|¤m

CαBαδ.

Proof. Without loss of generality, we may assume that a � 0. Let ε ¡ 0 be so
small that B2εp0q � X and take a function χ P DpXq, with support in B2εp0q, such
that χ � 1 on Bεp0q. Put χjpxq � χp2jxq, x P X, j � 0, 1, ... . If m is the order
of u, the Taylor expansion of a function φ P DpXq of order m around 0 is

φpxq �
¸

|α|¤m

Bαφp0q
α!

xα � rmpxq,
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where
|Bγrmpxq| ¤ C|x|m�1�|γ| for |γ| ¤ m.

Applying u to this identity, we obtain

xu, φy � xu, χφy �
¸

|α|¤m

Bαφp0q
α!

xu, xαχpxqy � xu, χjpxqrmpxqy. (11.3)

Suppose that |x| ¤ 2ε2�j and that |β| � |γ| ¤ m. Then

|BβχjpxqBγrmpxq| ¤ C2j|β|2�jp�1�|γ|q ¤ C2�j .

It thus follows from (11.2) and Lebniz’ rule that xu, χjrmy Ñ 0 as j Ñ 8. If we
now let j Ñ8 in (11.3), we see that

xu, φy �
¸

|α|¤m

Bαφp0q
α!

xu, xαχpxqy �
¸

|α|¤m

p�1q|α|
α!

xu, xαχpxqyxBαδ, φy,

which proves the theorem.



Chapter 12

Tensor Products and Convolutions

In this chapter, X and Y will denote open subsets to Rd and Re, respectively.
Let W � X � Y .

12.1. Tensor Products of Functions

Definition 12.1.1. For f P L1
locpXq and g P L1

locpY q, the tensor product f b g
is defined by

f b gpx, yq � fpxqgpyq, px, yq PW.

Notice that f b g P L1
locpW q.

12.2. Tensor Products of Distributions

To get an idea of how the tensor product of two distributions should be defined,
we as usual consider regular distributions first and look at how the tensor product
of two functions act on a test function. Suppose that f P L1

locpXq and g P L1
locpY q

and let φ P DpW q. Then

xf b g, φy �
¼
W

fpxqgpyqφpx, yq dx dy �
»
X

fpxq
�»

Y

gpyqφpx, yq dy


dx

� xfpxq, xgpyq, φpx, yqyy.

Notice that ψpyq � φpx, yq, y P Y, belongs to DpY q for every fixed x P X and that
the function

ηpxq �
»
Y

gpyqφpx, yq dy, x P X,

belongs to DpXq. The tensor product of u P D 1pXq and v P D 1pY q should thus be
defined as

xub v, φy � xupxq, xvpyq, φpx, yqyy for φ P DpW q. (12.1)

Here, we allow a little abuse of notation to make the presentation less heavy and
hopefully clearer. We write vpyq to indicate that v acts on the second variable in φ
and similarly for u. To show that (12.1) makes sense, we need the following lemma.

Lemma 12.2.1. Suppose that v P D 1pY q and φ P DpW q. Then the function

ηpxq � xvpyq, φpx, yqy, x P X, (12.2)

belongs to DpXq and

Bαx xvpyq, φpx, yqy � xvpyq, Bαxφpx, yqy (12.3)

for every x P X and all multi-indices α. Moreover, the mapping from DpW q
to DpXq, defined by (12.2), is sequentially continuous.

90
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Remark 12.2.2. There holds a corresponding result for v P E 1pY q and φ P E pW q.
More precisely, if v P E 1pY q and φ P E pW q, then the function, defined by (12.2),
belongs to E pXq and (12.3) holds.

Proof (Lemma 12.2.1). For r ¥ 0, put

Xr � tx P X : |x| ¤ ru, Yr � ty P Y : |y| ¤ ru, and Wr � Xr � Yr,

and choose r so large that suppφ � Wr. Then supp η � Xr, which shows that η
has compact support. As in Example 8.1.4, we see that

φpx� h, yq ÝÑ φpx, yq as hÑ 0

in DpY q for every fixed x P X, from which it follows that

ηpx� hq ÝÑ ηpxq as hÑ 0,

so η is continuous. If ej is the j-th vector in the standard basis of Rd, we also have

φpx� hej , yq � φpx, yq
h

ÝÑ B
Bxj φpx, yq as hÑ 0

in DpY q for every fixed x P X. This establishes (12.3) in the case |α| � 1; the general
case follows by induction. We have thus shown that η P DpXq. Now, suppose that
φj Ñ 0 in DpW q. Denote the corresponding sequence, defined by (12.2) by ηj .
If r is so large that suppφj � Wr for every j, then supp ηj � Xr and, according
to (12.3) and Theorem 8.4.1,

sup
xPXr

|Bαx ηjpxq| ¤ C sup
xPXr

¸
|β|¤m

sup
yPYr

|Bβy Bαxφjpx, yq| ÝÑ 0 as j Ñ8.

This shows that ηj Ñ 0 in DpXq.
Definition 12.2.3. The tensor product u b v of u P DpXq and v P DpY q is
defined by

xub v, φy � xupxq, xvpyq, φpx, yqyy for φ P DpW q.
Theorem 12.2.4. Suppose that u P D 1pXq and v P D 1pY q. Then u b v P D 1pW q
and suppub v � suppu� supp v.

Proof. Suppose that φj Ñ φ in DpW q. Then, with the notation in the proof of
Lemma 12.2.1, ηj Ñ η in DpXq. It follows that

xub v, φjy � xu, ηjy ÝÑ xu, ηy � xub v, φy.
The statement about the support of ub v is left as an exercise to the reader.

Remark 12.2.5. If u P E pXq and v P E pY q, then the tensor product can be
extended to φ P E pW q. In this case, ub v P E 1pW q.
Example 12.2.6. If a P X and b P Y , then

xδa b δb, φy � xδapxq, xδbpyq, φpx, yqyy � xδapxq, φpx, bqy � φpa, bq � xδpa,bq, φy
for every φ P DpW q, which shows that δa b δb � δpa,bq. �
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12.3. Properties of Tensor Products

If u P D 1pXq and v P D 1pY q, then

xub v, φb ψy � xupxq, xvpyq, φpxqψpyqyy � xu, φyxv, ψy

for all functions φ P DpXq and ψ P DpY q. On the other hand,

xu, φyxv, ψy � xvpyq, xupxq, φpxqyψpyqy � xvpyq, xupxq, φpxqψpyqyy
� xv b u, φb ψy.

