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1 Fourier Series

1.1 Motivation through heat equation

The consideration of Fourier Series can be traced back to the situation which Fourier encountered in

the beginning of last century while solving heat equation:

Consider a thin metallic wire of length `. Suppose an initial temperature is supplied to it, and sup-

pose the temperature at both the end points kept at 0. Then one would like to know the temperature

at each point of the string at a particular time.

Let us represent the string as an interval [0, `]. Let u(x, t) be the temperature at the point x ∈ [0, `]

at time t. It is known that u(·, ·) satisfies the partial equation

∂u

∂t
= c2

∂2u

∂t2
, 0 < x < `, (1.1)

where c > 0 is the heat conductivity of the material. Since the temperature at both the end points

kept at 0, we have

u(0, t) = 0 = u(`, t), t > 0. (1.2)

Let the initial temperature at the point x be f()x), i.e.,

u(x, 0) = f(x), 0 ≤ x ≤ `. (1.3)

Exercise 1.1. Equation (1.1) satisfying (1.2) and (1.3) cannot have more than one solution. ♦

In order to find u(x, t), we use a procedure called method of separation of variables. In this method,

we assume first that u(x, t) is of the form:

u(x, t) = φ(x)ψ(t).

Then we have
∂u

∂t
= φ(x)ψ′(t),

∂2u

∂t2
= φ′′(x)ψ(t).

Hence, from (1.1),

φ(x)ψ′(t) = c2φ′′(x)ψ(t).

Hence,
ψ′(t)

c2ψ(t)
=
φ′′(x)

φ(x)
= K, const.

Hence,

ψ′(t) = Kc2ψ(t), φ′′(x) = Kφ(x). (1.4)

Let us consider different cases:

Case(i): K = 0: In this case, φ′′(x) = 0 so that φ is of the form

φ(x) = ax+ b.
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By (1.2), φ(0)ψ(t) = 0 = φ(`)ψ(t).

bψ(t) = 0 = (a`+ b)ψ(t).

Thus, we arrive at either ψ = 0 or φ = 0.

Case(ii): K > 0: In this case, K = α2 for some α 6= 0. Then we have

φ′′(x)− α2φ(x) = 0

so that φ is of the form

φ(x) = aeαx + be−αx.

Again, by (1.2), φ(0)ψ(t) = 0 = φ(`)ψ(t) so that

(a+ b)ψ(t) = 0 = (aeα` + be−α`)ψ(t).

This again lead to u(x, t) = 0.

Case(iii): K < 0: In this case, K = −α2 for some α 6= 0. Then we have

φ′′(x) + α2φ(x) = 0

so that φ is of the form

φ(x) = a cosαx+ b sinαx.

By (1.2), φ(0)ψ(t) = 0 = φ(`)ψ(t) so that if ψ 6= 0, we obtain a = 0 and b sinα` = 0. Assuming b 6= 0

(otherwise φ = 0), we have α` = nπ, n ∈ Z. Thus, α ∈ {nπ/` : n ∈ Z}.

Now, from (1.4),

ψ′(t) = −α2c2ψ(t)

with α ∈ {nπ/` : n ∈ Z}. Hence,

ψ(t) = ae−α
2c2t,

and hence, u is of the form

u(x, t) = ae−α
2c2t sinαx, α ∈ {nπ/` : n ∈ Z}.

Thus, for each n ∈ Z,

un(x, t) = ane
−λ2

nc
2t sinλnx, λn :=

nπ

`
,

with an ∈ R satisfies (1.1) and (1.2). But, this un need not satisfy (1.3), unless f(x) = an sin(nπx/`)

for some n ∈ Z. If f is of the form

f(x) =

k∑
n=1

an sin(nπx/`) (1.5)

for some k ∈ N, then we see that

u(x, t) :=

k∑
n=1

ane
−λ2

nc
2t sin(nπx/`)
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satisfies (1.1), (1.2) and (1.3).

