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1. TRIGONOMETRIC SERIES AND FOURIER SERIES

Definition 1.1. A series of the form

(1.1) Co +Z(an cos nx + by, sin nw)

n=1

15 called a trigonometric series, where ¢y, a,,b, are real numbers.

e If (1.1) converges on [—7, 7] to a an integrable function f and if it can be
integrated term by term, then

f(=m) = f(x),
and
1 (" 1 [7 1 [" )
o= — f(z)cosnzdr, a,=— f(z)cosnxdx, b,=— f(z) sinnzdz.
2 J_, T ) . T ) .

o If the (1.1) converges (pointwise) on [—m, 7] to a function f, then f can be
extended as a 2m-periodic function by defining

flz+2nm) = f(z), neZ.

o

e If the series Z(|an| +1by|) converges, then (1.1) converges uniformly on [—, 7]
n=1

and it can be integrated term by term. We know that if f € L'[—n, ], then
the function f : [—m,m] — C defined by

fay={ 40, aebmmy
satisfies
f(=m) = f(x) and f= fae.
e The series (1.1) can be written as

o0

E Cnemx.

n=—oo

Definition 1.2. Let f € L'[—7,w]. The Fourier series of f is the series

oo

(1.2) %—i—Z(ancosnx—i—bnsinnJJ),

n=1

where

(1.3) an = 1 /7T f(z)cosnzdzr, b, = %/_ﬂ f(z)sinnzdz.

T™J -z
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The series

[e.9]

) 1 4 ;
(14) n:ZOO cnemx with Cp = % /_7r f(I)efmmdx
15 also called the Fourier series of f. The coefficients ¢, are called the Fourier
coefficient and are usually denoted by f(n), i.e.,

1
o7

f(z)e ™ dx, n € Z.

—T

f(n)

The sum

N
Sn(f,x) = Z f(n)e™
n=—N
is called the N-th partial sum of the Fourier series (1.4)).

Notation: In the above and in the following, the integral are w.r.t. the Lebesgue
measure.

The fact that (1.2) is the Fourier series of f is usually written as

f(z) = % + Z(an cosnx + by, sin nx).

n=1
Equivalently,
o0
~ £ inx
fley= > fn)em.
n=—oo
Since cosnz,sinx, e are 2m-periodic functions, we can talk about Fourier series of

2m-periodic functions. If (1.2) (resp. (1.4)) converges at a point x € [—m,x], then it
converges at x + 2k for every k € Z.

e The Fourier series (1.4)) converges at « € [—m, 7] if and only if Sy (f,z) — f(z)
as N — oo.
o If f € L'[—m, 7], then f(n) — 0 as |n| — cc.

o If Z | f (n)| converges, then Z f (n)e™* converges uniformly.

n=—00 n=—00

Suppose Fourier series of f € L'[—m, 7] converges uniformly, say to g. Then g is
continuous and

1 s

2 J_.

~

e ™ = S fng [ i = fom)
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~

ie., g(m) = f(m) for all m € Z. A natural question would be whether f = g a.e. We
shall answer this affirmatively.

We know that if the Fourier series of f € L'[—m, 7] converges, then

~

f(n) =0 as n— oo.

Can we assert this for every f € L'[—m, 7|7 The answer is in the affirmative as proved
in the next section.

2. RIEMANN LEBESGUE LEMMA
Theorem 2.1. (Riemann Lebesgue lemma) Let f € L'[a,b]. Then
/bf(t) cos(At)dt — 0 and /bf(t) sin(Af)dt -0 as A — oo.
Corollary 2.2. (Riemann Lebesgue lemma) Let f € L'[a,b]. Then

/bf(t) cos(nt)dt — 0 and /b f(t)sin(nt)dt -0 as n — oo.

For the proof of the Theorem 2.1, we shall make use of

LEMMA 2.3. The span of all step functions' on [a,b] is dense in L'[a,b].

Proof of Theorem 2.1. First we observe that if for every € > 0, there exists a func-
tion g € L'[a, b] such that || f — g|/; < € and the the result is true for g, then the result
is true for f also.