This shows that the tensor product is commutative on all functions in DpW q of the
form φb ψ, where φ P DpXq and ψ P DpY q. To extend this to arbitrary functions
in DpW q, we will prove the lemma below.

Lemma 12.3.1. The class of all finite linear combinations of functions of the
form φb ψ, where φ P DpXq and ψ P DpY q, is dense in DpW q.

Proof. Suppose that φ P DpW q and put K � suppφ. For every x P K, there
exists an open cube Qx such that x P Qx � 2Qx � W . By compactness, K can
be covered by a finite number cubes Q1, ... , Qm. Let ψ1, ... , ψm be a partition
of unity subordinate to this covering (see Corollary 1.7.3). Then φ � °m

j�1 ψjφ
and supppφψjq � Qj . Consider one of the functions ψ � φψj . After making
a translation, we may assume that suppψ � p�r, rqd�e � p�2r, 2rqd�e � W .
Weierstrass’ approximation theorem now shows that there, for every integer k ¥ 1,
exists a polynomial Pk such that

|Bαψpx, yq � BαPkpx, yq| ¤ 1

k
for every px, yq P p�2r, 2rqd�e

and every multi-index α with |α| ¤ k. Let τ be a one-dimensional cut-off function
such that τ � 1 on r�r, rs and τ � 0 outside p�2r, 2rq, and put

ηkpx, yq � Pkpx, yqτpx1q ... τpyeq, px, yq PW.

Then ηk P DpW q with supp ηk � p�2r, 2rqd�e and has the form that we are looking
for. Consider the following three cases:

(i) In r�r, rsd�e is ηk � Pk. Moreover, BαPk tends uniformly to Bαψ as k Ñ 8
for every multi-index α.

(ii) In p�2r, 2rqd�e r r�r, rsd�e is ψ � 0. Moreover, according to Leibniz’ rule,

|Bαηkpx, yq| ¤ C
¸
β¤α

|BβPkpx, yq| ¤ C

k
,

which shows that Bαηk tends uniformly to 0.

(iii) Outside p�2r, 2rqd�e is ψ � ηk � 0.

This shows that ηk Ñ ψ in DpW q.

Corollary 12.3.2. Suppose that U, V P D 1pW q and that xU, φ b ψy � xV, φ b ψy
for all functions φ P DpXq and ψ P DpY q. Then U � V .
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The next three propositions show that the tensor product is commutative, associa-
tive, and distributive.

Proposition 12.3.3. Suppose that u P D 1pXq and v P D 1pY q. Then

ub v � v b u.

Proof. This follows from Corollary 12.3.2 with U � ub v and V � v b u.

Proposition 12.3.4. Suppose that u P D 1pXq, v P D 1pY q, and w P D 1pZq, where Z
is an open subset to Rf . Then

ub pv b wq � pub vq b w.

Proof. If φ P DpX � Y � Zq, then

xub pv b wq, φy � xupxq, xpv b wqpy, zq, φpx, y, zqyy
� xupxq, xvpyq, xwpzq, φpx, y, zqyyy
� xub vpx, yq, xwpzq, φpx, y, zqyy
� xpub vq b w, φy.

Proposition 12.3.5. Suppose that u, v P D 1pXq and w P D 1pY q. Then

pu� vq b w � ub w � v b w.

Proof. If φ P DpX � Y � Zq, then

xpu� vq b w, φy � xupxq � vpxq, xwpyq, φpx, yqyy
� xupxq, xwpyq, φpx, yqyy � xvpxq, xwpyq, φpx, yqyy
� xub w, φy � xv b w, φy.

Proposition 12.3.6. Suppose that uj Ñ u in D 1pXq. Then uj b v Ñ u b v
in D 1pXq for every v P D 1pY q.
Proof. We use the notation in the proof of Lemma 12.2.1. If φ P DpW q, then

xuj b v, φy � xuj , ψy ÝÑ xu, ψy � xub v, φy.

Proposition 12.3.7. Suppose that u P D 1pXq and v P D 1pY q. Then

Bαx Bβy pub vq � Bαxub Bβy v
for all multi-indices α and β.

Proof. Suppose that φ P DpXq and ψ P DpY q. Then

xBαx Bβy pub vq, φb ψy � p�1q|α|�|β|xub v, Bαxφb Bβyψy
� p�1q|α|xu, Bαxφyp�1q|β|xv, Bβyψy
� xBαxu, φyxBβy v, ψy
� xBαxub Bβy v, φb ψy.

The general case follows from Corollary 12.3.2.

Remark 12.3.8. All results in this section also holds for distributions with com-
pact support, where the tensor products act on C8-functions.
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12.4. Convolutions of Distributions

We next consider convolutions of distributions. Suppose first that f, g P L1pRdq and
that both functions have compact support. Then f � g P L1pRdq and thus defines a
regular distribution on DpRdq. This distribution acts on a test function φ P DpRdq
in the following way:

xf � g, φy �
»
Rd

�»
Rd

fpxqgpy � xq dx


φpyq dy

�
»
Rd

fpxq
�»

Rd

gpyqφpx� yq dy


dx

� xfpxq, xgpyq, φpx� yqyy
� xfpxq b gpyq, φpx� yqy

Notice that the assumption about compact supports is needed not for the exis-
tence of the integrals above, but to justify the last equality. This shows that the
convolution between u P D 1pRdq and v P D 1pRdq in principle should be defined by

xu � v, φy � xupxq b vpyq, φpx� yqy, φ P DpRdq.
In general, the right-hand side in this identity is however not defined because the
function px, yq ÞÑ φpx � yq does not have compact support. One case when this
makes sense is when if u, v P E 1pRdq since then ub v belongs to E 1pR2dq.

