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1. Trigonometric series and Fourier series

Definition 1.1. A series of the form

(1.1) c0 +
∞∑
n=1

(an cosnx+ bn sinnx)

is called a trigonometric series, where c0, an, bn are real numbers.

• If (1.1) converges on [−π, π] to a an integrable function f and if it can be

integrated term by term, then

f(−π) = f(π),

and

c0 =
1

2π

∫ π

−π
f(x) cosnxdx, an =

1

π

∫ π

−π
f(x) cosnxdx, bn =

1

π

∫ π

−π
f(x) sinnxdx.

• If the (1.1) converges (pointwise) on [−π, π] to a function f , then f can be

extended as a 2π-periodic function by defining

f(x+ 2nπ) = f(x), n ∈ Z.

• If the series
∞∑
n=1

(|an|+ |bn|) converges, then (1.1) converges uniformly on [−π, π]

and it can be integrated term by term. We know that if f ∈ L1[−π, π], then

the function f̃ : [−π, π]→ C defined by

f̃(x) =

{
f(x), x ∈ [−π, π),

f(−π), x = π

satisfies

f̃(−π) = f̃(π) and f̃ = f a.e.

• The series (1.1) can be written as

∞∑
n=−∞

cne
inx.

Definition 1.2. Let f ∈ L1[−π, π]. The Fourier series of f is the series

(1.2)
a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx),

where

(1.3) an =
1

π

∫ π

−π
f(x) cosnxdx, bn =

1

π

∫ π

−π
f(x) sinnxdx.
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The series

(1.4)
∞∑

n=−∞

cne
inx with cn =

1

2π

∫ π

−π
f(x)e−inxdx

is also called the Fourier series of f . The coefficients cn are called the Fourier

coefficient and are usually denoted by f̂(n), i.e.,

f̂(n) =
1

2π

∫ π

−π
f(x)e−inxdx, n ∈ Z.

The sum

SN(f, x) :=
N∑

n=−N

f̂(n)einx

is called the N-th partial sum of the Fourier series (1.4)).

Notation: In the above and in the following, the integral are w.r.t. the Lebesgue

measure.

The fact that (1.2) is the Fourier series of f is usually written as

f(x) ≈ a0
2

+
∞∑
n=1

(an cosnx+ bn sinnx).

Equivalently,

f(x) ≈
∞∑

n=−∞

f̂(n)einx.

Since cosnx, sinx, einx are 2π-periodic functions, we can talk about Fourier series of

2π-periodic functions. If (1.2) (resp. (1.4)) converges at a point x ∈ [−π, π], then it

converges at x+ 2kπ for every k ∈ Z.

• The Fourier series (1.4)) converges at x ∈ [−π, π] if and only if SN(f, x)→ f(x)

as N →∞.

• If f ∈ L1[−π, π], then f̂(n)→ 0 as |n| → ∞.

• If
∞∑

n=−∞

|f̂(n)| converges, then
∞∑

n=−∞

f̂(n)einx converges uniformly.

Suppose Fourier series of f ∈ L1[−π, π] converges uniformly, say to g. Then g is

continuous and

1

2π

∫ π

−π
g(x)e−imx =

∞∑
n=−∞

f̂(n)
1

2π

∫ π

−π
ei(n−m)xdx = f̂(m),
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i.e., ĝ(m) = f̂(m) for all m ∈ Z. A natural question would be whether f = g a.e. We

shall answer this affirmatively.

We know that if the Fourier series of f ∈ L1[−π, π] converges, then

f̂(n)→ 0 as n→∞.

Can we assert this for every f ∈ L1[−π, π]? The answer is in the affirmative as proved

in the next section.

2. Riemann Lebesgue Lemma

Theorem 2.1. (Riemann Lebesgue lemma) Let f ∈ L1[a, b]. Then∫ b

a

f(t) cos(λt)dt→ 0 and

∫ b

a

f(t) sin(λt)dt→ 0 as λ→∞.

Corollary 2.2. (Riemann Lebesgue lemma) Let f ∈ L1[a, b]. Then∫ b

a

f(t) cos(nt)dt→ 0 and

∫ b

a

f(t) sin(nt)dt→ 0 as n→∞.

For the proof of the Theorem 2.1, we shall make use of

LEMMA 2.3. The span of all step functions1 on [a, b] is dense in L1[a, b].

Proof of Theorem 2.1. First we observe that if for every ε > 0, there exists a func-

tion g ∈ L1[a, b] such that ‖f − g‖1 < ε and the the result is true for g, then the result

is true for f also.

Indeed,∣∣∣∣∫ b

a

f(t) cos(λt)dt

∣∣∣∣ ≤ ∣∣∣∣∫ b

a

[f(t)− g(t)] cos(λt)dt

∣∣∣∣+

∣∣∣∣∫ b

a

g(t) cos(λt)dt

∣∣∣∣
≤ ε+

∣∣∣∣∫ b

a

g(t) cos(λt)dt

∣∣∣∣ .
Let λ0 > 0 be such that

∣∣∣∫ ba g(t) cos(λt)dt
∣∣∣ < ε for all λ ≥ λ0. Then we

have ∣∣∣∣∫ b

a

f(t) cos(λt)dt

∣∣∣∣ < 2ε ∀λ ≥ λ0

1Step functions are finite linear combinations of characteristic functions. Also, recall that L1[a, b]

is the vector space of all Lebesgue measurable complex valued functions f such that ‖f‖1 :=∫ b

a

|f(x)|dx <∞. Here, dx stands for the Lebesgue measure.
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so that
∫ b
a
f(t) cos(λt)dt→ 0 as λ→∞. Similarly,

∫ b
a
f(t) sin(λt)dt→ 0

as λ→∞.

Hence, it is enough to prove the result for step functions. Since every step function is a

finite linear combination of characteristic functions on intervals, it is enough to prove

for f of the form f = χ[c,d], [c, d] ⊆ [a, b]. Note that∣∣∣∣∫ b

a

χ[c,d] cos(λt)dt

∣∣∣∣ =

∣∣∣∣∫ d

c

cos(λt)dt

∣∣∣∣
=

∣∣∣∣sin(λd)− sin(λc)

λ

∣∣∣∣
≤ 2

|λ|
→ 0 as λ→∞.