Indeed,

/a bf(t)cos()\t)dt‘ < /ab[f(t)—g(t)]cos()\t)dt‘+ /abg(t)cos()\t)dt’

< e+

/a b g(t) cos()\t)dt‘ .

Let Ao > 0 be such that ‘f;g(t) cos()\t)dt‘ < e for all A > A\g. Then we

have

b
/ f(t)cos(At)dt| <2 VN> X

IStep functions are finite linear combinations of characteristic functions. Also, recall that L'la,b]
is the vector space of all Lebesgue measurable complex valued functions f such that ||f|]; :=

b
/ |f(z)|dx < co. Here, dx stands for the Lebesgue measure.
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so that ff f(t) cos(At)dt — 0 as A — oo. Similarly, ff f(t)sin(At)dt — 0
as A — oo.

Hence, it is enough to prove the result for step functions. Since every step function is a
finite linear combination of characteristic functions on intervals, it is enough to prove
for f of the form f = x[.q, [c,d] C [a,b]. Note that

/d cos()\t)dt'
sicn()\d) — sin(\c)

A

b
/ Xle,d] cos()\t)dt’ =

2
< W—)O as A — 00.

b
Similarly, / Xle,d] sin()\t)dt‘ —0as A — 0. O

Remark 2.4. If f is Riemann integrable on [a,b], then there exists a sequence of (fy)
of step functions such that ||f — full1 — 0. Thus, conclusion in Theorem 2.1 holds if f
1s Riemann integrable.

Proof of Lemma 2.3. If f € L'{a, b] with f > 0, then there exists an increasing sequence
of non-negative simple measurable functions ¢,,n € N such that ¢, — f pointwise.
Hence, by DCT, fab |f — pn| — 0. From this, for any complex valued f € L'[a,b], there
exists a sequence (p,) of simple complex measurable functions

b

(1) Every simple real valued measurable function is a finite linear combination of

We observe (see [3]):

characteristic function of measurable sets.
(2) For every measurable set E C (a,b) and € > 0, there exists an open set G D F
such that m(G \ E) < . Hence,

b b
/|><G—><E|=/ | < m(G\ B) < <.

(3) If G C (a,b) is an open set, then G = J;—, I,,, where {I,,} is a countable
disjoint family of open intervals in (a, b);

XG = gggown, Yn = ;ka,
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Since 0 < 9, < xg, by DCT,

/\Xg—wn\ — 0.

(4) By (1)-(3), if ¢ is a simple measurable function and ¢ > 0, there exists a step
function ¢ such that
b
[le-vi<e

Thus, the lemma is proved. O

3. DIRICHLET KERNEL

Note that

N T T
Su(f.)i= e > e [ g it = o [ 0 Dale -t
n=—N m

—T

where

Redefining f at the end-points if necessary, and extending it as a 2m-periodic function,
we can also write (verify!),

Sn(f,z) = %/W f(x —t)Dy(t)dt.

Notation: We denote by T the unit circle T := {e" : —7 < t < 7}. Note that if
f:T — C and if we define f : R — C by f(t) = f(e), then

f(=n) = f(x) and f(t+2n7)=f(t) forall neZ.

That is, f is a 27-periodic function. In the due course, we shall identify 27-periodic
functions with functions on 7. We shall denote L'(T) for the space of all 2r-periodic
(complex valued) functions on R (with equality replaced equal a.e.) which are inte-
grable on [—m, 7] with norm

1 T
f= Al = %/_ |f(z)|dx.

Analogously, for 1 < p < oo, LP(T) denotes the space of all 2r-periodic (complex
valued) functions f on R such that |f|P is integrable on [—m, 7| with norm

b 1/p
Fo il = (5 [ i)

—T
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The space L*(T) is also a Hilbert space with inner product

(f,9) = (f,9) = %/_ﬂ f(x)g(x) de.

Definition 3.1. The function Dy(-) is called the Dirichlet kernel.