We will assume that a weaker condition holds. Suppose that suppφ � Brp0q for
some r ¡ 0. Then suppφp� � �q � Nr, where Nr � tpx, yq P R2d : |x� y| ¤ ru. The
condition, that we will require in the definition of convolutions, is the following:

psuppu� supp vq XNr is bounded for every r ¡ 0. (12.4)

Example 12.4.1. The condition (12.4) is satisfied for instance if

(i) u P E 1pRdq or v P E 1pRdq;
(ii) suppu, supp v � tx P Rd : xj ¥ c for every ju for some number c P R. �

Definition 12.4.2. Suppose that u, v P D 1pRdq satisfy (12.4). Then the convo-
lution between u and v is defined by

xu � v, φy � xupxq b vpyq, ρpx, yqφpx� yqy, φ P DpRdq,
where suppφ � Brp0q and ρ P DpR2dq is chosen so that ρ � 1 in a neighbourhood
of the set psuppu� supp vq XNr.

Remark 12.4.3. This definition is as expected independent of the choice of the
function ρ. In fact, if ρ1 and ρ2 are two such functions, then

xupxq b vpyq, pρ1px, yq � ρ2px, yqqφpx� yqy � 0

since ρ1 � ρ2 � 0 in a neighbourhood of psuppu� supp vq XNr. We will therefore
usually omit ρ and just write

xu � v, φy � xupxq b vpyq, φpx� yqy.
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Theorem 12.4.4. Suppose that u, v P D 1pRdq satisfy (12.4). Then u � v P D 1pRdq
with suppu � v � suppu� supp v.

Proof. The first statement follows from Theorem 12.2.4 and the second is left as
an exercise to the reader.

Example 12.4.5. We have

u � δ � δ � u � u for every u P D 1pRdq.
Indeed,

xu � δ, φy � xupxq b δpyq, φpx� yqy � xupxqxδpyq, φpx� yqyy � xu, φy
and

xδ � u, φy � xδpxq b upyq, φpx� yqy � xδpxq, xupyq, φpx� yqyy � xu, φy
for every φ P DpRdq. The same calculations show more generally that

u � Bαδ � Bαδ � u � Bαu for every multi-index α. �

12.5. Properties of the Convolution

It is easy to show that convolution is both commutative and distributive.

Proposition 12.5.1. Suppose that u, v P D 1pRdq satisfy (12.4). Then

u � v � v � u.
Proof. Given φ P DpRdq, choose ρ P DpRdq symmetric. Then, according to
Proposition 12.3.3,

xu � v, φy � xupxq b vpyq, ρpx, yqφpx, yqy � xvpyq b upxq, ρpx, yqφpx� yqy
� xvpyq b upxq, ρpy, xqφpy � xqy � xv � u, φy.

Proposition 12.5.2. Suppose that u, v, w P D 1pRdq and that pu,wq and pv, wq
satisfy (12.4). Then

pu� vq � w � u � w � v � w.
Proof. Since supppu�vq � suppuY supp v, it follows that pu�v, wq satisfies (12.4),
so pu� vq � w is defined. The rest of the proof is routine.

To prove that convolution is associative is a bit harder than to prove commutativity
and distributivity. We will therefore omit the proof.

Proposition 12.5.3. Suppose that u, v, w P D 1pRdq and that the set

psuppu� supp v � suppwq X tpx, y, zq P R3d : |x� y � z| ¤ ru (12.5)

is bounded for every r ¡ 0. Then

u � pv � wq � pu � vq � w. (12.6)
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Remark 12.5.4. A few comments are in order.

(i) One can show that (12.5) implies that pu, vq and pv, wq satisfy (12.4); let us
for instance show that (12.4) holds. We can of course assume that w � 0.
Suppose that z0 P suppw and choose r ¡ |z0|. Then is the set

psuppu� supp v � tz0uq X tpx, y, zq P R3d : |x� y � z| ¤ ru

bounded by assumption. It follows that the subset

psuppu� supp v � tz0uq X tpx, y, zq P R3d : |x� y| ¤ r � |z0|u

is also bounded, which gives (12.4).

(ii) If pu, vq satisfies (12.4) and w P E 1pRdq, then (12.5) holds.

(iii) Suppose that pu, v, wq does not satisfy (12.5). Then (12.6) does not have to
hold. Take for instance u � 1, v � δ1, and w � δ. Then

1 � pδ1 �Hq � 1 �H 1 � 1 � δ � 1, but p1 � δ1q �H � 11 �H � 0 �H � 0.

Notice, however, that p1, δ1q and pδ1, Hq satisfy (12.4) since δ1 has compact
support.

Proposition 12.5.5. Suppose that uj Ñ u in D 1pRdq, that pu, vq satisfies (12.4),
and that puj , vq satisfy (12.4) uniformly with respect to j. Then uj � v Ñ u � v
in D 1pRdq.

The assumption about uniformity means that there for every r ¡ 0 exists a bounded
set Br such that

psuppuj � supp vq XNr � Br for every j.

Proof (Proposition 12.5.5). Suppose that φ P DpRdq. Then, according to Pro-
position 12.3.6,

xuj � v, φy � xujpxq b vpyq, φpx� yqy ÝÑ xupxq b vpyq, φpx� yqy � xu � v, φy.

Proposition 12.5.6. Suppose that u, v P D 1pRdq and that pu, vq satisfies (12.4).
Then

Bαpu � vq � Bαu � v � u � Bαv
for every multi-index α.

Proof. Suppose that φ P DpRdq. Then, according to Proposition 12.3.7,

xBαpu � vq, φy � p�1q|α|xu � v, Bαφy � xupxq b vpyq, ρpx, yqBαφpx� yqy
� xupxq b vpyq, Bαx pρpx, yqφpx� yqqy
� xBαxupxq b vpyq, ρpx, yqφpx� yqy
� xBαu � v, φy.

This shows that Bαpu � vq � Bαu � v. The other identity is proved similarly.
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The next proposition shows that the convolution between a distribution and a test
function is a smooth function.

Proposition 12.5.7. Suppose u P D 1pRdq and f P DpRdq. Then u � f P E pRdq
and

u � fpxq � xupyq, fpx� yqy for every x P Rd. (12.7)

Proof. Notice that the convolution u � f is defined since f has compact support
and that the right-hand side in (12.7) is defined for every fixed x P Rd since fpx��q
also has compact support. Suppose that supp f � Brp0q and choose ρ P DpRdq
such that ρ � 1 on B2rp0q. Lemma 12.2.1 then shows that the function

ηpxq � xupyq, fpx� yqy � xupyq, ρpyqfpx� yqy, |x|   r,

belongs to E pBrp0qq. This holds for every sufficiently large r, so we have η P E pRdq.
Now suppose that φ P DpRdq with suppφ � Brp0q. Then

xu � f, φy � xupxq b fpyq, ρpxqρpyqφpx� yqy � xupxq, xfpyq, ρpxqρpyqφpx� yqyy.