Similarly,

∣∣∣∣∫ b

a

χ[c,d] sin(λt)dt

∣∣∣∣→ 0 as λ→∞. �

Remark 2.4. If f is Riemann integrable on [a, b], then there exists a sequence of (fn)

of step functions such that ‖f − fn‖1 → 0. Thus, conclusion in Theorem 2.1 holds if f

is Riemann integrable.

Proof of Lemma 2.3. If f ∈ L1[a, b] with f ≥ 0, then there exists an increasing sequence

of non-negative simple measurable functions ϕn, n ∈ N such that ϕn → f pointwise.

Hence, by DCT,
∫ b
a
|f −ϕn| → 0. From this, for any complex valued f ∈ L1[a, b], there

exists a sequence (ϕn) of simple complex measurable functions∫ b

a

|f − ϕn| → 0.

We observe (see [3]):

(1) Every simple real valued measurable function is a finite linear combination of

characteristic function of measurable sets.

(2) For every measurable set E ⊆ (a, b) and ε > 0, there exists an open set G ⊇ E

such that m(G \ E) < ε. Hence,∫ b

a

|χG − χE| =
∫ b

a

|χ(G\E)| ≤ m(G \ E) < ε.

(3) If G ⊆ (a, b) is an open set, then G =
⋃∞
k=1 In, where {In} is a countable

disjoint family of open intervals in (a, b);

χG = lim
n→∞

ψn, ψn =
n∑
k=1

χIk ,
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Since 0 ≤ ψn ≤ χG, by DCT,∫
|χG − ψn| → 0.

(4) By (1)-(3), if ϕ is a simple measurable function and ε > 0, there exists a step

function ψ such that ∫ b

a

|ϕ− ψ| < ε.

Thus, the lemma is proved. �

3. Dirichlet kernel

Note that

SN(f, x) :=
1

2π

N∑
n=−N

einx
∫ π

−π
f(t)e−intdt =

1

2π

∫ π

−π
f(t)DN(x− t)dt,

where

DN(t) :=
N∑

n=−N

eint.

Redefining f at the end-points if necessary, and extending it as a 2π-periodic function,

we can also write (verify!),

SN(f, x) =
1

2π

∫ π

−π
f(x− t)DN(t)dt.

Notation: We denote by T the unit circle T := {eit : −π ≤ t < π}. Note that if

f : T → C and if we define f̃ : R→ C by f̃(t) = f(eit), then

f̃(−π) = f̃(π) and f̃(t+ 2nπ) = f(t) for all n ∈ Z.

That is, f̃ is a 2π-periodic function. In the due course, we shall identify 2π-periodic

functions with functions on T . We shall denote L1(T ) for the space of all 2π-periodic

(complex valued) functions on R (with equality replaced equal a.e.) which are inte-

grable on [−π, π] with norm

f 7→ ‖f‖1 :=
1

2π

∫ π

−π
|f(x)|dx.

Analogously, for 1 ≤ p < ∞, Lp(T ) denotes the space of all 2π-periodic (complex

valued) functions f on R such that |f |p is integrable on [−π, π] with norm

f 7→ ‖f‖p :=

(
1

2π

∫ π

−π
|f(x)|pdx

)1/p
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The space L2(T ) is also a Hilbert space with inner product

(f, g) 7→ 〈f, g〉 :=
1

2π

∫ π

−π
f(x)g(x) dx.

Definition 3.1. The function DN(·) is called the Dirichlet kernel.

We observe that,

• DN(−t) = DN(t) for all t ∈ [−π, π] and

•
∫ π

−π
DN(t)dt = 1.

• DN(t) =
N∑

n=−N

eint = 1 +
N∑
n=1

[eint + e−int] = 1 + 2
N∑
n=1

cosnt.

Remark 3.2. We shall see that

∫ π

−π
|DN(t)|dt→∞ as N →∞.

Theorem 3.3.

DN(t) =


2N + 1, t = 0,

sin(N + 1
2
)t

sin( t
2
)

, t 6= 0.

Proof. Clearly, DN(0) = 2N + 1. So, let t 6= 0. Note that

(eit − 1)DN(t) =
N∑

n=−N

[ei(n+1)t − eint] = ei(N+1)t − e−iNt.

But,

(eit − 1)DN(t) = eit/2(eit/2 − e−it/2)DN(t) = 2ieit/2 sin(t/2)DN(t).

Thus,

2i sin(t/2)DN(t) = e−it/2[ei(N+1/2)t − e−i(N+1/2)t] = 2i sin(N + 1/2)t.

i.e.,

DN(t) =
sin(N + 1

2
)t

sin( t
2
)

, t 6= 2kπ.

�
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4. Dirichlet-Dini criterion for convergence

We investigate the convergence:

SN(f, x)→ f(x).

Since

∫ π

−π
DN(t)dt = 1 and SN(f, x) = 1

2π

∫ π
−π f(x− t)DN(t)dt, we have

f(x)− SN(f, x) =
1

2π

∫ π

−π
[f(x)− f(x− t)]DN(t)dt.

Theorem 4.1. (Dirichlet-Dini criterion) Let f ∈ L1(T ). If f satisfies∫ π

−π

∣∣∣∣f(x)− f(x− t)
t

∣∣∣∣ dt <∞ (∗)

at a point x ∈ [−π, π], then

SN(f, x)→ f(x).

If (∗) hods uniformly for x ∈ [−π, π], then the convergence {SN(f, x)} to f(x) is

uniform.

Remark 4.2. In the above theorem, by
f(x)− f(x− t)

t
, we mean the function

ϕ(t) =

{
f(x)−f(x−t)

t
, t 6= 0

0, t = 0.

Proof of Theorem 4.1. We observe that

f(x)− SN(f, x) =
1

2π

∫ π

−π
[f(x)− f(x− t)]DN(t)dt

=
1

2π

∫ π

−π
[f(x)− f(x− t)]

sin(N + 1
2
)t

sin( t
2
)

dt

=
1

π

∫ π

−π

{
f(x)− f(x− t)

t

}{
t/2

sin( t
2
)

}
sin(N +

1

2
)tdt

Since (t/2)/[sin(t/2)] is bounded, in view of Riemann Lebesgue lemma, we have the

following. �

The following corollaries are immediate from Theorem 4.1.