We observe that,

o Dn(—t) = Dy(t) for all t € [—m, 7| and

-7

N N N
o Dy(t) = Z e =1+ Z[emt +e " =1+2 Zcosmf.
n=—N n=1 n=1

Remark 3.2. We shall see that/ | Dy (t)|dt — o0 as N — oo.

Theorem 3.3.
2N + 1, t=0,

Proof. Clearly, Dy(0) = 2N + 1. So, let ¢ # 0. Note that

N
(eit _ 1)DN(t) _ Z [ei(n-i—l)t o eint] _ ei(N—i—l)t . e_iNt.
n=—N
But,
(e —1)Dy(t) = e/?(e? — e Dy (t) = 2ie/? sin(t/2) Dy (t).
Thus,
2isin(t/2) Dy (t) = e 2 [N/t _ o= WNFUDH — 95 6in(N + 1/2)t.

i.e.,

sin(N + 3)t
~ sin(d)

Dy (t) , U # 2km.
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4. DIRICHLET-DINI CRITERION FOR CONVERGENCE

We investigate the convergence:
Sn(f,x) = f(x).
Since / Dy (t)dt =1 and Sy(f,z) = o= [T f(z — t)Dn(t)dt, we have

fa) = Swlf0) = o [ 17(0) = la— 0D

2 ),
Theorem 4.1. (Dirichlet-Dini criterion) Let f € L'(T). If f satisfies
™ — flz—t
/ /(@) {(x )‘ dt < oo (%)
at a point x € [—m,m|, then

If (%) hods uniformly for x € [—m, x|, then the convergence {Sy(f,x)} to f(x) is
uniform.

Remark 4.2. In the above theorem, by f(@) - ;f(x — 1)

[@=fe=t) 4 4
=3, 7
0, t=0.

, we mean the function

Proof of Theorem 4.1. We observe that

f0) = Sx(ha) = 5= [ 1)~ fo— O1Dw (D)
1 [ sin(N + 3)t
= 5 7ﬂ[f($) — fle - t)]wdt

_ %/_Z{fu)—{(x_w}{Sitn/é)}sm(mém

2

Since (¢/2)/[sin(¢/2)] is bounded, in view of Riemann Lebesgue lemma, we have the
following. 0
The following corollaries are immediate from Theorem 4.1.
Corollary 4.3. Suppose f is Lipschitz at a point® x € [—m,7|. Then
Sn(f,x) — f(x) as N — oc.

2A function @ : I — C is said to be Lipschitz at a point x¢ € I if there exists Ky > 0 such that
lp(z) — p(z0)| < Kolxr — x| for all z € I.
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Corollary 4.4. Suppose f is Lipschitz* on [—m,7|. Then
Sn(f,z) = f(z) as N — oo
uniformly on [—m, ).
Notation: We denote by C'(T) the space of all 2r-periodic continuous functions on R,

and by C*(T) for k € NU {0}, the space of all 2r-periodic functions on R which are
k-times continuously differentiable on R.

Corollary 4.5. If f € C}(T), then
Sn(f,xz) — f(z) as N — o0

uniformly on R.

Now obtain a more general result.

Theorem 4.6. Suppose f is a 2mw-periodic function such that the following limits exist
at a point x € R:

flat) = Jim flr+1), fa=) = Jim fz 1),

t—0+
Fat) = Jim flx+ t)t— f(:v—l—)’ Flo-) = lim f(z—) —tf(x —1)
Then
Sn(f,z) — J(at) _;— f@=) as N — oo.
Proof. Since Dy(t) = Dn(—t), we have
1 0

= — f(x—t)DN dt+—/ f(z —t)Dy(t)dt

= /f dt+—/fx—tDN)

— 5 [ @0+ fa 0Dy (0

1 [7 2 [T
— Dy(t)dt = — Dy (t)dt
- [ putir= 5= [ paty

3A function ¢ : I — C is said to be Lipschitz on I if there exists K > 0 such that |¢(z) — ¢(z0)| <
Kol — x| for all z € I.

and
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Hence, for any 5 € R,

Su(f.a) =6 = o [ [+ 6+ fo— )~ 28Dx(0)ct

Taking 8 = w, we have

fla+t)+ fle—1) =26 =[f(x+1t) = fla+)] = [f(e—) = flx = 1)].