We also have

xfpyq, ρpxqρpyqφpx� yqy �
»
Rd

fpyqφpx� yq dy �
»
Rd

fpy � xqφpyq dy
� xφpyq, ρpyqfpy � xqy

for every x P Rd. This shows that

xu � f, φy � xupxq, xφpyq, ρpyqfpy � xqyy � xupxq b φpyq, ρpyqfpy � xqy
� xφpyq b upxq, ρpyqfpy � xqy �

»
Rd

φpyqxupxq, fpy � xqy dy

�
»
Rd

xupyq, fpx� yqyφpxq dx,

which proves (12.7).

Example 12.5.8. The Hilbert transform H P D 1pRq is defined by

Hφpxq � pv
1

x
� φpxq, φ P DpRq.

Using Proposition 12.5.7, we see that

Hφpxq � xpv
1

y
, φpx� yqy � lim

εÑ0

»
|y|¥ε

φpx� yq
y

dy � pv

» 8
�8

φpx� yq
y

dy. �

12.6. Density Results

A consequence of Proposition 12.5.7 is the following result about regularization of
distributions.
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Proposition 12.6.1. Suppose that u P D 1pRdq and let pφjq8j�1 be an approximate

identity. Then φj � u P E pRdq and φj � uÑ u in D 1pRdq as j Ñ8.

Proof. As in Example 8.5.4, we have φj Ñ δ in D 1pRdq. It then follows from
Proposition 12.5.5 that

φj � u Ñ δ � u � u in D 1pRdq.

Example 12.6.2. We will use the result in Proposition 12.6.1 to give a new proof
of Lemma 10.4.3. Suppose that u P D 1pRq and u1 � 0. Then, according to Propo-
sition 12.5.6,

pφj � uq1 � φj � u1 � 0.

Since φj � u is a smooth function, this shows that φj � u is a constant Cj . Becau-
se φj � uÑ u in D 1pRq, it follows that Cj converges to some constant C. �

The following two density results follow from Proposition 12.6.1.

Corollary 12.6.3. The set DpRdq is dense in D 1pRdq.

Proof. Suppose that u P D 1pRdq. Take a cut-off function χ P DpRdq such
that χ � 1 on B1p0q. If pφjq8j�1 is an approximate identity, it then follows easily
from Proposition 12.6.1 that the sequence χpx{jqφj�upxq, j � 1, 2, ... , of compactly
supported test functions converges to u in D 1pRdq.

Corollary 12.6.4. The set DpXq is dense in D 1pXq.

Proof. As in the proof of Theorem 8.3.2, let pKjq8j�1 be an increasing sequence

of compact subsets to X such that X � �8
j�1Kj . Then choose χj P DpXq such

that χj � 1 in a neighbourhood of Kj and put uj � χju, j � 1, 2, ... . Obvi-
ously, uj P E 1pXq and we may extend uj to an element in E 1pRdq. Let pψjq8j�1

be an approximate identity. Then ψj � uj P DpRdq with support in X if j is large
enough; we will show that ψj � uj Ñ u in D 1pXq. To this end, let φ P DpXq.
Then xu, φy � xuk, φy for large k. It follows that

xψj � uj , φy �
B
ujpxq,

»
Rd

ψjpyqφpx� yq dy
F
�
B
ukpxq,

»
Rd

ψjpyqφpx� yq dy
F

� xψj � uk, φy

if j ¥ k is sufficiently large. Proposition 12.6.1 now shows that

xψj � uj , φy � xψj � uk, φy ÝÑ xuk, φy � xu, φy.
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Tempered Distributions

13.1. Fourier Transforms of Distributions

When trying to define the Fourier transform of distributions, a complication ap-
pears. Suppose first that f P L1pRdq and φ P DpRdq. Proposition 6.2.8 then shows
that

xuf̂ , φy �
»
Rd

pfpxqφpxq dx � »
Rd

fpxqpφpxq dx.
So far everything is fine. Notice, however, that pφ does not belong to DpRdq unless φ

is identically 0 since pφ can be extended to an entire function on Cd and thus cannot
have compact support without being 0 everywhere. This means that we do not have

xuf̂ , φy � xuf , pφy
for φ P DpRdq. The class DpRdq is therefore not suitable when working with
Fourier transforms of distributions. What is needed is a class of test functions that
is invariant under the Fourier transform.

13.2. The Schwartz Class

Definition 13.2.1. A function φ P C8pRdq is said to be rapidly decreasing if

}φ}α,β � sup
xPRd

|xαBβφpxq|   8 (13.1)

for all multi-indices α and β. The vector space of all rapidly decreasing is called
the Schwartz Class and is denoted S .

Thus, if φ P S , then φ and all its derivatives tend faster to 0 than |x|�k for any
integer k ¥ 0 as |x| Ñ 8.

Example 13.2.2. It is easy to show that the function φpxq � e�a|x|
2

, x P Rd,
belongs to S for every complex number a with positive real part. �

It follows directly from the definition that the Schwartz class is invariant under
differentiation and multiplication with powers of x and that these operations are
continuous on S .

Proposition 13.2.3. The mapping S Q φ ÞÑ xαDβφpxq is a continuous map
from S to S for all multi-indices α and β.

There is a notion of convergence in the Schwartz class.

Definition 13.2.4. A sequence pφnq8n�1 � S converges to φ P S if

}φ� φn}α,β ÝÑ 0 as nÑ8

for all multi-indices α and β.

99
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Proposition 13.2.5. The set DpRdq is a dense subspace to S .

Proof. Convergence in DpRdq clearly implies convergence in S , so DpRdq sub-
space to S . To prove density, suppose that φ P S . Take χ P DpRdq such
that χ � 1 on B1p0q and put χnpxq � χpx{nq, x P Rd, for n � 1, 2, ... . Then
the sequence φn � χnφ, n � 1, 2, ... , of functions belonging to DpRdq converges to
φ in S . In fact,

}φ� φn}α,β � sup
|x|¥n

|xαBβpφpxqp1� χnpxqqq| ¤ C
¸
γ¤β

sup
|x|¥n

|xαBγφpxq|. (13.2)

Moreover, if |x| ¥ n, then |xj | ¥ n{?d for some j, so if α1 equals α with 1 added
at place j, then

|xαBγφpxq| ¤
?
dn�1|xα1Bγφpxq| ¤

?
dn�1}φ}α1,γ .