Corollary 4.3. Suppose f is Lipschitz at a point2 x ∈ [−π, π]. Then

SN(f, x)→ f(x) as N →∞.
2A function ϕ : I → C is said to be Lipschitz at a point x0 ∈ I if there exists K0 > 0 such that

|ϕ(x)− ϕ(x0)| ≤ K0|x− x0| for all x ∈ I.
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Corollary 4.4. Suppose f is Lipschitz3 on [−π, π]. Then

SN(f, x)→ f(x) as N →∞

uniformly on [−π, π].

Notation: We denote by C(T ) the space of all 2π-periodic continuous functions on R,

and by Ck(T ) for k ∈ N ∪ {0}, the space of all 2π-periodic functions on R which are

k-times continuously differentiable on R.

Corollary 4.5. If f ∈ C1(T ), then

SN(f, x)→ f(x) as N →∞

uniformly on R.

Now obtain a more general result.

Theorem 4.6. Suppose f is a 2π-periodic function such that the following limits exist

at a point x ∈ R:

f(x+) := lim
t→0+

f(x+ t), f(x−) := lim
t→0+

f(x− t),

f ′(x+) := lim
t→0+

f(x+ t)− f(x+)

t
, f ′(x−) := lim

t→0+

f(x−)− f(x− t)
t

.

Then

SN(f, x)→ f(x+) + f(x−)

2
as N →∞.

Proof. Since DN(t) = DN(−t), we have

SN(f, x) =
1

2π

∫ π

−π
f(x− t)DN(t)dt

=
1

2π

∫ 0

−π
f(x− t)DN(t)dt+

1

2π

∫ π

0

f(x− t)DN(t)dt

=
1

2π

∫ π

0

f(x+ t)DN(t)dt+
1

2π

∫ π

0

f(x− t)DN(t)dt

=
1

2π

∫ π

0

[f(x+ t) + f(x− t)]DN(t)dt

and
1

2π

∫ π

−π
DN(t)dt =

2

2π

∫ π

0

DN(t)dt.

3A function ϕ : I → C is said to be Lipschitz on I if there exists K > 0 such that |ϕ(x)−ϕ(x0)| ≤
K0|x− x0| for all x ∈ I.
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Hence, for any β ∈ R,

SN(f, x)− β =
1

2π

∫ π

0

[f(x+ t) + f(x− t)− 2β]DN(t)dt.

Taking β = f(x+)+f(x−)
2

, we have

f(x+ t) + f(x− t)− 2β = [f(x+ t)− f(x+)]− [f(x−)− f(x− t)].

Thus,

SN(f, x)− β = AN +BN ,

where

AN =
1

2π

∫ π

0

[f(x+ t)− f(x+)]DN(t)dt, BN =
1

2π

∫ π

0

[f(x−)− f(x− t)]DN(t)dt.

Note that

A =
1

2π

∫ π

0

[f(x+ t)− f(x+)]DN(t)dt

=
1

2π

∫ π

0

[f(x+ t)− f(x+)]
sin(N + 1

2
)t

sin( t
2
)

dt

=
1

π

∫ π

0

{
f(x+ t)− f(x+)

t

}{
t/2

sin( t
2
)

}
sin(N +

1

2
)tdt

Since f(x+t)−f(x+)
t

→ f ′(x+) as t→ 0+, there exists δ > 0 such that

0 < t < δ =⇒
∣∣∣∣f(x+ t)− f(x+)

t
− f ′(x+)

∣∣∣∣ ≤ 1

=⇒
∣∣∣∣f(x+ t)− f(x+)

t

∣∣∣∣ ≤ 1 + |f ′(x+)|.

Hence, the function

t 7→
{
f(x+ t)− f(x+)

t

}{
t/2

sin( t
2
)

}
, t 6= 0,

is bounded on (0, δ), and hence, belongs to L1(T ). Therefore,by Riemann Lebesgue

lemma, AN → 0 as N →∞. Similarly, we see that, BN → 0 as N →∞. �

An immediate corollary:

Corollary 4.7. If f ∈ C(T ) and has left and right derivative at a point x, then

SN(f, x)→ f(x) as N →∞.

The following result is known as localization lemma.
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LEMMA 4.8. For 0 < r < π and x ∈ [−π, π],∫
r≤|t|≤π

f(x− t)DN(t)dt→ 0 as N →∞.

Proof. Observe that∫
r≤|t|≤π

f(x− t)DN(t)dt =

∫
r≤|t|≤π

g(x, t) sin(N + 1/2)tdt,

where

g(x, t) =

{
f(x− t)/ sin(t/2), r ≤ |t| ≤ π,

0, |t| ≤ r.

Since g(x, ·) is integrable, by Riemann Lebesgue lemma,∫
r≤|t|≤π

g(x, t) sin(N + 1/2)tdt→ 0 as N →∞.

�

Proof of Corollary 4.4 using localization lemma. Suppose f is Lipschitz at a point

x ∈ [−π, π] with Lipschitz constant Kx, i.e., there exists δ > 0 such that

|f(x)− f(x− t)| ≤ Kx|t| whenever |t| < δ.

Now,

f(x)− SN(f, x) =
1

2π

∫ π

−π
[f(x)− f(x− t)]DN(t)dt

=
1

2π

∫
0≤|t|<δ

[f(x)− f(x− t)]DN(t)dt

+
1

2π

∫
δ≤|t|≤π

[f(x)− f(x− t)]DN(t)dt

By Lemma 4.8,

1

2π

∫
δ≤|t|≤π

[f(x)− f(x− t)]DN(t)dt→ 0 as N →∞.

Hence, for a given ε > 0, there exists N0 ∈ N such that for all N ≥ N0,∣∣∣∣ 1

2π

∫
δ≤|t|≤π

[f(x)− f(x− t)]DN(t)dt

∣∣∣∣ < ε/2.

Also, But,∣∣∣∣ 1

2π

∫
0≤|t|<δ

[f(x)− f(x− t)]DN(t)dt

∣∣∣∣ ≤ 1

2π

∫
0≤|t|<δ

|f(x)− f(x− t)| |DN(t)|dt,
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1

2π

∫
0≤|t|<δ

|f(x)− f(x− t)| |DN(t)|dt ≤ Kx
1

2π

∫
0≤|t|<δ

|t| |DN(t)|dt,

|t| |DN(t)| = |t|
∣∣∣∣sin(N + 1

2
)t

sin( t
2
)

∣∣∣∣ = 2

∣∣∣∣ t/2

sin( t
2
)

∣∣∣∣ | sin(N +
1

2
)t| ≤ 2M,

where M is a bound for

∣∣∣∣ t/2

sin( t
2
)

∣∣∣∣ | on 0 < |t| ≤ δ. Hence,∣∣∣∣ 1

2π

∫
0≤|t|<δ

[f(x)− f(x− t)]DN(t)dt

∣∣∣∣ ≤ 4MKxδ

2π
=

2MKxδ

π
.