Thus,
Sn(f,x) — = An + By,

where

1 iy

Av =g [ e +0 — feniDx(tdt. By = o= [[1) - o= )Dw0ar

m™Jo

Note that
A = o [ Ut - fapy
1 [ sin(N + 3)t
= 5 [)[f(x‘%t)—‘f($+J}—j;£ny——dt

_ %/0“{1‘<x+t>t— f<x+)}{Sli/(2)}smw+;)tdt

Since w — f'(x+) as t — 0+, there exists 6 > 0 such that

’f(wﬂ)—f(ﬂ)
t
’f(ﬁt)—

t

0<t<dy =

—f’(x—i—)’ <1

f(ﬁ)‘ <14 |f (z4)].

Hence, the function

th}{f@r+ﬂ;ﬂﬂm+)}{$2é>}’ {40,

is bounded on (0,d), and hence, belongs to L'(T). Therefore,by Riemann Lebesgue
lemma, Ay — 0 as N — oo. Similarly, we see that, By — 0 as N — o0. O

An immediate corollary:

Corollary 4.7. If f € C(T) and has left and right derivative at a point x, then
Sn(f,xz) — f(z) as N — oo.

The following result is known as localization lemma.
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LEMMA 4.8. For 0 <r <m and x € [—7, 7|,

/ flx —t)Dn(t)dt -0 as N — oc.
r<|t|<m

Proof. Observe that

/ flz —t)Dy(t)dt = / g(x,t)sin(N + 1/2)tdt,
r<ft|<n

r<ftj<m

where
| fle—=1t)/sin(t/2), r <t <,
g(l‘,t){ 07 ‘t| ST.

Since g(z,-) is integrable, by Riemann Lebesgue lemma,
/ g(x,t)sin(N + 1/2)tdt -0 as N — oo.
r<|t|<m

O

Proof of Corollary 4.4 using localization lemma. Suppose f is Lipschitz at a point
x € [—m, n] with Lipschitz constant K, i.e., there exists § > 0 such that

|f(z) — f(x —t)| < K,|t| whenever [t| <.

Now,
f@) = 8x(1.0) = 5= [ @)~ - 0)Dx (o
= [ U@~ - 0Dy
0<|t|<d
o [ 1f@) ~ fo — DNl
T Jo<|t|<n
By Lemma 4.8,
% L) = e —0IDx(0de 0 a5 N o0

Hence, for a given € > 0, there exists Ny € N such that for all N > N,

1
/agmgw[f (z) = f(z —1)]Dn(t)dt

— < g/2.
21 8/

Also, But,

! |
/0§t|<5[f(:b’) — flz - t)]DN(t)dt’ < — /0§|t|<5 |f(z) — f(z —t)| | Dn(t)|dt,

21 7r
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1 1
o0 [f(x) = flz =) [Dn(t)]dt < Kx—/ [t [D (t)]dt,
2m 0<|t|<é 2m 0<|t|<é
sin(N + 2)t t/2 1
t|Dn@)| = |t | ——2 | = in(N + =)t| <2M
1D 0] = s | = 2|0 sy + < 20
: t/2
where M is a bound for | ——|| on 0 < |t| <. Hence,
sin(s)

1
2m /o§|t<5[f(x) —fla- t)]DN(t)dt‘ <

AMEK,S 2MK,b

21 s

2M K0
We may take ¢ such that

< £/2. Hence,

1

o) =SnGl < [ [ 1) = fle - lDuto

1
55 [ = s = 0lDytoe

< ¢ forall N > N,.

O

Exercise 4.9. Suppose f is 2w-periodic and Holder continuous at x, i.e., there exist
M >0 and a > 0 such that |f(z) — f(y)| < M|z — y|* for all y € [—7,w]. Then show

that Sy(f,x) — f(z) as N — oc.

Exercise 4.10. Suppose f is 2w-periodic and Hélder continuous on [—m, x|, i.e., there
exist M > 0 and o > 0 such that |f(z) — f(y)] < M|z —y|* for all x,y € [—m, 7).

