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1 Fourier Series

1.1 Motivation through heat equation

The consideration of Fourier Series can be traced back to the situation which Fourier encountered in

the beginning of last century while solving heat equation:

Consider a thin metallic wire of length ¢. Suppose an initial temperature is supplied to it, and sup-
pose the temperature at both the end points kept at 0. Then one would like to know the temperature

at each point of the string at a particular time.

Let us represent the string as an interval [0, £]. Let u(z, t) be the temperature at the point = € [0, /]

at time t. It is known that wu(-,-) satisfies the partial equation

ou  ,0%u
E_Cw, 0<$<€, (11)

where ¢ > 0 is the heat conductivity of the material. Since the temperature at both the end points

kept at 0, we have
u(0,t) =0=wu({,t), t>0. (1.2)

Let the initial temperature at the point = be f()x), i.e.,
u(z,0) = f(z), 0<z</L. (1.3)

Exercise 1.1. Equation (1.1) satisfying (1.2) and (1.3) cannot have more than one solution. &

In order to find u(z, t), we use a procedure called method of separation of variables. In this method,

we assume first that u(x,t) is of the form:

u(z,t) = g(z)Y(t).

Then we have

Hence, from (1.1),

Hence, ® @)
Vi) _ @) cons
Ul a) Ot
Hence,
W(t) = Keult), ¢'(x) = Ko(x). (14)

Let us consider different cases:

Case(i): K = 0: In this case, ¢"(x) = 0 so that ¢ is of the form

o(x) = ax +b.



By (1.2), ¢(0)¢(t) = 0 = ¢(£)p(¢).
b(t) = 0 = (al + b)y(t).
Thus, we arrive at either ¢» = 0 or ¢ = 0.
Case(ii): K > 0: In this case, K = o2 for some a # 0. Then we have

¢"(x) — a’¢(x) =0
so that ¢ is of the form

d(x) = ae™® + be 7.
Again, by (1.2), ¢(0)0(t) = 0 = ¢(£)1b(t) so that

(a+b)(t) = 0 = (ae® + be™*)(t).

This again lead to u(z,t) = 0.

Case(iii): K < 0: In this case, K = —a? for some a # 0. Then we have

¢"(z) + a’d(z) = 0
so that ¢ is of the form
¢(z) = acosax + bsin ax.
By (1.2), ¢(0)¥(t) = 0 = ¢(£)1)(t) so that if ¢ # 0, we obtain a = 0 and bsinaf = 0. Assuming b # 0
(otherwise ¢ = 0), we have ol = nw, n € Z. Thus, o € {nn/l :n € Z}.

Now, from (1.4),
V(1) = —aPc(t)
with a € {nw/f:n € Z}. Hence,
(1) = ac™,
and hence, u is of the form

2
—

u(z,t) = ae “tsinazr, ac {nm/t:n €Z}.

Thus, for each n € Z,

_22.2

Up (2, 1) = ane " tsin Nz, A, 1= —,

with a, € R satisfies (1.1) and (1.2). But, this u,, need not satisfy (1.3), unless f(z) = a, sin(nnz/{)

for some n € Z. If f is of the form

k
fl@) = a,sin(nrz/0) (1.5)

for some k € N, then we see that

k
u(zx,t) := Z ane Mne’t sin(nmx /)
n=1



satisfies (1.1), (1.2) and (1.3).

What can we say if f is, in some sense, arbitrary? The consideration of the functions of the form

in (1.5) suggests the following query:

If f is of the form f(x Z an sin(nmwx/f), can we say that

n=1
[e%S)

Z sm(mmc /0)
n=1
is a solution of (1.1) satisfying (1.2) and (1.3) with appropriate notion of convergence?

As a first step, let us assume that f is of the form

- Zansm(”%. (1.6)

Assume further that, term by term integration of the above series is possible. Then, we have

/Oef(x) sin("" ) g = Zan/ sin("7%) sin( "7 ) .

Since ,
/ sin( mmc i (mﬂm)dx:O for m #n,
0 g
and
/E nﬂ'gj /z 1 —cos 2("7%) l
sin? = gy =
we obtain

2 é
= 7/ F(z) sin(222 ) da. (1.7)
N 14
Note that, if f has the form as in (1.6), then f is 2¢-periodic, i.e.,
flx+20)=f(z) forall zeR
and f is an odd function, i.e.,
f(=z)=—f(x) forall zeR.