We may take δ such that
2MKxδ

π
< ε/2. Hence,

|f(x)− SN(f, x)| ≤
∣∣∣∣ 1

2π

∫
0≤|t|<δ

[f(x)− f(x− t)]DN(t)dt

∣∣∣∣
+

∣∣∣∣ 1

2π

∫
δ≤|t|≤π

[f(x)− f(x− t)]DN(t)dt

∣∣∣∣
< ε for all N ≥ N0.

�

Exercise 4.9. Suppose f is 2π-periodic and Hölder continuous at x, i.e., there exist

M > 0 and α > 0 such that |f(x)− f(y)| ≤M |x− y|α for all y ∈ [−π, π]. Then show

that SN(f, x)→ f(x) as N →∞.

Exercise 4.10. Suppose f is 2π-periodic and Hölder continuous on [−π, π], i.e., there

exist M > 0 and α > 0 such that |f(x) − f(y)| ≤ M |x − y|α for all x, y ∈ [−π, π].

Then show that SN(f, x)→ f(x) uniformly.

5. Ces̀aro summablity of Fourier series

Theorem 5.1. (Fejér’s theorem) If f ∈ C(T ), then the Fourier series of f is

uniformly Ces̀aro summable on [−π, π], that is,

σN(f, x) :=
1

N + 1

N∑
k=0

Sk(f, x)→ f(x) as N →∞

uniformly on [−π, π].

Recall that

Sk(f, x) :=
k∑

n=−k

f̂(n)einx =
1

2π

∫ π

−π
f(x− t)Dk(t)dt.
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Hence,

σN(f, x) =
1

N + 1

N∑
k=0

Sk(f, x) =

∫ π

−π
f(x− t)

{
1

N + 1

N∑
k=0

Dk(t)

}
.

Thus,

σN(f, x) =

∫ π

−π
f(x− t)KN(t)dt,

where

KN(t) :=
1

N + 1

N∑
k=0

Dk(t).

Definition 5.2. The function KN(t) defined above is called the Fejér kernel.

We observe that
1

2π

∫ π

−π
KN(t)dt = 1.

Hence,

f(x)− σN(f, x) =
1

2π

∫ π

−π
[f(x)− f(x− t)]KN(t)dt.

For the proof of Theorem 5.1, we shall make use of the following lemma.

LEMMA 5.3. The following results hold.

(1) For t 6= 0,

KN(t) =
1

N + 1

1− cos(N + 1)t

1− cos t
=

1

N + 1

sin2[(N + 1)t/2]

sin2(t/2)
.

(2) KN(t) is an even function and KN(t) ≥ 0 for all t ∈ [−π, π].

(3) For 0 < δ ≤ π,

KN(t) ≤ 1

N + 1

(
1

sin2(δ/2)

)
.

In particular, KN is positive and KN(t)→ 0 as N →∞ uniformly on 0 < δ ≤ |t| ≤ π.

Proof of Theorem 5.1. Sine KN(t) is a non-negative function (see Lemma 5.3), we

have

|f(x)− σN(f, x)| ≤ 1

2π

∫ π

−π
|f(x)− f(x− t)|KN(t)dt.

Let ε > 0 be given. Since f is uniformly continuous, there exists δ ∈ (0, π] such that

|f(x)− f(y)| < ε whenever |x− y| < δ.

Hence,
1

2π

∫
|t|<δ
|f(x)− f(x− t)|KN(t)dt <

ε

2π

∫
|t|<δ

KN(t)dt = ε.



14 M.T. NAIR

Also, since f is uniformly bounded there exists M > 0 such that |f(y)| ≤ M for all

x ∈ [−π, π].

1

2π

∫
|t|≥δ
|f(x)− f(x− t)|KN(t)dt ≤ 2M

2π

∫
|t|≥δ

KN(t)dt.

We have observed in Lemma 5.3 that KN(t) is an even function and KN(t) → 0 as

N →∞ uniformly on [δ, π]. Hence, there exists N0 such that

1

2π

∫
|t|≥δ
|f(x)− f(x− t)|KN(t)dt ≤ 4M

2π

∫ π

δ

KN(t)dt < ε for all N ≥ N0.

Hence,

|f(x)− σN(f, x)| ≤ 1

2π

∫ π

−π
|f(x)− f(x− t)|KN(t)dt < 2ε

for all N ≥ N0. Note that N0 is independent of the point x. Thus, we have proved

that SN(f, x)→ f(x) as N →∞ uniformly for x ∈ [−π, π]. �

Remark 5.4. The proof of Theorem 5.1 reveals more:

If f is peace-wise continuous and 2π-periodic, and continuous at x, then

σN(f, x)→ f(x) as N →∞.

Notation:

• un(x) := einx, n ∈ Z.

• AC(T ) denotes the vector space of all 2π-periodic complex valued functions

defined on R which are absolutely continuous.

• span{un : n ∈ Z} is the space (over C) of all trigonometric polynomials.

Corollary 5.5. The space of all trigonometric polynomials is dense in C(T ) with

respect to the uniform norm, and hence dense in Lp(T ) w.r.t. ‖ · ‖p for 1 ≤ p <∞.

Proof. By Theorem 5.1, space of all trigonometric polynomials is dense in C(T ) with

respect to the uniform norm ‖ · ‖∞. Hence, for any f ∈ C(T ), there exists a sequence

(fn) of trigonometric polynomials such that

‖f − fn‖pp =

∫ π

−π
|f(x)− fn(x)|pdx ≤ 2π‖f − fn‖p∞ → 0

as n→∞. �

Corollary 5.6. If f ∈ L2(T ) for some 1 ≤ p < ∞ and f̂(n) = 0 for all n ∈ Z, then

f = 0 a.e.
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Proof. Suppose f ∈ L2(T ) for some 1 ≤ p < ∞ and f̂(n) = 0 for all n ∈ Z, i.e.,

〈f, un〉 = 0 for all n ∈ Z. By Corollary 5.5, it follows that ‖f‖L2 = 0. Hence, f = 0

a.e. �

Corollary 5.7. If f ∈ C(T ) such that f̂(n) = 0 for all n ∈ Z, then f = 0. In

particular, if f, g ∈ C(T ) such that f̂(n) = ĝ(n) for all n ∈ Z, then f = g.