Then show that Sy (f,x) — f(x) uniformly.

5. CESARO SUMMABLITY OF FOURIER SERIES

Theorem 5.1. (Fejér’s theorem) If f € C(T), then the Fourier series of f is

uniformly Cesaro summable on [—m, 7|, that is,

N
on(f, ) :NLHZSk(f,x)%f(x) as N — o0
k=0

uniformly on [—m, ).

Recall that

™

Sfa) = 3 fm)en = %/ F(a — ) Dy(t)dt.

—T
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Hence,
R ™ JR—
an( ax)_N—HZSk( ,T) = f(ﬁ—t){N—_Hsz(t)}
k=0 - k=0
Thus,
on(fix)= [ flz—1)Kn(t)dt,
where N
1
k=0

Definition 5.2. The function Ky(t) defined above is called the Fejér kernel.

We observe that . -
— Ky)dt = 1.
= [ Kxtt)

1

ﬂ@—aﬂﬁ@=5;[ﬂﬂ®—f®—ﬂmwwﬁ-

For the proof of Theorem 5.1, we shall make use of the following lemma.

Hence,

LEMMA 5.3. The following results hold.

(1) Fort#0,

1 1—cos(N+1)t 1 sin®[(N+1)t/2]
N+1 1-—cost N+1  sin®(t/2)

(2) Kn(t) is an even function and Ky(t) > 0 for allt € [—7,x].

(3) For0 <4 <,
1 1
Kn(t) < N +1 (sin2(5/2)> ‘

In particular, Ky is positive and Ky(t) — 0 as N — oo uniformly on 0 < 6 < |t| < 7.

Kn(t)

Proof of Theorem 5.1. Sine Ky(t) is a non-negative function (see Lemma 5.3), we
have

(@) — ox(f,2)] < — / ) — Flo— 1)Ky (t)dt.

—2m ),
Let € > 0 be given. Since f is uniformly continuous, there exists 6 € (0, 7| such that

|f(z) — f(y)] <e whenever |z —y| <.

Hence,
L ) = fa— DK dt < = [ Kyt =<

27 Jj<s T Ji<s
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Also, since f is uniformly bounded there exists M > 0 such that |f(y)] < M for all
x € [—m, 7.
1 2M
(@) — flo— ) Enbdt < 22 [ Ky(t)dt.

27 Jyy=s T Jit=s

We have observed in Lemma 5.3 that Ky(t) is an even function and Ky(t) — 0 as
N — oo uniformly on [§, 7]. Hence, there exists Ny such that

1 4M [T
F(2) — flo— )| Kn(t)dt < 2—/ Kn(t)dt <c forall N> Np.
T Js

27 Jyty=s
Hence,
1 ™
@)~ owlfa)l < 5= [ 1) = flo = Dl KB < 2
for all N > Ny. Note that Ny is independent of the point x. Thus, we have proved
that Sx(f,x) — f(x) as N — oo uniformly for z € [—m, 7]. O

Remark 5.4. The proof of Theorem 5.1 reveals more:

If f is peace-wise continuous and 27-periodic, and continuous at x, then
on(f,z) = f(x) as N — oc.

Notation:

o u,(z) =" necl.
e AC(T) denotes the vector space of all 2r-periodic complex valued functions
defined on R which are absolutely continuous.

e span{u, : n € Z} is the space (over C) of all trigonometric polynomials.

Corollary 5.5. The space of all trigonometric polynomials is dense in C(T) with
respect to the uniform norm, and hence dense in LP(T) w.r.t. |||, for 1 <p < oc.