What can we say if f is, in some sense, arbitrary? The consideration of the functions of the form

in (1.5) suggests the following query:

If f is of the form f(x) =

∞∑
n=1

an sin(nπx/`), can we say that

u(x, t) :=

∞∑
n=1

ane
−λ2

nc
2t sin(nπx/`)

is a solution of (1.1) satisfying (1.2) and (1.3) with appropriate notion of convergence?

As a first step, let us assume that f is of the form

f(x) =

∞∑
n=1

an sin(
nπx

`
). (1.6)

Assume further that, term by term integration of the above series is possible. Then, we have∫ `

0

f(x) sin(
mπx

`
)dx =

∞∑
n=1

an

∫ `

0

sin(
nπx

`
) sin(

mπx

`
)dx.

Since ∫ `

0

sin(
nπx

`
) sin(

mπx

`
)dx = 0 for m 6= n,

and ∫ `

0

sin2(
nπx

`
)dx =

∫ `

0

1− cos 2(nπx` )

2
dx =

`

2
,

we obtain

an =
2

`

∫ `

0

f(x) sin(
nπx

`
)dx. (1.7)

Note that, if f has the form as in (1.6), then f is 2`-periodic, i.e.,

f(x+ 2`) = f(x) for all x ∈ R

and f is an odd function, i.e.,

f(−x) = −f(x) for all x ∈ R.

If f is as in (1.6), we we may define

u(x, t) :=

∞∑
n=1

ane
−λ2

nc
2t sin(nπx/`), λn := nπ/`.

Assuming that the above series is convergent and can be differentiated term by term, we see that

u(·, ·) is a solution of (1.1) satisfying (1.2) and (1.3).

Exercise 1.2. Show that each λn := nπ/` is an eigenvalue of the operator
d2

dx2
wit corresponding

eigenvector sinλnx. ♦
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1.2 Fourier Series of 2π-Periodic functions

In the last section, we assumed that the function f can be represented as

f(x) =

∞∑
n=1

an sin(
mπx

`
).

If ` = π, then the above series takes the form

f(x) =

∞∑
n=1

An sinnx, An :=
2

π

∫ π

0

f(x) sinnxdx.

The above series is a special case of the Fourier series that we are going to introduce. Let us consider

a few definitions.

Definition 1.3. A function of the form

c0 +
k∑

n=1

(an cosnx+ bn sinnx) .

where c0, an, bn ∈ R, is called a trigonometric polynomial, and a series of the form

c0 +

∞∑
n=1

(an cosnx+ bn sinnx)

with c0, an, bn ∈ R is called a trigonometric series. ♦

Note that a trigonometric polynomial is a special case of a trigonometric series.

We observe that trigonometric polynomials are 2π-periodic on R, i.e., if f(x) is a trigonometric

polynomial, then

f(x+ 2π) = f(x) ∀x ∈ R.

From this, we can infer that, if the trigonometric series

c0 +

∞∑
n=1

(an cosnx+ bn sinnx)

converges at a point x ∈ R, then it has to converge at x + 2π as well; and hence at x + 2nπ for all

integers n. This shows that we can restrict the discussion of convergence of a trigonometric series

to an interval of length 2π. Hence, we cannot expect to have a trigonometric series expansion for a

function f : R→ R if it is not a 2π-periodic function.

We know that a convergent trigonometric series is 2π-periodic. What about the converse?

Suppose that f is a 2π-periodic function. Is it possible to represent f as a trigonometric

series?
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Suppose, for a moment, that we can write

f(x) = c0 +

∞∑
n=1

(an cosnx+ bn sinnx)

for all x ∈ R. Then what should be the coefficients c0, an, bn? To answer this question, let us further

assume that

f is integrable on [−π, π] and the series can be integrated term by term.

For instance if the above series is uniformly convergent to f in [−π, π], then term by term integration

is possible. By Weierstrass test,we have the following result:

If
∑∞
n=0(|an|+ |bn|) converges, then c0+

∑∞
n=1 (an cosnx+ bn sinnx) is a dominated series

on R and hence it is uniformly convergent.