Proof. Suppose f ∈ C(T ) such that f̂(n) = 0 for all n ∈ Z. Thus, 〈f, un〉L2 = 0 for all

n ∈ Z. Since C(T ) ⊆ L2[−π, π], f ∈ L2[−π, π]. Hence by Corollary, f = 0 a.e. Since

f is continuous, f = 0. �

The above corollary shows:

The Fourier coefficients of f ∈ C(T ) determines f uniquely.

Corollary 5.8. If f ∈ C2(T ), then

f̂ ′′(n) = (in)2f̂(n) for all n ∈ Z.

In particular, f̂(n) = o( 1
n2 ), and the Fourier series of f converges uniformly to f .

Proof. Let f ∈ C2(T ). Then, using integration by parts, we obtain,

2πf̂(n) =

∫ π

−π
f(x)e−inxdx

=
[
f(x)

e−inx

−in

]π
−π
−
∫ π

−π
f ′(x)

[e−inx
−in

]
dx

=
1

in

∫ π

−π
f ′(x)e−inxdx

=
1

in

[
f ′(x)

e−inx

−in

]π
−π
− 1

in

∫ π

−π
f ′′(x)

[e−inx
−in

]
dx

=
1

(in)2

∫ π

−π
f ′′(x)e−inxdx.

Hence, f̂ ′′(n) = (in)2f̂(n) for all n ∈ Z. In particular, f̂(n) = o(1/n2). Therefore,∑
n∈Z |f̂(n)| converges, and hence the Fourier series converges uniformly. Suppose

SN(f, x) → g(x) uniformly. Then it follows that g ∈ C(T ) and ĝ(n) = f̂(n) for all

n ∈ Z. Therefore, by Corollary 5.7, g = f. �

Following the same arguments as in the proof of Corollary 5.8, we obtain:
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Corollary 5.9. If f ∈ C1(T ) and f ′ is absolutely continuous, then f ′′ exists almost

everywhere, f ′′ ∈ L1[−π, π] and

f̂ ′′(n) = (in)2f̂(n) for all n ∈ Z,

and the Fourier series of f converges uniformly to f .

More generally,

Theorem 5.10. If f ∈ Ck−1(T ) and f (k−1) is absolutely continuous for some k ∈ N,

then f (k) exists almost everywhere f (k) ∈ L1(T ) and

f̂ (k)(n) = (in)kf̂(n) for all n ∈ Z.

Proof of Lemma 5.3. We have

KN(t) :=
1

N + 1

N∑
k=0

Dk(t) where Dk(t) =
sin(k + 1/2)t

sin t/2

Hence,

(N + 1)KN(t) =
N∑
k=0

sin(k + 1/2)t

sin t/2
=

N∑
k=0

ei(k+1/2)t − e−i(k+1/2)t

eit/2 − e−it/2

But,

ei(k+1/2)t − e−i(k+1/2)t

eit/2 − e−it/2
=
ei(k+1)t − e−ikt

eit − 1
,

ei(k+1/2)t − e−i(k+1/2)t

eit/2 − e−it/2
=
eikt − e−i(k+1)t

1− e−it
,

Therefore,

[eit − 1](N + 1)KN(t) =
N∑
k=0

[ei(k+1)t − e−ikt], (1)

[1− e−it](N + 1)KN(t) =
N∑
k=0

[eikt − e−i(k+1)t] (2)

Subtracting the (2) from (1),

[2 cos t− 2](N + 1)KN(t) = 2
N∑
k=0

[cos(k + 1)t− cos kt] = 2[cos(N + 1)t− 1]

Thus,

KN(t) =
1

N + 1

cos(N + 1)t− 1

cos t− 1
=

1

N + 1

sin2[(N + 1)t/2]

sin2(t/2)
.
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Thus, we have proved (1). It is clear that KN(t) is even and non-negative. Now, for

0 < δ ≤ π, sin2(t/2) ≥ sin δ/2, so that∫ π

δ

KN(t)dt =
1

N + 1

∫ π

δ

sin2[(N + 1)t/2]

sin2(t/2)
dt ≤ 1

N + 1

∫ π

δ

1

sin2(δ/2)
dt.

Thus, ∫ π

δ

KN(t)dt ≤ π − δ
(N + 1) sin2(δ/2)

→ 0 as N →∞.

�

Exercise 5.11. Suppose f is piecewise continuous and 2π-periodic. If f̂(n) = 0 for all

n ∈ Z, then f(x) = 0 for all x at which f is continuous.

Exercise 5.12. If f ∈ C1(T ), then f̂(n) = O(1/n). More generally, f ∈ Ck(T ) implies

f̂(n) = O(1/nk).

Example 5.13. Let f(x) = x2, |x| ≤ π. Note that

2πf̂(0) =

∫ π

−π
x2dx = 2

π3

3

so that f̂(0) = π2/3, and for n 6= 0,

2πf̂(n) =

∫ π

−π
x2e−inxdx

=
[
x2
e−inx

−in

]π
−π
−
∫ π

−π
2x
e−inx

−in
dx

=
[
x2
e−inx

−in

]π
−π
−
[
2x

e−inx

(−in)2

]π
−π

= −
[
2x

e−inx

(−in)2

]π
−π

=
[
2x
e−inx

n2

]π
−π

= 4π
einx

n2

= 4π
(−1)n

n2

Hence, for n 6= 0,

f̂(n) = 2
(−1)n

n2
.

Thus,

x2 ≈ π2

3
+ 2

∞∑
n 6=0

(−1)n

n2
einx =

π2

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx.

Since the series of coefficients converges absolutely, we have

f(x) =
π3

3
+ 4

∞∑
n=1

(−1)n

n2
cosnx.
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Taking x = 0,

0 =
π3

3
+ 4

∞∑
n=1

(−1)n

n2
.

Thus,
∞∑
n=1

(−1)n+1

n2
=
π2

12
.

Taking x = π,

π2 =
π3

3
+ 4

∞∑
n=1

(−1)n

n2
(−1)n =

π3

3
+ 4

∞∑
n=1

1

n2
.

Thus,
∞∑
n=1

1

n2
=
π2

6
.