If f is as in (1.6), we we may define
s 2 2
= Z ane M tsin(nrx/l), A, = nn /L.
n=1

Assuming that the above series is convergent and can be differentiated term by term, we see that
u(-,-) is a solution of (1.1) satisfying (1.2) and (1.3).

2
Exercise 1.2. Show that each A, := nz /¢ is an eigenvalue of the operator e wit corresponding
x

eigenvector sin \,x. &



1.2 Fourier Series of 2m-Periodic functions

In the last section, we assumed that the function f can be represented as
> mmx
flx) = Z an, sm(T).
n=1
If £ = 7, then the above series takes the form
oo 2 T
flx)= ZA” sinnz, A, := f/ f(z) sinnxdz.
n=1 TJo

The above series is a special case of the Fourier series that we are going to introduce. Let us consider

a few definitions.

Definition 1.3. A function of the form

k
co + Z (an cosnz + by sinnz) .

n=1

where ¢g, a,,b, € R, is called a trigonometric polynomial, and a series of the form

co + Z (ay, cosnx + by, sin nx)

n=1

with cg, an, b, € R is called a trigonometric series. &
Note that a trigonometric polynomial is a special case of a trigonometric series.

We observe that trigonometric polynomials are 27-periodic on R, i.e., if f(x) is a trigonometric
polynomial, then
flx+2m) = f(x) VzeR

From this, we can infer that, if the trigonometric series

(o]
co + Z (ayn cosnx + by, sin nx)
n=1
converges at a point x € R, then it has to converge at z + 27 as well; and hence at = + 2n7 for all
integers n. This shows that we can restrict the discussion of convergence of a trigonometric series
to an interval of length 27. Hence, we cannot expect to have a trigonometric series expansion for a

function f : R — R if it is not a 27w-periodic function.
We know that a convergent trigonometric series is 27-periodic. What about the converse?

Suppose that f is a 2m-periodic function. Is it possible to represent f as a trigonometric

series?



Suppose, for a moment, that we can write

f(x) =co+ Z (ay, cosnz + by, sinnzx)

n=1

for all z € R. Then what should be the coefficients cg, a,, b,7 To answer this question, let us further

assume that
f is integrable on [—7, 7] and the series can be integrated term by term.

For instance if the above series is uniformly convergent to f in [—, 7], then term by term integration

is possible. By Weierstrass test,we have the following result:

If > o (Jan| + |bn]) converges, then co+> oo | (an cosnx + b, sinnz) is a dominated series

on R and hence it is uniformly convergent.

For n,m € NN {0}, we observe the following orthogonality relations:

. 0, ifn#m
/ cosnx cosmzdr = w, ifn=m#0,

—T

27, ifn=m=0,

/” . . {0, ifn#m
sinnesinmzdr =

- w, ifn=m,

s
/ cosnxsinmxdr = 0.

—T

Thus, under the assumption that f is integrable on [—m, 7] and the series can be integrated term by

w=5r [ S

1 (" L [7
an = —/ f(gj) cos nxdzx, b, = — f(.l?) sinnzdx.

m ™

term, we obtain

—
Definition 1.4. The Fourier series of a 2m-periodic function f is the trigonometric series

oo
+ (an cosnz + by, sinnx)

n=1

ao
2

1 ™ ™
where a,, = — / f(x) cosnzdx and b, = — f(z) sinnzdz and this fact is written as

flx) ~ % +nzl(ancosnx+bnsinnx).

The numbers a,, and b,, are called the Fourier coefficients of f. &



If f is a trigonometric polynomial, then its Fourier series is itself.

Writing

nT —inx
—e ]

1. . . 1
cosnx = 5[6”“” +e7 "], sinnz = —[e )

24
we have

a'n[ inT T —inr] + bn
— e e _
2 24

— al+bl einw+ al_bl e—inz
h 2 2 2 2 '

an by an by

ap, cos nx + by, sinnx [ — e 7]

Thus, writing

Ty Ty Ty T
we have

oo
ago . ;
5 + E (an cosnz + b, sinnz) = E cne™".
n=1 nez

Now, suppose f(z) = > ., cne’™ with ¢, € C, and this series can be integrated term by term. Then,

fx)e™™® dx = Z cn/ UL

nez -

/ ei(n—m)dx — 0 lfm =m,
- 2 if m # m.

s
Hence, / My = 27e,,, ie.,
—T

we have

But,

1 (7 ;
Cn = — flx)e " dx, n€Z.

27 —2m

The following theorem show that there is a large class of functions which can be represented by their

Fourier series (see Bhatia [1]). We shall come back to this theorem at a later stage.