For n,m ∈ N ∩ {0}, we observe the following orthogonality relations:

∫ π

−π
cosnx cosmxdx =


0, if n 6= m

π, if n = m 6= 0,

2π, if n = m = 0,∫ π

−π
sinnx sinmxdx =

{
0, if n 6= m

π, if n = m,∫ π

−π
cosnx sinmxdx = 0.

Thus, under the assumption that f is integrable on [−π, π] and the series can be integrated term by

term, we obtain

c0 =
1

2π

∫ π

−π
f(x)dx,

an =
1

π

∫ π

−π
f(x) cosnxdx, bn =

1

π

∫ π

−π
f(x) sinnxdx.

Definition 1.4. The Fourier series of a 2π-periodic function f is the trigonometric series

a0
2

+

∞∑
n=1

(an cosnx+ bn sinnx) ,

where an =
1

π

∫ π

−π
f(x) cosnxdx and bn =

1

π

∫ π

−π
f(x) sinnxdx and this fact is written as

f(x) ∼ a0
2

+

∞∑
n=1

(an cosnx+ bn sinnx) .

The numbers an and bn are called the Fourier coefficients of f . ♦
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If f is a trigonometric polynomial, then its Fourier series is itself.

Writing

cosnx =
1

2
[einx + e−inx], sinnx =

1

2i
[einx − e−inx],

we have

an cosnx+ bn sinnx =
an
2

[einx + e−inx] +
bn
2i

[einx − e−inx]

=

(
an
2

+
bn
2i

)
einx +

(
an
2
− bn

2i

)
e−inx.

Thus, writing

cn :=
an
2

+
bn
2i
, c−n :=

an
2
− bn

2i
,

we have
a0
2

+

∞∑
n=1

(an cosnx+ bn sinnx) =
∑
n∈Z

cne
inx.

Now, suppose f(x) =
∑
n∈Z cne

inx with cn ∈ C, and this series can be integrated term by term. Then,

we have ∫ π

−π
f(x)e−imx dx =

∑
n∈Z

cn

∫ π

−π
ei(n−m)xdx.

But, ∫ π

−π
ei(n−m)dx =

{
0 if m = m,

2π if m 6= m.

Hence,

∫ π

−π
ei(n−m)dx = 2πcm, i.e.,

cn =
1

2π

∫ π

−2π
f(x)e−inxdx, n ∈ Z.

The following theorem show that there is a large class of functions which can be represented by their

Fourier series (see Bhatia [1]). We shall come back to this theorem at a later stage.

THEOREM 1.5. (Dirichlet’s theorem) Suppose f : R → R is a 2π-periodic function which is

piecewise differentiable on (−π, π). Then the Fourier series of f converges, and the limit function

f̃(x) is given by

f̃(x) =

{
f(x) if f is continuous at x,
1
2 [f(x−) + f(x+)] if f is not continuous at x.

In Theorem 1.5 we used the terminology piecewise differentiable as per the following definition.

Definition 1.6. A function f : [a, b] → R is said to be piecewise differentiable if f ′ exists and is

piecewise continuous on [a, b] except possibly at a finite number of points. ♦
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Remark 1.7. It is known that there are continuous functions f defined on [−π, π] whose Fourier

series does not converge pointwise to f . Its proof relies on UBP (see [2]). We shall consider this at a

later occasion. ♦

Although each term and the partial sums of a Fourier series are infinitely differentiable, the sum

function need not be even continuous at certain points. This fact is illustrated by the following

example.

Example 1.8. Let f(x) =

{
0, −π ≤ x ≤ 0,

1, 0 < x ≤ π.
By Dirichlet’s theorem (Theorem 1.5), the Fourier

series of f converges to f(x) for every x 6= 0, and at the point 0, the series converges to 1/2. Note

that

an =
1

π

∫ π

0

cosnxdx =

{
1, n = 0,

0, n 6= 0,

and for n ∈ N,

bn =
1

π

∫ π

0

sinnxdx =
1

π

[
1− cosnπ

n

]
=

1

π

[
1− (−1)n

n

]
=


2

πn
, n odd,

0, n even.