Example 5.14. Let f(x) = x, x ∈ [−π, π]. Note that f̂(0) = 0 and for n 6= 0,

2πf̂(n) =

∫ π

−π
xe−inxdx =

[
x
e−inx

−in

]π
−π
−
∫ π

−π

e−inx

−in
dx =

[
x
e−inx

−in

]π
−π
.

Thus,

2πf̂(n) =
[
x
e−inx

−in

]π
−π

=
1

−in
[πe−inπ + πeinπ] = 2π

einπ

−in
so that

f̂(n) =
(−1)n

−inπ
=

(−1)n+1

inπ
.

Hence,

x =
∞∑
n6=0

(−1)n+1

in
einx =

∑
n=1

(−1)n+1

in
[einx − e−inx] = 2

∑
n=1

(−1)n+1

n
sinnx

Taking x = π/2 we obtain the Madhava-Nīlakaṅtha series

π

4
=
∞∑
n=1

(−1)n+1

n
sin

nπ

2
=
∞∑
n=0

(−1)n

2n+ 1
. ♦

6. Divergence of Fourier series

Theorem 6.1. There exists f ∈ C(T ) such that {SN(f, 0)} is unbounded; in particular,

the Fourier series of f does not converge to f at 0.

For this we shall make use of the Uniform Boundedness Principle from Functional

Analysis:
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Theorem 6.2. (Uniform Boundedness Principle) Let (Tn) be a sequence of con-

tinuous linear transformations from a Banach space X to a normed linear space Y . If

for each u ∈ X, the set {‖Tnu‖ : n ∈ N} is bounded, then there exists M > 0 such that

sup
‖u‖≤1

‖Tnu‖ ≤M ∀n ∈ N.

Let

ϕN(f) := SN(f, 0), f ∈ C(T ).

We see that ϕN : C(T )→ C is a linear functional for each N ∈ N and

|ϕN(f)| = |SN(f, 0)| =
∣∣∣∣ 1

2π

∫ π

−π
f(−t)DN(t)dt

∣∣∣∣ ≤ ‖f‖∞( 1

2π

∫ π

−π
|DN(t)|dt

)
.

Hence, each ϕN is a continuous linear functional on C(T ) and

sup
‖u‖∞≤1

|ϕN(f)| ≤ 1

2π

∫ π

−π
|DN(t)|dt.

In fact,

Theorem 6.3.

sup
‖u‖∞≤1

|ϕN(f)| = 1

2π

∫ π

−π
|DN(t)|dt

and ∫ π

−π
|DN(t)|dt ≥ 8

π

N∑
k=1

1

k
.

Proof of Theorem 6.1. By Theorem 6.3, there does not exist M > 0 such that

sup‖u‖∞≤1 |ϕN(f)| ≤ M for all n ∈ N. Hence, by Theorem 6.2, there exists f ∈ C(T )

such that {|ϕn(f)| : n ∈ N} is unbounded. Hence, there exists f ∈ C(T ) such that

Fourier series of f diverges at 0. �

Remark 6.4. Let D := {f ∈ C(T ) : {SN(f, 0)} does not converge}. Then C(T ) \ D
is a subspace of C(T ), and by Theorem 6.1, C(T ) \ D is a proper subspace. Hence,

C(T ) \ D is nowhere dense, and hence D is dense in C(T ). Thus, we have proved the

following:

There exists a dense subset D of C(T ) such that for each f ∈ D, the

Fourier series of f diverges at 0.

In place of 0, we can take any point in [−π, π] and obtain similar divergence result at

that point.
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7. Uniqueness

Theorem 7.1. (Uniqueness of Fourier series) Let f ∈ L1(T ). If f̂(n) = 0 for all

n ∈ N, then f = 0 a.e.

Proof. Let

g(t) =

∫ t

−π
f(x)dx, t ∈ [−π, π].

Then, by Fundamental Theorem of Lebesgue Integration (FTLI), g is absolutely con-

tinuous, g′ exists a.e. and g′ = f a.e. Note that

g(t+ 2π)− g(t) =

∫ t+2π

t

f(x)dx =

∫ π

−π
f(x)dx = 2πf̂(0) = 0.

Hence g is 2π-periodic. Let

h(t) =

∫ t

−π
g(x)dx, t ∈ [−π, π].

Then we see that

h(t+ 2π)− h(t) =

∫ t+2π

t

g(x)dx =

∫ π

−π
g(x)dx = 2πĝ(0).

Taking

G(t) =

∫ t

−π
[g(x)− ĝ(0)]dx, t ∈ [−π, π],

we have

G(t+ 2π)−G(t) =

∫ π

−π
[g(x)− ĝ(0)]dx = 2π[ĝ(0)− ĝ(0)] = 0.

Thus, G is 2π-periodic, and G′′ = f a.e.Hence,

f̂(n) = Ĝ′′(n) = (in)2Ĝ(n) for all n 6= 0.

Therefore, Ĝ(n) = 0 for all n 6= 0. Hence, by Corollary 5.9, G(x) = Ĝ(0), and hence

G′′ = 0, so that f = 0 a.e. �

Recall that for each f ∈ L1(T ),

f̂(n)→ 0 as |n| → ∞.

Thus, (f̂(n)) ∈ c0(Z) for every f ∈ L1[−π, π].

Notation: c0(Z) is the set of all sequences ϕ : Z→ C such that ϕ(n)→ 0 as |n| → ∞.
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Theorem 7.2. The map F : L1(T )→ c0(Z) be defined by

F(f) = (f̂(n)), f ∈ L1(T )

is an injective continuous linear operator which is not onto.

Proof. For f, g ∈ L1(T ) and α ∈ C, we have

̂(f + g)(n)) = f̂(n) + ĝ(n) for all n ∈ Z,

α̂f(n)) = αf̂(n). for all n ∈ Z,

Thus, F is a linear operator. Note that

|f̂(n)| =
∣∣∣∣ 1

2π

∫ π

−π
f(x)e−inxdx

∣∣∣∣ ≤ 1

2π

∫ π

−π
|f(x)|dx.

Thus, if we endow L1[−π, π] with the norm

‖f‖L1 :=
1

2π

∫ π

−π
|f(x)|dx, f ∈ L1(T ),

then we see that F is a continuous linear operator. By Theorem 7.1, F is injective. So,

it remains to show that F is not onto. If it is onto, then my Bounded Inverse Theorem,

its inverse is also continuous. Note that

F(DN) = {D̂N(n)}

and

D̂N(n) = 1 for |n| ≥ N

so that

‖(F(DN))‖∞ = 1 for all N ∈ N.