Together with (13.2), this shows that φn converges to φ in S .

Proposition 13.2.6. The set S is a dense subspace to LppRdq for 1 ¤ p   8.

Proof. Suppose that φ P S . Then

}φ}p �
�»

Rd

|p1� |x|2qdφpxq|p dx

p1� |x|2qdp

1{p

¤ C}p1� |x|2qdφpxq}8

¤ C
¸

|α|¤2d

}φ}α,0   8,

which shows that φ P LppRdq, so S is a subset to LppRdq. The density of S
in LppRdq follows from the fact that C8

c pRdq is dense in LppRdq.
The importance of the Schwartz class in distribution theory stems from the following
theorem.

Theorem 13.2.7. The Fourier transform F is a continuous map from S to S .

Proof. Suppose that φ P S . Then pφ P C8pRdq according to Proposition 6.2.11.

Moreover, pφ P S satisfies (13.1) for all multi-indices α and β since

}pφ}α,β � }ξαBβ pφpξq}8 � } {Dαpxβφpxqq}8 ¤ }Dαpxβφpxqq}1
¤ C}p1� |x|2qdDαpxβφpxqq}8   8.

This inequality also shows that the Fourier transform is continuous.

Suppose that φ P S . Then φ is bounded and continuous and pφ P S � L1pRdq, so
it follows from Theorem 6.4.1 that

φpxq � 1

p2πqd
»
Rd

pφpξqeiξ�x dξ for every x P Rd.

This shows that the Fourier transform F : S Ñ S is invertible and the inverse
is F�1 � p2πq�dF̌ . Theorem 13.2.6 also implies that the inverse is continuous.

Theorem 13.2.8. The Fourier transform is a homeomorphism from S to S .
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13.3. Tempered Distributions

We next define the dual space to S .

Definition 13.3.1. A tempered distribution is a sequentially continuous, linear
functional on S . We denote the class of tempered distributions by S 1.

Definition 13.3.2. A sequence punq8n�1 � S 1 converges to u P S 1 if

xun, φy Ñ xu, φy for every φ P S .

Notice that if u P S 1, then since DpRdq � S , the restriction of u to DpRdq belongs
to D 1pRdq. We may thus consider S 1 as a subspace to D 1pRdq.

The proof of the following theorem is left as an exercise to the reader.

Theorem 13.3.3. A linear functional u on S belongs to S 1 if and only if there
exist a constant C ¥ 0 and an integer m ¥ 0 such that

|xu, φy| ¤ C
¸

|α|,|β|¤m

}φ}α,β (13.3)

for every function φ P S .

It follows from Theorem 11.1.4 that (13.3) is satisfied if u P E 1pRdq. This shows
that E 1pRdq is a subset to S 1. We thus have E 1pRdq � S 1 � D 1pRdq.
Example 13.3.4. We will show that LppRdq � S 1 for 1 ¤ p ¤ 8. Suppose
that f P LppRdq. Then, for φ P S ,

|xuf , φy| ¤
»
Rd

|fpxq||φpxq| dx ¤ }f}p}φ}p1 ¤ C}f}p
¸

|α|¤2d

}φ}α,0

according to the proof of Proposition 13.2.6. It thus follows from Theorem 13.3.3
that uf P S 1. �

Example 13.3.5. Suppose that f P CpRdq is a function of polynomial growth,
meaning that there exist a constant C ¥ 0 and an integer m ¥ 0 such that

|fpxq| ¤ Cp1� |x|qm for every x P Rd.

Then, for φ P S ,

|xuf , φy| ¤ C

»
Rd

p1� |x|qm�d�1|φpxq| dx

p1� |x|qd�1
¤ C

¸
|α|¤m�d�1

}φ}α,0.

This shows that uf P S 1. In particular, every polynomial belongs to S 1. �

The next proposition shows that S 1 is invariant under multiplication with polyno-
mials and differentiation.

Proposition 13.3.6. Suppose that u P S 1. Then

(i) xαu P S 1 for every multi-index α;
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(ii) Bβu P S 1 for every multi-index β.

Proof. The proof of these properties are almost identical, so let us just prove (i).
Suppose that φn Ñ φ in S . Then, by Proposition 13.2.3,

xxαu, φny � xu, xαφny ÝÑ xu, xαφy � xxαu, φy.
The next example shows that there are regular tempered distributions that are not
of polynomial growth.

Example 13.3.7. The function fpxq � sinpexq, x P R, belongs to S 1 since f
is bounded. It therefore follows from Proposition 13.3.6 that f 1 P S 1. How-
ever, f 1pxq � ex cospexq, x P R, is not of polynomial growth. As a comparison,
notice that the function gpxq � ex, x P R, does not belong to S 1. In fact, if φ P S
and φpxq � e�|x|{2 for |x| ¥ 1, then» 8

�8

gpxqφpxq dx �
» 1

�1

exφpxq dx�
»
|x|¥1

exe�|x|{2 dx � 8. �

13.4. The Fourier Transform

We are now ready to define the Fourier transform of a tempered distribution.

Definition 13.4.1. The Fourier transform pu of a tempered distribution u is
defined through

xpu, φy � xu, pφy, φ P S .

Remark 13.4.2.

(a) Notice that if u P S 1, then pu P S 1 since the Fourier transform is continuous
on S according to Theorem 13.2.7.

(b) The Fourier transform is also continuous on S 1. Indeed, if un Ñ u in S 1, then

xxun, φy � xun, pφy ÝÑ xu, pφy � xpu, φy
for every function φ P S since pφ P S , which shows that xun Ñ pu in S 1.

(c) If f P L1pRdq, then

xxuf , φy � xuf , pφy � »
Rd

fpxqpφpxq dx � »
Rd

pfpxqφpxq dx � xuf̂ , φy

for every function φ P S , which shows that the distributional Fourier transform
of f coincides with the ordinary transform.

Example 13.4.3.