Thus, Fourier series of f is

1

2
+

2

π

∞∑
n=0

sin(2n+ 1)x

(2n+ 1)
.

In particular, for x = π/2,

1 =
1

2
+

2

π

∞∑
n=0

sin[(2n+ 1)π/2]

(2n+ 1)
=

1

2
+

2

π

∞∑
n=0

(−1)n

(2n+ 1)

which leads to the Madhava–Nilakaṅtha series

π

4
=

∞∑
n=0

(−1)n

(2n+ 1)
. ♦

1.3 Fourier Series for Even and Odd Functions

The following can be verified easily:

• Suppose f is an even function, i.e.,

f(−x) = f(x) ∀x ∈ X.

Then f(x) cosnx is an even function and f(x) sinnx is an odd function, so that

an =
1

π

∫ π

−π
f(x) cosnxdx =

2

π

∫ π

0

f(x) cosnxdx,

bn =
1

π

∫ π

−π
f(x) sinnxdx.
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• Suppose f is an odd function, i.e.,

f(−x) = −f(x) ∀x ∈ X.

Then f(x) cosnx is an odd function and f(x) sinnx is an even function, so that

an =
1

π

∫ π

−π
f(x) cosnxdx = 0,

bn =
1

π

∫ π

−π
f(x) sinnxdx =

2

π

∫ π

0

f(x) sinnxdx.

Thus, we have the following:

(1) Suppose f is an even function. Then the Fourier series of f is

a0
2

+

∞∑
n=1

an cosnx with an :=
2

π

∫ π

0

f(x) cosnxdx.

In particular,

f(0) =
a0
2

+

∞∑
n=0

an, f(π) =
a0
2

+

∞∑
n=1

(−1)nan,

respectively.

(2) Suppose f is an odd function. Then the Fourier series of f is

∞∑
n=1

bn sinnx with bn :=
2

π

∫ π

0

f(x) sinnxdx,

In particular,

f(π/2) =

∞∑
n=0

(−1)nb2n+1.

Example 1.9. Consider the function f defined by

f(x) = |x|, x ∈ [−π, π].

In this case, f is an even function. Hence, the Fourier series is

a0
2

+

∞∑
n=1

an cosnx, x ∈ [−π, π]

with

a0 =
2

π

∫ π

0

x dx = π

and for n = 1, 2, . . .,

an =
2

π

∫ π

0

x cosnxdx =
2

π

{[
x

sinnx

n

]π
0

−
∫ π

0

sinnx

n
dx

}
=

2

π

[cosnx

n2

]π
0

=
2

π

[
(−1)n − 1

n2

]
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Thus,

a2n = 0, a2n+1 =
−4

π(2n+ 1)2
, n = 1, 2, . . .

so that

|x| ∼ π

2
− 4

π

∞∑
n=0

cos(2n+ 1)x

(2n+ 1)2
, x ∈ [−π, π].

Taking x = 0 (using Dirichlet’s theorem), we obtain

π2

8
=

∞∑
n=0

1

(2n+ 1)2
. ♦

Example 1.10. Let f(x) = x, x ∈ [−π, π]. In this case, f is an odd function. Hence, the Fourier

series is
∞∑
n=1

bn sinnx, x ∈ [−π, π]

with

bn =
2

π

∫ π

0

x sinnx dx =
2

π

{[
−xcosnx

n

]π
0

+

∫ π

0

cosnx

n
dx

}
=

2

π

{
−π cosnπ

n

}
=

(−1)n+12

n
.

Thus the Fourier series is

2

∞∑
n=1

(−1)n+1

n
sinnx.