If F is onto, then, by Bounded Inverse Theorem4 its inverse F−1 is continuous so that

(‖DN‖) = {‖F−1(F(DN)‖} is bounded, which is not true. �

By the above theorem there exists (cn) ∈ c0(Z) such that there is no f ∈ L(T )

satisfying cn = f̂(n) for all n ∈ N. It is a natural urge to have an example of such a

sequence cn). We shall show that cn) with

cn =

{
1/ log(n), n ≥ 2,

0, n ≤ 1,

is such a sequence. This is a consequence of the first part of the following theorem.

4If X and Y are Banach spaces and T : X → Y is a continuous bijective linear operator, then T−1

is also continuous.
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Theorem 7.3. Let f ∈ L1(T ). Then
∑
n 6=0

f̂(n)

n
einx converges at every x ∈ R and

∫ b

a

f(x)dx =
∑
n∈Z

∫ b

a

f̂(n)einx dx.

For proving the above theorem we shall make use of the following theorem:

Theorem 7.4. (Jordan) If f ∈ L1(T ) is of bounded variation5, then for every x ∈ R,

SN(f, x)→ 1

2
(f(x+) + f(x−) as N →∞.

In particular, if f ∈ AC(T ), then

SN(f, x)→ f(x) as N →∞

for every x ∈ R.

It can be easily shown that:

Every absolutely continuous function is of bounded variation.

Proof of Theorem 7.3. Let

g(t) =

∫ t

−π
[f(x)− f̂(0)]dx.

Then g is absolutely continuous and g is 2π-periodic, i.e., g ∈ AC(T ), g′ ∈ L1(T ) and

g′ = f − f̂(0) a.e. Therefore, ĝ′(n) = inĝ(n) for all n 6= 0 so that

ĝ(n) =
f̂(n)

in
, n 6= 0.

By Jordan’s theorem,

g(x) = ĝ(0) +
∑
n6=0

ĝ(n)einx = ĝ(0) +
∑
n 6=0

f̂(n)

in
einx.

In particular,
∑
n6=0

f̂(n)

n
einx converges. Also,

g(x)− g(y) =
∑
n6=0

f̂(n)

in
[einx − einx] =

∑
n6=0

f̂(n)

∫ x

y

eintdt.

5A function f : [a, b]→ C is of bounded variation if there exits κ > 0 such that for every partition

x0 < x1 < · · · < xn = b,
∑n

k=1 |f(xk+1)− f(xk| ≤ κ.
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But,

g(x)− g(y) =

∫ x

y

g′(t)dt =

∫ x

y

[f(t)− f̂(0)]dt =

∫ x

y

f(t)dt− f̂(0)(x− y)dt.

Hence, ∫ x

y

f(t)dt =
∑
n∈Z

∫ b

a

f̂(n)eint dt.

This competes the theorem. �

Corollary 7.5. Let (cn) be with

cn =

{
1/ log(n), n ≥ 2,

0, n ≤ 1,

Then there is no f ∈ L1(T ) satisfying cn = f̂(n) for all n ∈ N.

Proof. Suppose f ∈ L1(T ) satisfying cn = f̂(n) for all n ∈ N. Then by the first part of

Theorem 7.3, the series
∑∞

n=2
einx

n logn
converges. In particular, taking x = 0,

∑∞
n=2

1
n logn

converges, which is not true (e.g., by integral test).

�

8. Convolution

Given f, g ∈ L1(T ), it can be shown that

(x, y) 7→ f(x− y)g(y)

is measurable on R× R, and hence, for each x ∈ [−π, π], the integral∫ π

−π
f(x− y)g(y)dy

converges.

Definition 8.1. The convolution of f, g ∈ L1(T ) is defined by

(f ∗ g)(x) =
1

2π

∫ π

−π
f(x− y)g(y)dy, x ∈ [−π, π].

We observe the following:
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(1) f ∗ g ∈ L1(T ) and ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1 :

∫ π

−π

∫ π

−π
|f(x− y)| |g(y)|dydx =

∫ π

−π

[∫ π

−π
|f(x− y)| dx

]
|g(y)|dy

=

∫ π

−π
2π‖f‖1 |g(y)|dy

= (2π)2‖f‖1‖g‖1.

(2) f ∗ g = g ∗ f :

∫ π

−π
f(x− y)g(y)dy =

∫ π

−π
f(τ)g(x− τ)dy

=

∫ x+π

x−π
f(τ)g(x− τ)dy

=

∫ π

−π
f(τ)g(x− τ)dy.

(3) f̂ ∗ g(n) = ĝ(nf̂(n) for all n ∈ Z:

f̂ ∗ g(n) =
1

2π

∫ π

−π
(f ∗ g)(x)e−inxdx,

(f ∗ g)(x)e−inx =
1

2π

∫ π

−π
f(x− y)g(y)e−inxdy

=
1

2π

∫ π

−π
f(x− y)g(y)e−in(x−y)e−inydy,

∫ π

−π
(f ∗ g)(x)e−inxdx =

∫ π

−π

[∫ π

−π
f(x− y)g(y)e−in(x−y)e−inydy

]
dx

=

∫ π

−π

[∫ π

−π
f(x− y)e−in(x−y)dx

]
g(y)e−inydy

= 2π

∫ π

−π
f̂(n)g(y)e−inydy

= (2π)2f̂(n)ĝ(n).
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(4) (f ∗ g) ∗ h = f ∗ (g ∗ h):

∫ π

−π
(f ∗ g)(x− y)h(y)dy =

∫ π

−π

[∫ π

−π
f(x− y − t)g(t)dt

]
h(y)dy

=

∫ π

−π

[∫ π

−π
f(x− τ)g(τ − y)dτ

]
h(y)dy

=

∫ π

−π
f(x− τ)

[∫ π

−π
g(τ − y)h(y)dy

]
dτ

= 2π

∫ π

−π
f(x− τ)(g ∗ h)(τ)dτ

= (2π)2[f ∗ (g ∗ h)](x).

Theorem 8.2. With respect to convolution as multiplication, L1(T ) is a Banach alge-

bra.