1. Let us first calculate the Fourier transform of δ:

xpδ, φy � xδ, pφy � pφp0q � »
Rd

φpxq dx � x1, φy

for every function φ P S , which shows that pδ � 1.
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2. We next calculate the Fourier transform of 1. If φ P S , then

xp1, φy � x1, pφy � »
Rd

pφpξq dξ � p2πqdφp0q � xp2πqdδ, φy

according to the inversion formula, which shows that p1 � p2πqdδ. �

13.5. Properties of the Fourier Transform

The properties of the Fourier transform on the Schwartz class immediately carry
over to tempered distributions.

Proposition 13.5.1. Suppose that u P S 1. Then the following properties hold:

(i) if h P Rd, then yτhu � e�ih�ξpu;

(ii) if h P Rd, then {eih�xu � τhpu;

(iii) pûqˇ� pǔqˆ;
(iv) if t P R and t � 0, then put � |t|�dput�1 ;

(v) yBαu � piξqαpu for every multi-index α;

(vi) yxαu � i|α|Bαpu for every multi-index α.

Proof. We will prove (v) and leave the other properties as exercises to the reader.
Suppose that φ P S . Then

xyBαu, φy � p�1q|α|xu, Bαpφy � p�1q|α|xu, {p�ixqαφpxqy � xpiξqαpu, φy.
Example 13.5.2. We make two applications of Proposition 6.2.2.

1. Let us first calculate the Fourier transform of xα:

xxα � yxα1 � i|α|Bαp1 � p2πqdi|α|Bαδ.

2. We next calculate the Fourier transform of eia�ξ, where a P Rd is a constant:

yeia�ξ �{eia�ξ1 � τap1 � p2πqdτaδ � p2πqdδa
so that

δa � p2πq�dyeia�ξ.
If we apply this identity to a test function φ P S , we obtain

φpaq � 1

2π

»
Rd

pφpξqeiξ�a dξ,
which gives us a new proof of the inversion formula for S . �

It follows from Proposition 6.2.2 that if u P S 1 is even/odd, then pu is also even/odd.
For instance, if u is even, i.e., ǔ � u, then

pûqˇ� pǔqˆ� û.
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Example 13.5.3. We next calculate the Fourier transform of the Cauchy principal
value u � pv 1

x . Notice that

xpv
1

x
, φpxqy � lim

εÑ0

»
ε¤|x| 1

φpxq
x

dx�
»
|x|¥1

φpxq
x

dx

for φ P S . This shows that u is the sum of a distribution with compact support
and a L2-function, and thus belongs to S 1. If we now apply the Fourier transform
to the identity xu � 1, we obtain

iξpu1 � 2πδ, that is pu1 � �2πiδ.

Every solution to the last differential equation can be written pu � �2πipH�Cq for
some constant C. According to Example 9.3.8, u is odd, so the same holds for pu.
This shows that C � � 1

2 , so

z
pv

1

x
� �iπ sgn ξ. �

13.6. The Inversion Formula

The inversion formula for the Fourier transform of course generalizes to S 1.

Theorem 13.6.1. Suppose that u P S 1. Then u � p2πq�dpˆ̂uqˇ.
Proof. Suppose that φ P S . Then, according to Corollary ?? and Theorem 6.4.1,

xpˆ̂uqˇ, φy � xu, pφ̌qˆ̂y � xpu, ˆ̂
φqˇy � p2πqdxu, φy.

Example 13.6.2. It follows from the inversion formula and Example 13.5.3 that

psgnxqˆ� i

π
ppv

1

x
qˆ̂� 2π

i

π
ppv

1

x
qˇ� �2i pv

1

x
.

Since H � 1
2 psgnx� 1q, this implies that

pH � �ipv
1

x
� πδ. �

Corollary 13.6.3. The Fourier transform is a continuous homeomorphism on S 1.

13.7. The Convolution Theorem

The next theorem shows that the Fourier transform of a distribution with compact
support is a smooth function that can be calculated in essentially the same way as
the Fourier transform of a L1-function.

Theorem 13.7.1. Suppose that u P E 1pRdq. Then pu P E pRdq and

pupξq � xupxq, e�ix�ξy, ξ P Rd. (13.4)
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Proof. Suppose that φ P DpRdq. Then, according to Proposition 12.3.3 (see Re-
mark 12.3.8),

xpu, φy � xu, pφy � xupxq, xφpξq, e�ix�ξyy � xupxq b φpξq, e�ix�ξy
� xφpξq b upxq, e�ix�ξy �

»
Rd

xupxq, e�ix�ξyφpξq dξ.

This establishes (13.4) since DpRdq is dense in S by Proposition 13.2.5. The fact
that pu P E pRdq follows from Remark 12.2.2.

Theorem 13.7.2. Suppose that u, v P E 1pRdq. Then

zu � v � pupv. (13.5)

Proof. Theorem 13.7.1 shows that

zu � vpξq � xu � vpxq, e�ix�ξy � xupxq b vpyq, e�ipx�yq�ξy
� xupxq, e�ix�ξyxvpyq, e�iy�ξy � pupξqpvpξq

for ξ P Rd.

We will next show that (13.5) in fact holds true if u P S 1 and v P E 1pRdq. For this,
we need to know something about multipliers on S 1. We begin by a definition.

Definition 13.7.3. Denote by OM pRdq the class of functions f P E pRdq such
that f and all of its derivatives are of polynomial growth.

The following lemma shows that the functions, belonging to OM pRdq, are multipli-
ers on S 1.

Lemma 13.7.4. Suppose that u P S 1 and f P OM pRdq. Then fu P S 1.

Proof. We will just sketch the proof. One first shows that

(i) fφ P S for every function φ P S ;

(ii) if φn Ñ φ in S , then fφn Ñ fφ in S .

It then follows that

xfu, φny � xu, fφny ÝÑ xu, fφy � xfu, φy.

Lemma 13.7.5. Suppose that v P E 1pRdq. Then pv P OM pRdq.
Proof. According to Theorem 13.7.1,

pvpξq � xupxq, e�ix�ξy, ξ P Rd.