In particular (using Dirichlet’s theorem), with x = π/2 we obtain the Madhava-Nīlakaṅtha series

π

4
=

∞∑
n=1

(−1)n+1

n
sin

nπ

2
=

∞∑
n=0

(−1)n

2n+ 1
. ♦

Example 1.11. Let f(x) =

{
−1, −π ≤ x < 0,

1, 0 ≤ x ≤ π.
In this case, f is an odd function. Hence, the

Fourier series is
∞∑
n=1

bn sinnx,

with

bn =
2

π

∫ π

0

sinnx dx =
2

π
(1− cosnπ) =

2

π
[1− (−1)n].

Thus

f(x) ∼ 4

π

∞∑
n=0

sin(2n+ 1)x

2n+ 1
.

Taking x = π/2, again we obtain the Madhava-Nīlakaṅtha series

π

4
=

∞∑
n=0

(−1)n

2n+ 1
. ♦
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Example 1.12. Let f(x) = x2, x ∈ [−π, π]. Since f is an even function, its Fourier series is

a0
2

+

∞∑
n=1

an cosnx, x ∈ [−π, π], an =
2

π

∫ π

0

x2 cosnx dx.

It can be see that a0 = 2π2/3, and an = (−1)n4/n2. Thus

x2 ∼ π2

3
+ 4

∞∑
n=1

(−1)n cosnx

n2
, x ∈ [−π, π].

Taking x = 0 and x = π (using Dirichlet’s theorem), we have

π2

12
=

∞∑
n=1

(−1)n+1

n2
,

π2

6
=

∞∑
n=1

1

n2

respectively. ♦

1.4 Sine and Cosine Series Expansions

Suppose a function f is defined on [0, π]. By extending it to [−π, π] so that the extended function is

an odd function, we obtain Forier sine series of f , and by extending it to [−π, π] so that the extended

function is an even function, we obtain Fourier cosine series of f .

The odd extension and even extension of f , denoted by fodd and feven are defined by

fodd(x) =

{
f(x) if 0 ≤ x < π,

−f(−x) if − π ≤ x < 0,
,

feven(x) =

{
f(x) if 0 ≤ x < π,

f(−x) if − π ≤ x < 0,

respectively. Therefore,

f(x) = fodd(x) ∼
∞∑
n=1

bn sinnx, x ∈ [0, π]

and

f(x) = feven(x) ∼ a0
2

+

∞∑
n=1

an cosnx, x ∈ [0, π]

with

an =
2

π

∫ π

0

f(x) cosnx dx, bn =
2

π

∫ π

0

f(x) sinnx dx.

Example 1.13. Let f(x) = x2, x ∈ [0, π]. The even extension of f is itself. Its odd extension is:

fodd(x) =

{
x2, if 0 ≤ x < π,

−x2, if − π ≤ x < 0.
,

Hence,

f(x) = fodd(x) ∼
∞∑
n=1

bn sinnx, x ∈ [0, π],

11



with

bn =
2

π

∫ π

0

x2 sinnx dx =
2

π

{[
−x2 cosnx

n

]π
0

+

∫ π

0

2x
cosnx

n
dx

}
.

Note that [
−x2 cosnx

n

]π
0

= −π2 cosnπ

n
= π2 (−1)n+1

n
,∫ π

0

2x
cosnx

n
dx =

[
2x

sinnx

n

]π
0

−
∫ π

0

2
sinnx

n
dx = 2

[cosnx

n2

]π
0

= 2

[
(−1)n − 1

n2

]
.

Thus,

bn =
2

π

{
π2 (−1)n+1

n
+ 2

[
(−1)n − 1

n2

]}
= 2π

(−1)n+1

n
+

4

π

[
(−1)n − 1

n2

]
.

♦

Example 1.14. Let f(x) = x, x ∈ [0, π]. Its odd extension is itself, and

feven(x) = |x|, x ∈ [−π, π].

From Examples 1.10 and 1.9, we obtain

x ∼ 2

∞∑
n=1

(−1)n+1

n
sinnx, x ∈ [0, π]

and

x ∼ π

2
− 4

π

∞∑
n=0

cos(2n+ 1)x

(2n+ 1)2
, x ∈ [0, π]. ♦

Example 1.15. Let us find the sine series expansion of the function

f(x) =

{
0, if 0 ≤ x < π/2,

1, if π/2 ≤ x < π.