• The Banach algebra L1(T ) does not have a multiplicative identity:

Suppose there exists ϕ ∈ L(T ) such that f ∗ ϕ = f for all f ∈ L1(T ). Then

f̂(n)ϕ̂(n) = f̂(n) for all f ∈ L1(T ). Hence, ϕ̂(n) = 1 whenever ϕ̂(n) 6= 0. But,

ϕ̂(n) → 0 as |n| → ∞. Hence, there exists N ∈ N such that ϕ̂(n) = 0 for all

n ≥ N . Let f ∈ L1(T ) be such that f̂(n) 6= 0 for some n ≥ N . Then for such

n, we obtain

0 = f̂(n)ϕ̂(n) = f̂(n) 6= 0,

which is a contradiction.

However,

• There exists (ϕn) in L1(T ) such that ‖f ∗ ϕn − f‖1 → 0.

In fact, we have the following.

Theorem 8.3. Let Kn be the Fejér kernel. Then, for every f ∈ L1(T ),

‖f ∗Kn − f‖1 → 0 as N →∞.

Proof. Recall that if g ∈ C(T ), then ‖g ∗ ϕn − g‖1 → 0. Let f ∈ L1(T ) and ε > 0

be given. Let g ∈ C(T ) be such that ‖f − g‖1 < ε, and let N ∈ N be such that
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‖g ∗ ϕn − g‖1 < ε for all n ≥ N . Then, for n ≥ N , we have

‖f ∗Kn − f‖1 ≤ ‖f ∗Kn − g ∗Kn‖1 + ‖g ∗Kn − g‖1 + ‖g − f‖1
≤ ‖(f − g) ∗Kn‖1 + ε+ ε

≤ ‖(f − g) ∗Kn‖1 + 2ε

≤ ‖f − g‖1‖Kn‖1 + 2ε

≤ 3ε.

The last inequality is due the fact that 1
2π

∫ π
−π
|Kn(t)|dt = 1

2π

∫ π
−π
Kn(t)dt = 1. �

9. L2-Theory

The norm on L2(T ) is given by

‖f‖2 =

(
1

2π

∫ π

−π

|f(x)|2dx
)1/2

.

Observe:

(1) If un(x) := einx, n ∈ Z, then the set {un : n ∈ Z} is an orthonormal set and

span{un : n ∈ Z}, the space of all trigonometric polynomials, is dense in L2(T ).

(2) Let f ∈ L2(T ) and SN(f) := SN(f, ·). Then

(a) SN(f) =
N∑

n=−N

〈f, un〉un.

(b) ‖SN(f)‖22 =
N∑

n=−N

|f̂(n)|2.

(c) ‖f − SN(f)‖22 = ‖f‖22 − ‖SN(f)|22 = ‖f‖22 −
N∑

n=−N

|f̂(n)|2.

(d) (Bessel’s inequality):
N∑

n=−N

|f̂(n)|2 ≤ ‖f‖22 ∀N ∈ N. In particular,

f̂(n)→ 0 as |n| → ∞.

(e) 〈f − SN(f), un〉 = 0 ∀ |n| ≤ N}.
(f) ‖f − SN(f)‖2 ≤ ‖f − g‖ ∀ g ∈ span{un : n ∈ Z, |n| ≤ N}.

Only (2)(f) requires some explanation.

Note that for every g ∈ span{un : n ∈ Z, |n| ≤ N},

‖f − g‖22 = ‖f − SN(f)‖22 + ‖SN(f)− g‖22,

because, in view of (2)(e), 〈f − SN(f), SN(f)− g〉 = 0.
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• The result in (2)(d) gives another proof for the Riemann Lebesgue lemma,

because L2(T ) is dense in L1(T ).

• In view of (2)(f),

‖f − SN(f)‖2 = inf{‖f − g‖2 : g ∈ XN},

where XN := span{un : n ∈ Z, |n| ≤ N}. In other words, SN(f) is the (unique!)

best approximation of f from XN . Uniqueness is due to the following: Suppose

ϕ be in XN such that

‖f − ϕ‖2 = inf{‖f − g‖2 : g ∈ XN}.

Then,

‖f − ϕ‖22 = ‖f − SN(f)‖22 + ‖SN(f)− ϕ‖22
since 〈f − SN(f), SN(f)− ϕ〉 = 0 so that we obtain ‖SN(f)− ϕ‖2 = 0.

Theorem 9.1. Let f ∈ L2(T ). Then we have the following:

(1) span{un : n ∈ Z} is an orthonormal basis of L2(T ), i.e., a maximal orthonormal

set in L2(T ).

(2) (Fourier expansion) f =
∑
n∈Z

f̂(n)un in L2(T ).

(3) (Parseval’s formula) ‖f‖22 =
∑
n∈Z

|f̂(n)|2.

Proof. (1) It can be seen that 〈f, un〉 = 0 for all n ∈ Z implies f = 0 in L2(T ). Hence,

span{un : n ∈ Z} is a maximal orthonormal set in L2(T ).

(3) We observe that, for n > m,

‖Sn(f)− Sm(f)‖2 ≤
∑

n≤|k|≤m

|f̂(n)|2.

Hence, {Sn(f)} is a cauchy sequence in L2(T ). Therefore, it converges to some g ∈
L2(T ). It can be seen that ĝ(n) = f̂(n) for all n ∈ Z. Therefore, g = f in L2(T ).

(3) Follows from (2). �

Now, we give another proof for the following theorem:

Theorem 9.2. If f ∈ C1(T ), then the Fourier series of f converges absolutely, and

uniformly to f . Further,

‖f − SN(f, ·)‖∞ = O

(
1√
N

)
.
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Proof.

f ∈ C1(T ) =⇒ f̂ ′(n) = inf̂(n).

Hence,∑
n6=0

|f̂(n)| =
∑
n6=0

1

n
| |inf̂(n)| =

∑
n6=0

1

n
| |f̂ ′(n)| ≤

(∑
n 6=0

1

n2

)1/2

‖f̂ ′‖2 =
π√
3
‖f̂ ′‖2.

Hence the Fourier series of f converges absolutely, and uniformly to a continuous

function, say g ∈ C(T ). Since ĝ(n) = f̂(n) for all n ∈ Z, we obtain g = f . We also

observe that, for all x ∈ R,

|f(x)− SN(f, x)| ≤
∑
|n|>N

|f̂(n)| =
∑
n6=0

1

n
| |f̂ ′(n)| ≤

∑
|n|>N

1

n2

1/2

‖f̂ ′‖2 ≤
‖f̂ ′‖2√
N
.

This completes the proof. �
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