THEOREM 1.5. (Dirichlet’s theorem) Suppose f : R — R is a 2w-periodic function which is

piecewise differentiable on (—m,m). Then the Fourier series of f converges, and the limit function

Fla) - {

In Theorem 1.5 we used the terminology piecewise differentiable as per the following definition.

f(z) is given by

(z) if f is continuous at x,
[f(xz=)+ f(x+)] if f is not continuous at x.

N S

Definition 1.6. A function f : [a,b] — R is said to be piecewise differentiable if [’ exists and is

piecewise continuous on [a, b] except possibly at a finite number of points. &



Remark 1.7. It is known that there are continuous functions f defined on [—m, 7] whose Fourier
series does not converge pointwise to f. Its proof relies on UBP (see [2]). We shall consider this at a

later occasion. &

Although each term and the partial sums of a Fourier series are infinitely differentiable, the sum
function need not be even continuous at certain points. This fact is illustrated by the following

example.

0, —7<z<0,
1, O<z<m.
series of f converges to f(z) for every = # 0, and at the point 0, the series converges to 1/2. Note

that
1/7T 1, n=0,
Ay = — cosnxdr =
T Jo 0, n#0,

Example 1.8. Let f(z) = { By Dirichlet’s theorem (Theorem 1.5), the Fourier

and for n € N,

2
—, n odd,

by, = l/ sinnxdr = 1 [1 —cosmr} = 1 [1 — D ] _J] ™
T Jo T n ™

0, n even.

Thus, Fourier series of f is

sin(2n + 1)x
7+ Z (2n 4 1)

In particular, for x = 7/2,

Qi' (2n+1)m/2] 1 Qi "
= (2n+1) 2 T 2n—|— 1)
which leads to the Madhava—Nilakanitha series

; 2n+ 0

l\’)\r—\

1.3 Fourier Series for Even and Odd Functions

The following can be verified easily:

e Suppose f is an even function, i.e.,
f(—z) = f(z) VzxeX.

Then f(z)cosnz is an even function and f(z)sinnz is an odd function, so that

1
ap = — f( ) cos nxdx = / f(z) cosnzdz,
™ J_x
1 [ .
b, = — f(z)sinnzdz.
7r

—T



e Suppose f is an odd function, i.e.,
f(—z)=—f(z) VzelX.

Then f(z)cosnx is an odd function and f(z)sinnz is an even function, so that

1 s
ap = — f(z) cosnzdr =0,
T J—xm
1 [ _ 2 [T .
b, = — f(z) sin nede = 7/ f(x) sinnzdx.
T J_x ™ Jo

Thus, we have the following:
(1) Suppose f is an even function. Then the Fourier series of f is

o0 2 s
% + Z an,cosnr with a, = ;/0 f(z) cos nzdz.

n=1

In particular,
aq > ap > n
FO) =243 an fr) =2+ 3 (1),
n=0 n=1
respectively.

(2) Suppose f is an odd function. Then the Fourier series of f is

oo 2 T
Z by,sinnzr with b, :=— / f(z)sinnzdz,
T Jo

n=1

In particular,
(o]

F@/2) = 3 (~1) "o,

n=0

Example 1.9. Consider the function f defined by
f@)=lz|, x€[-mmn.

In this case, f is an even function. Hence, the Fourier series is
(o]
ag
> + E ancosne, € [—m, |
n=1

with

and forn=1,2,...,

2 [7 2 sinnz]” T sinnz
a, = — zcosnrdr = — < |z — dx
™ 0 ™ 0 0 n

_ 2 [cosm:}’r 2 {(—1)” —1]1

ml n?2 Jo 7 n?



Thus,

—4
n =0, ntl = — 5, =1,2,...
az A2n+1 m(2n + 1)2 n
so that
cos(2n + 1)z
\x|~—772 Gnir o Y€ [—m, ).
Taking = 0 (using Dirichlet’s theorem), we obtain
- 1
-3 o 0
2
— (2n+1)

Example 1.10. Let f(z) =z, x € [—m,x]. In this case, f is an odd function. Hence, the Fourier

series is -
Z bpsinnz, x € [—m, 7]

with

2 [T 2 ™ 4

b, = 7/ xsinnmdz{[zcosnﬂ +/ cosn:cdx}
T Jo T n Jo 0 n
2{ cosmr} (—1)"+12
= —_ —1TT = .
s n n

Thus the Fourier series is
n+1

[ee]
E —————sinnz.