The sine series of f is given by

f(x) ∼
∞∑
n=1

bn sinnx, x ∈ [0, π],

where

bn =
2

π

∫ π

π/2

sinnx dx = − 2

π

[cosnx

n

]π
π/2

=
2

π

[
cosnπ/2− cosnπ

n

]
.

Note that b2n−1 =
2

(2n− 1)π
and

b2n =
2

2nπ
[(−1)n − 1] =

{
− 2
nπ if n odd,

0 if n even.

Thus, for x ∈ [0, π], we have

π

2
f(x) ∼ sinx

1
− sin 2x

1
+

sin 3x

3
+

sin 5x

5
+ · · ·+ sin(4n− 3)x

4n− 3

− sin(4n− 2)x

4n− 2
+

sin(4n− 1)x

4n− 1
+

sin(4n+ 1)x

4n+ 1
+ · · · .

♦
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1.5 Fourier Series of 2`-Periodic Functions

Suppose f is a T -periodic function. We may write T = 2`. Then we may consider the change of

variable t = πx/` so that the function

f(x) := f(`t/π),

as a function of t is 2π-periodic. Hence, its Fourier series is

a0
2

+

∞∑
n=1

(an cosnt+ bn sinnt)

where

an =
1

π

∫ π

−π
f

(
`t

π

)
cosntdt =

1

`

∫ `

−`
f(x) cos

nπx

`
dx,

bn =
1

π

∫ π

−π
f

(
`t

π

)
sinntdt =

1

`

∫ `

−`
f(x) sin

nπx

`
dx.

In particular,

f even =⇒ bn = 0 and an =
2

`

∫ `

0

f(x) cos
nπx

`
dx,

f odd =⇒ an = 0 and bn =
2

`

∫ `

0

f(x) sin
nπx

`
dx.

Example 1.16. Let f(x) = 1− |x|, −1 ≤ x ≤ 1. Taking ` = 1, we have

an =

∫ 1

−1
(1− |x|) cosnπx dx = 2

∫ 1

0

(1− |x|) cosnπx dx

and

bn =

∫ 1

−1
(1− |x|) sinnπx dx = 0.

Now, ∫ 1

0

cosnπx dx =

[
sinnπx

n

]1
0

= 0,

∫ 1

0

x cosnπx dx =

[
x

sinnπx

n

]1
0

−
∫ 1

0

sinnπx

n
dx =

[cosnπx

n

]1
0

=
(−1)n − 1

n
.

Hence,

an = 2

∫ 1

0

(1− |x|) cosnπx dx =
2

n
[1− (−1)n] =

{
0, neven,

4/n, n odd.

Thus,

f(x) ∼
∞∑
n=0

4

2n+ 1
cosnπx. ♦
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1.6 Fourier Series on Arbitrary Intervals

Suppose a function f is defined in an interval [a, b]. We can obtain Fourier expansion of it on [a, b] as

follows:

Method 1: Let us consider a change of variable as y = x− a+b
2 . Let

ϕ(y) := f(x) = f(y +
a+ b

2
), where − ` ≤ y ≤ `

with ` = (b− a)/2. We can extend ϕ as a 2`-periodic function and obtain its Fourier series as

ϕ(y) ∼ a0
2

+

∞∑
n=1

(
an cos

nπ

`
y + bn sin

nπ

`
y
)

where

an =
1

`

∫ `

−`
ϕ(y) cos

nπy

`
dy, bn =

1

`

∫ `

−`
ϕ(y) sin

nπy

`
dy.

Thus,

f(x) ∼ a0
2

+

∞∑
n=1

(
an cos

nπ

`
y + bn sin

nπ

`
y
)

where

an =
1

`

∫ `

−`
f(x) cos

nπy

`
dx, bn =

1

`

∫ `

−`
f(x) sin

nπy

`
dx

with ` = (b− a)/2 and y = x− a+b
2 .