Remark 12.2.2 then shows that

Bαpvpξq � p�iq|α|xxαvpxq, e�ix�ξy.
Using the fact that xαv P E 1pRdq, we now apply the semi-norm estimate (11.1):

|Bαpvpξq| � |xxαvpxq, e�ix�ξy| ¤ C
¸

|β|¤m

sup
xPK

|Bβxe�ix�ξ| ¤ Cp1� |ξ|qm.
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Theorem 13.7.6. Suppose that u P S 1 and v P E 1pRdq. Then u � v P S 1 and

zu � v � pupv.
Proof. It follows from Lemma 13.7.5 that pupv P S 1, so pupv � pw for some w P S 1.
Let φ P DpRdq. Then, according to the inversion formula,

xw, φ̌y � p2πq�dxw, ppφy � p2πq�dx pw, pφy � p2πq�dxpupv, pφy � p2πq�dxpu, pvpφy.
Theorem 13.7.6 now shows that

p2πq�dxpu, pvpφy � p2πq�dxpu,zv � φy � p2πq�dxu,zzv � φy � xu, pv � φqˇy.

Notice that

pv � φqˇpxq � v � φp�xq � xvpyq, φp�x� yqy � xvpyq, φ̌px� yqy

for x P Rd. It follows that

xw, φ̌y � xupxq, xvpyq, φ̌px� yqy � xu � v, φy.

Since



Part V

Wavelets

107



Appendix A

The Lebesgue Integral

In the following appendix, we summarize some facts from integration theory that
is used in the main text.

A.1. Measurable Sets, Measure, Almost Everywhere

Without going into detail, we assume that there exists a class M of subsets to Rd,
which is large enough to contain all open and all closed subsets to Rd and which
also is a σ-algebra:

(i) ∅,Rd P M ;

(ii) if E P M , then Ec P M (Ec being the complement of E);

(iii) if E1, E2, ... P M , then
�8
n�1En P M .

The elements of M are called measurable subsets to Rd. Let us remark that all
subsets to Rd, that one may run into in applications, are measurable and that is
very hard to construct non-measurable sets.

To every measurable subset set E to Rd, one can assign a number mpEq P r0,8s,
called the measure of E, which measures the ”size” of the set. For instance, the
measure of an interval is just the length of the interval. Some sets have measure
zero. The following subsets to Rd are examples of sets with measure 0: all finite
subsets to Rd, Qd, and more generally all countable subsets to Rd, the standard
Cantor set C � R (even though it is uncountable). One should think of a set with
measure 0 as very small and — in most contexts — negligible.

One says that a property holds almost everywhere — abbreviated a.e. —
on Rd if the property holds for every x P Rd except for x belonging to a set E,
where E is a measurable set with measure 0.

A.2. Step Functions

Definition A.2.1. The characteristic function χE of a subset E to Rd is de-
fined by

χEpxq �
"

1 if x P E
0 if x R E .

Definition A.2.2. A function φ : Rd Ñ C of the form φ � °n
j�1 αjχEj , where

every αj P C and the sets Ej are measurable and pairwise disjoint, is called a step
function. By T and T�, we denote the class of step functions and the subclass of
non-negative step functions, respectively.

Definition A.2.3. The integral of φ � °n
j�1 αjχEj P T is defined as»

φdx �
ņ

j�1

αjmpEjq.

One can prove that the integral of a step function is independent of which repre-
sentation is used (there are infinitely many representations).
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A.3. Measurable Functions

If f is a real-valued function on Rd, then its positive and negative parts f�

and f� are defined by f� � maxtf, 0u and f� � maxt�f, 0u, respectively. Notice
that f � f� � f�.

Definition A.3.1. A function f : Rd Ñ R� is said to be measurable if there
exists a sequence pφnq8n�1 � T� such that φn Ò f a.e. A real-valued function f is
called measurable if f� and f� are measurable and a complex-valued function is
called measurable if its real and imaginary parts are measurable. If E P M and f
is a complex-valued function on E, then f is measurabe if χEf is measurable.

It is not so hard to show that every continuous function on Rd and every piecewise
continuous function on R is measurable. It is also easy to show that the set of
measurable functions on Rd or on a measurable subset to Rd is a vector space
with lattice structure (the maximum and minimum of two measurable functions is
measurable).

A.4. Integrable Functions and the Lebesgue Integral

Definition A.4.1. If E is a measurable subset to Rd and f : E Ñ R� is measur-
able, then the integral of f over E is defined by»

E

f dx � lim
nÑ8

»
φn dx,

where pφnq8n�1 � T� is some sequence such that φn Ò χEf a.e.

One can prove that
³
E
f dx is independent of the sequence pφnq8n�1. Notice that

the integral of a measurable function may be infinite.

Definition A.4.2. Suppose that E P M . A measurable function f : E Ñ R is
said to be integrable on E if

³
E
f� dx and

³
E
f� dx are finite. The Lebesgue

integral of f is then defined as»
E

f dx �
»
E

f� dx�
»
E

f� dx.

A measurable function f : E Ñ C is said to be integrable if Re f and Im f are
integrable, and one puts»

E

f dx �
»
E

Re f dx� i

»
E

Im f dx.

Let L1pEq denote the set of integrable functions on E.

The next two theorems summarize some simple but important properties of the
Lebesgue integral.

Theorem A.4.3. Suppose that f, g P L1pEq. Then the following properties hold :

(a) αf � βg P L1pEq with
³
E
pαf � βgq dx � α

³
E
f dx� β

³
E
g dx for all α, β P C;
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(b) if f ¤ g, then
³
E
f dx ¤ ³

E
g dx;

(c) |f | P L1pEq and
��³
E
f dx

�� ¤ ³
E
|f | dx.

It is also true that if |f | P L1pEq, then f P L1pEq. This follows from the fact
that pRe fq�, pIm fq� ¤ |f |.
Theorem A.4.4. If f P L1pEq, then

³
E
|f | dx � 0 if and only if f � 0 a.e. on E.

Theorem A.4.5. If f is Riemann integrable on ra, bs, then f P L1pra, bsq, and the
Riemann integral of f equals the Lebesgue integral of f .

The converse to this theorem is false. Indeed, the function f , defined by

fpxq �
"

1 if x P r0, 1s XQ

�1 if x P r0, 1sr Q
,

is not Riemann integrable on r0, 1s. However, since |f | � 1 P L1pr0, 1sq, it follows
that f P L1pr0, 1sq.