In particular (using Dirichlet’s theorem), with = 7/2 we obtain the Madhava-Nilakaritha series

-1, T<x<0,

Example 1.11. Let f(x) = { In this case, f is an odd function. Hence, the

Fourier series is
oo
E b, sinnzx,
n=1

with o 5 5
bn:f/ sinnzdr = —(1 —cosnm) = —[1 — (—1)"].
7 Jo T T

Thus

4 K sin(2n + 1)z
f(x)NE; m+1

Taking x = 7/2, again we obtain the Madhava-Nilakaritha series

= 2n+1

10



Example 1.12. Let f(z) = 2%, x € [-m, 7. Since f is an even function, its Fourier series is

oo 2 T
%-l-nzz:lancosmc, x € [—m, 7, an:;/o 22 cosna dz.
It can be see that ag = 27%/3, and a,, = (—1)"4/n?. Thus
2 e n
5 (—1)™ cosnx
e~ §+4;T’ z € [—m, 7.

Taking = 0 and « = 7 (using Dirichlet’s theorem), we have
12 7n:1 n? 6 7n:1 n?

respectively. &

1.4 Sine and Cosine Series Expansions

Suppose a function f is defined on [0, 7]. By extending it to [—m, 7] so that the extended function is
an odd function, we obtain Forier sine series of f, and by extending it to [—m, 7] so that the extended

function is an even function, we obtain Fourier cosine series of f.

The odd extension and even extension of f, denoted by foqq and feyen are defined by

[ i@ wo<as<n
fodd(x) = { —f(=z) if —7<z<0,
B (x) ifo <z <m,
feven('r) - { (—:17) if —r<xz<0,

respectively. Therefore,

f(@) = foaa(x) ~ Z bysinnz, =z € [0,

n=1

and

f(@) = feven(x) ~ %O + ian cosnz, x € [0,7]

n=1
with 9 e 2 ™
Ay = 7/ f(z)cosnxdr, b, = */ f(z)sinnz dz.
T™Jo ™ Jo

Example 1.13. Let f(z) = 22, z € [0,7]. The even extension of f is itself. Its odd extension is:

22, if0<zxz<m,
o xr) = )
Joda(w) {—xQ, if —mr<z<0.

Hence,

f(@) = foqa(x) ~ an sinnz, x € [0,7],
n=1

11



with

2 [" 2 Q &
an*/ xQSinnxdx:{[—xZCOsmc} —l—/ QxCOSMU dac}.
i 0 v n 0 0 n
Note that

—X

1
COS NT cos N —1)nt
2 ] 2 72 (-1

n n

/”2 cosne [2mblnnx} /”2Sinnxdx: 5 {cos;mr 9 {(—1)7;— 1} .
0 0 n n 0 n

Thus,

Example 1.14. Let f(z) =z, x € [0, 7]. Its odd extension is itself, and

feven(x) = |1'|, x € [—7T77T].

From Examples 1.10 and 1.9, we obtain
= (1"
~2 —_— , € [0,
x 1;1 ——sinnz, 2 [0, 7]

and

cos( 2n—|—1
Nf—f O .
x E “ent12 x € 1[0, 7]

Example 1.15. Let us find the sine series expansion of the function

f(m):{ 0, if0<z<m/2

1, ifr/2<z<m.

The sine series of f is given by

o0
x) ~ Z bysinnz, z € [0,n],
n=1

where
2 [T . 2 rcosnxr™ 2 [cosnm/2 — cosnm
by, = — smnxdx:—f{ } = —
T Jr/2 ™ n /2 ™ n
2
Note that by,—1 = ——— and
ote at 02 1 (QTL — 1)7T aln
2 —2  if n odd,
bop = 5—[(=D)" =1 =¢ " .
2nm 0 if n even.
Thus, for z € [0, 7], we have
z f(x) sinz  sin2x n sin 3z n sin 5z sin(4n — 3)x
2 I 1 1 3 5 in—3
sin(dn — 2)x  sin(dn — 1)z sin(dn+ D)z
In — 2 in —1 in+1

12



1.5 Fourier Series of 2/-Periodic Functions

Suppose f is a T-periodic function. We may write T = 2¢. Then we may consider the change of

variable ¢t = mx /¢ so that the function

f(x) = f(tt/m),

as a function of ¢ is 27-periodic. Hence, its Fourier series is

0 :
3 + Z (a, cosnt + by, sinnt)
n=1
where ;
123 1
an=_[ (77) cosntdt = Z/_ f(z) cos n—zxdx,