Method 2: Considering the change of variable as y = x− a and ` := b− a, we define ϕ(y) := f(x) =

f(y + a) where 0 ≤ y < `. We can extend ϕ as a 2`-periodic function in any manner and obtain its

Fourier series. Here are two specific cases:

(a) For y ∈ [−`, 0], define f̃e(y) = ϕf(−y). Thus f̃e on [−`, `] is an even function. In this case,

ϕ(y) ∼ a0
2

+

∞∑
n=1

an cos
nπ

`
y

where ` = (b− a)/2 and

an =
1

`

∫ `

−`
ϕ(y) cos

nπy

`
dy.

(b) For y ∈ [−`, 0], define f̃o(y) = −ϕ(−y). Thus f̃o on [−`, `] is an odd function. In this case,

ϕ(y) ∼
∞∑
n=1

bn sin
nπ

`
y

where

bn =
1

`

∫ `

−`
ϕ(y) sin

nπy

`
dy.

From the series of ϕ we can recover the corresponding series of f on [a, b] by writing y = x− a.
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1.7 Exercises

The following are taken from [3].

1. Find the Fourier series of the 2π- period function f such that:

(a) f(x) =

{
1, −π

2 ≤ x <
π
2

0, π
2 < x < 3π

2 .

(b) f(x) =

{
x, −π

2 ≤ x <
π
2

π − x, π
2 < x < 3π

2 .

(c) f(x) =

{
1 + 2x

π , −π ≤ x ≤ 0

1− 2x
π , 0 ≤ x ≤ π.

(d) f(x) = x2

4 , −π ≤ x ≤ π.

2. Using the Fourier series in Exercise 1, find the sum of the following series:

(a) 1− 1

3
+

1

5
− 1

7
+ . . ., (b) 1 +

1

4
+

1

9
+

1

16
+ . . ..

(c) 1− 1

4
+

1

9
− 1

16
+ . . ., (d) 1 +

1

32
+

1

52
+

1

72
+ . . ..

3. If f(x) =

{
sinx, 0 ≤ x ≤ π

4

cosx, π
4 ≤ x <

π
2

, then show that

f(x) ∼ 8

π
cos

π

4

[
sinx

1.3
+

sin 3x

5.7
+

sin 10x

9.11
+ . . .

]
.

4. Show that for 0 < x < 1,

x− x2 =
8

π2

[
sinxπ

13
+

sin 3πx

33
+

sin 5πx

53
+ . . .

]
.

5. Show that for 0 < x < π,

sinx+
sin 3x

3
+

sin 5x

5
+ . . . =

π

4
.

6. Show that for −π < x < π,

x sinx = 1− 1

2
cosx− 2

1.3
cos 2x+

2

2.4
cos 3x− 2

3.5
cos 4x+ . . . ,

and find the sum of the series

1

1.3
− 1

3.5
+

1

5.7
− 1

7.9
+ . . . .

7. Show that for 0 ≤ x ≤ π,

x(π − x) =
π2

6
−
[

cos 2x

12
+

cos 4x

22
+

cos 6x

32
+ . . .

]
,

x(π − x) =
8

π

[
sinx

13
+

sin 3x

33
+

sin 5x

53
+ . . .

]
.
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8. Assuming that the Fourier series of f converges uniformly on [−π, π), show that

1

π

∫ π

−π
[f(x)]2dx =

a20
2

+

∞∑
n=1

(a2n + b2n).

9. Using Exercises 7 and 8 show that

(a)

∞∑
n=1

1

n4
=
π4

90
, (b)

∞∑
n=1

(−1)n−1

n2
=
π2

12

(c)

∞∑
n=1

1

n6
=

π6

945
(d)

∞∑
n=1

(−1)n−1

(2n− 1)3
=
π3

32

10. Write down the Fourier series of f(x) = x for x ∈ [1, 2) so that it converges to 1/2 at x = 1.
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