A.5. Convergence Theorems

The following two theorems, known as the monotone and dominated conver-
gence theorem, respectively, are among the most useful results in integration
theory. These theorems are also true in the context of Riemann integration, but
then considerably harder to prove.

Theorem A.5.1 (Beppo Levi). Suppose that pfnq8n�1 is an increasing sequence
in L1pEq such that fn Ñ f a.e. on E and supn¥1

³
E
f dx   8. Then f P L1pEq

and »
E

f dx � lim
nÑ8

»
E

fn dx.

Theorem A.5.2 (Lebesgue). Suppose that pfnq8n�1 is an sequence in L1pEq such
that fn Ñ f and |fn| ¤ g P L1pEq a.e. on E for every n ¥ 1. Then f P L1pEq and»

E

f dx � lim
nÑ8

»
E

fn dx.

A.6. Lp-spaces

The so called Lp-spaces appear everywhere in modern analysis. We will be mostly
interested in the cases p � 1, 2,8.

Definition A.6.1. Suppose that E � Rd is measurable. For 1 ¤ p   8, let LppEq
denote the class of measurable functions f : E Ñ C such that»

E

|f |p dx   8.

Let also L8pEq denote the class of measurable functions f for which there exists
a constant C ¥ 0 such that |fpxq| ¤ C for a.e. x P E. The functions, belonging
to L8pEq, are said to be essentially bounded.
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Since |f � g|p ¤ 2pp|f |p � |g|pq for 1 ¤ p   8, we see that f � g P LppEq if f, g P
LppEq. Obviously, αf P LppEq for every α P C if f P LppEq. Thus, LppEq is a
vector space. It is also easy to see that L8pEq is a vector space.

If we define

}f}p �
�»

E

|f |p dx

1{p

,

for 1 ¤ p   8, and

}f}8 � inftC : |fpxq| ¤ C a.e. on Eu,
then } � }p is a seminorm on LppEq for 1 ¤ p ¤ 8, i.e.,

(i) }f}p ¥ 0;

(ii) }αf}p � |α|}f}p for every α P C;

(iii) }f � g}p ¤ }f}p � }g}p.
All these properties are easily verified except (iii) for 1   p   8; this third property
is known as Minkowski’s inequality. However, } � }p is not a norm on LppEq
since }f}p � 0 only implies that f � 0 a.e. on E, not that f � 0 on E. For this
reason, one identifies functions that agree a.e. on E. In particular, every function,
that is 0 a.e. on E, is identified with 0. With this identification, LppEq becomes
a normed space with the norm } � }p. It is also common to consider the functions
in LppEq as being defined just a.e. on E.

The following theorem shows that LppEq is a Banach space, that is, a complete
normed space.

Theorem A.6.2 (F. Riesz). The space LppEq is complete for 1 ¤ p ¤ 8.

Here, completeness means that if pfnq8n�1 is a Cauchy sequence in LppEq,
i.e., }fm�fn}p Ñ8 as m,nÑ8, then the sequence is convergent, meaning that
there exists a function f P LppEq such that }f � fn}p Ñ 0.

A very useful inequality is Hölder’s inequality. To formulate this, we use the
following notation. If 1   p   8, we denote by p1 the number defined by

1

p
� 1

p1
� 1, that is p1 � p

p� 1
.

Notice that 1   p1   8. We also write 11 � 8 and 81 � 1, which is consistent with
the limits one obtains by letting pÑ 1 and pÑ8.

Theorem A.6.3 (Hölder’s inequality). If f P LppEq and g P Lp1pEq, where p
satisfies 1 ¤ p ¤ 8, then fg P L1pEq, and

}fg}1 ¤ }f}p}g}p1 .
Another useful integral inequality is the following.

Theorem A.6.4 (Minkowski’s integral inequality). If the function f is mea-
surable on R2d, then for 1 ¤ p   8,�»

Rd

�»
Rd

|fpx, yq| dx

p

dy


1{p

¤
»
Rd

�»
Rd

|fpx, yq|p dy

1{p

dx.
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A.7. The Fubini and Tonelli Theorems

According to Fubini’s theorem, an integral over Rd�e of a function in L1pRd�eq
may be evaluated as an iterated integral in two ways.

Theorem A.7.1 (Fubini). If f P L1pRd�eq, then¼
Rd�e

fpx, yq dxdy �
»
Rd

�»
Re

fpx, yq dy


dx �

»
Re

�»
Rd

fpx, yq dx


dy.

Fubini’s theorem is often used together with Tonelli’s theorem to reverse the order
of integration in a double integral. Appealing to Tonelli’s theorem, one first verifies
that the integrand belongs to L1pRd�eq by evaluating an iterated integral, where
the integrand is the absolute value of the original integrand. It then follows from
Fubini’s theorem that the two iterated integrals are equal, so the order of integration
may be reversed.

Theorem A.7.2 (Tonelli). Suppose that f is measurable on Rd�e. Then f be-
longs to L1pRd�eq if and only if»

Rd

�»
Re

|fpx, yq| dy


dx   8 or

»
Re

�»
Rd

|fpx, yq| dx


dy   8.

A.8. Lebesgue’s Differentiation Theorem

The Lebesgue integral may be differentiated in essentially the same way as the
Riemann integral.

Theorem A.8.1 (Lebesgue). If f P L1pra, bsq, then the function

F ptq �
» t
a

fpsq ds, a ¤ t ¤ b,

is differentiable a.e. on ra, bs with F 1 � f a.e.

A.9. Change of Variables

Sometimes we shall need to perform linear changes of variables.

Theorem A.9.1. Suppose that A : Rd Ñ Rd is an invertible, linear mapping and
let b P Rd. Then, for every function f P L1pRdq,»

Rd
fpAx� bq dx � 1

|A|
»
Rd
fpyq dy,

where |A| denotes the determinant of A.

A.10. Density Theorems

For an open subset G to Rd, let C8pGq denote the class of infinitely differentiable
functions on G. Let also C8

c pGq denote the subclass of functions φ P C8pGq with
compact support, that is, such that φ � 0 outside a compact subset to G.
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Theorem A.10.1. If G is an open subset to Rd, then C8
c pGq is dense in LppGq for

1 ¤ p   8, that is, if f P LppGq, then for every ε ¡ 0, there exists a function φ P
C8pGq such that }f � φ}p   ε.