0t
b, = » (W> sinntdt = 6/ f(z)sin Tda:

2 E
f even =— b,=0 and a":Z/ f(x)cosnlgda:7
0

In particular,

9 [t
f odd = a,=0 and b, = Z/ f(x)sin?dx.
0
Example 1.16. Let f(z) =1—|z|, —1 <z <1. Taking £ =1, we have

1 1
Qp = / (1 —|z|) cosnrader = 2/ (1 — |z|) cosnmx dz

and )
by = / (1 — |z|) sinnra dz = 0.
-1
Now,
! sinnrz]!
/ cosnmrdr = [ ] =0,
0 n 0
! sinnrz]’ ! sinnra cosnmrl  (—-1)"—1
rcosnmrdr = |x — dx:[ } = .
0 noJy Jo n n Jo n
Hence,
1
2 0, ;
i = 2/ (1 — |af) cos nra dz = 2[1 — (~1)"] = neven
0 n 4/n, n odd.
Thus,
— 4
flx) ~ nZ::O oy 1] SO O

13



1.6 Fourier Series on Arbitrary Intervals

Suppose a function f is defined in an interval [a,b]. We can obtain Fourier expansion of it on [a, b] as

follows:

Method 1: Let us consider a change of variable as y =z — ‘ITH’. Let

a+b

oy) == f(x) = f(y + ), where —(<y</

with £ = (b — a)/2. We can extend ¢ as a 2¢-periodic function and obtain its Fourier series as

nmw
. b )
+7Z(a cos y+ smgy

where

1 ¢ Y 1 £

an = [ @y cos——dy, by=- [ ¢(y)sin——dy
—/ g g —/ €

Thus,

flx) ~ 9o + (an cos n—wy+bn sin n—ﬂy)

2 n=1 K f

where

with ¢ = (b —a)/2andy—x a2

Method 2: Considering the change of variable as y = © — a and £ := b — a, we define ¢(y) := f(z) =
f(y+ a) where 0 < y < £. We can extend ¢ as a 2¢-periodic function in any manner and obtain its

Fourier series. Here are two specific cases:

(a) For y € [—¢,0], define f.(y) = ¢f(—y). Thus f, on [—£, /] is an even function. In this case,

W0 LN o™
W)~ +nz::1anc% 7Y
where £ = (b—a)/2 and

1 [* nmy
ap = Z/_e ¢(y) cos Tdy'

(b) For y € [—£,0], define f,(y) = —p(—y). Thus f, on [—£,/] is an odd function. In this case,

> nw
~ b,, sin —
y) n; oY

b =7 / ) sin —dy

From the series of ¢ we can recover the corresponding series of f on [a,b] by writing y =z — a.

where

14



1.7 Exercises
The following are taken from [3].

1. Find the Fourier series of the 27- period function f such that:

1

)

— T us
5 Sr<g

, T <L <z

(b) f<x>={ ; KR

T—=x, 3 <T<%

1+2 —7<z<0

(@f@%—{l_?’ Oenen
x2

1 1 1 1 1 1
ooz = B) 1444 — 4.
@ 1=g4g-7+- (O I+g+g+3T
1 1 1 1 1 1
| R A) 14— oo bt
@1-3+5 -+ @Oltgtgrast
<<
3. If f(x) = . =%=1 then show that
cosw, 7 <x<73

o sinx n sin 3x n sin 10x
1.3 5.7 9.11

9 8 |sinzxm sindwxr  sindmw
EE R

5. Show that for 0 < x < 7,

. sindx sinbz
sinx + 3 + 5 +...=

N

6. Show that for —7 <z <7,

1 2 2 2
rsineg =1 — §COS.T— ﬁcos2x+ ﬂcos3a:— gcos4x+...

and find the sum of the series

1111
1.3 35 57 79 7
7. Show that for 0 <z <,
x(ﬂ—x)—ﬂ—z— 0052x+cos4a:+cosﬁx+
6 12 22 32 U
x( _w)_§ sinx+sin3:v+sin5:1c+
T =_ | 33 =3 R

15



8. Assuming that the Fourier series of f converges uniformly on [—m, 7), show that
L[ )2 a < 2
- do =2 b2)
WKWV( w =2 gga +

9. Using Exercises 7 and 8 show that

> 1 d > (=1)n 1 2
<”§m‘%’<®§($‘u
1 — (-t g3
ZF (d)zl((2n11)3:32

10. Write down the Fourier series of f(z) = x for « € [1,2) so that it converges to 1/2 at x = 1.
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