Proof. By Theorem 5.1, space of all trigonometric polynomials is dense in C'(7") with
respect to the uniform norm || - ||«. Hence, for any f € C(T), there exists a sequence
(fn) of trigonometric polynomials such that

1f = fullp = / |[f(2) = ful@)Pde < 27| f = full& — 0

—T

as n — oo. O

Corollary 5.6. If f € L*(T) for some 1 < p < oo and f(n) =0 for alln € Z, then
f=0a.e.
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Proof. Suppose f € L?*(T) for some 1 < p < oo and f(n) =0 for all n € Z, ie.,
(f,un) = 0 for all n € Z. By Corollary 5.5, it follows that || f||z= = 0. Hence, f =0
a.e. U

Corollary 5.7. If f € C(T) such that A(n) =0 for alln € Z, then f = 0. In
particular, if f,g € C(T) such that f(n) = g(n) for alln € Z, then f = g.

Proof. Suppose f € C(T) such that f(n) = 0 for all n. € Z. Thus, (f,uy)z2 = 0 for all
n € Z. Since C(T) C L?*|—m, x|, f € L*|—m,x|. Hence by Corollary, f = 0 a.e. Since
f is continuous, f = 0. O

The above corollary shows:

’ The Fourier coefficients of f € C(T) determines f uniquely.

Corollary 5.8. If f € C*(T), then
ﬁ(n) = (in)2f(n) for all neZ.

In particular, f(n) = 0(#), and the Fourier series of f converges uniformly to f.

Proof. Let f € C?*(T). Then, using integration by parts, we obtain,

~

2mf(n)

f(z)e ™ dx

S e e ] e P

—Tr

1 [ A
= - f(z)e""dx
B 1 , ef'inx T 1 ™ " efin:r
B E[f(x) —in] x in f(@[—m}dx

Hence, f7(n) = (in)2f(n) for all n € Z. In particular, f(n) = o(1/n?). Therefore,
pp— f (n)| converges, and hence the Fourier series converges uniformly. Suppose
Sn(f,z) — g(z) uniformly. Then it follows that ¢ € C(T) and §(n) = f(n) for all
n € Z. Therefore, by Corollary 5.7, g = f. U

Following the same arguments as in the proof of Corollary 5.8, we obtain:
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Corollary 5.9. If f € CY(T) and f' is absolutely continuous, then f" exists almost
everywhere, f" € L'[—m, 7] and

ﬁ(n) = (in)2f(n) forall neZ,

and the Fourier series of f converges uniformly to f.

More generally,

Theorem 5.10. If f € C*Y(T) and f*~ is absolutely continuous for some k € N,
then f%) exists almost everywhere f* € LY(T) and

f®(n) = (in)*f(n) forall neZ.

Proof of Lemma 5.3. We have
sin(k + 1/2)t

Ky N+12Dk where Dy, (t) = iz
Hence,
N sin (k + 1/2) N pilk+1/2)t _ p—i(k+1/2)t
(N+1 Z - . |
—  sint/2 — eit/2 — e=it/2
But,
pilk+1/2)t _ p—i(k+1/2)t B pilk 1)t _ =ikt
eit/2 _ o—it/2 o eit — 1 ’
pilk+1/2)t _ p—i(k+1/2)t B ikt _ p—ilk+1)t
eit/2 _ o—it/2 o 1 — e—it )
Therefore,
N

[ 1] (N +1 Z z(k+1 —z‘/k:t]7 (1)

Mzo

[1— e (N + DR (1) = Dl — 0 2)
k=0
Subtracting the (2) from (1),
N
[2cost — 2](N + 1) QZ cos(k + 1)t — cos kt] = 2[cos(N + 1)t — 1]
k=0

Thus,
1 cos(N+1)t—1 1 sin’[(N+1)t/2]
N+1 cost—1  N+1 sin®(t/2)

Kn(t) =
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Thus, we have proved (1). It is clear that Ky (t) is even and non-negative. Now, for
0 < § <, sin?(t/2) > sind/2, so that

/;KN(t)dt | /;sinQ[(N—i—l)t/Q] i< L /” I

T N+1 sin2(t/2) S N+1J; sin2(5/2)
Thus,
/WK (t)dt < ™0 50 as N—
Q.
s TS (N 4+ 1) sin?(6/2)

O

Exercise 5.11. Suppose f is piecewise continuous and 2mw-periodic. If f(n) =0 for all
n € Z, then f(x) =0 for all x at which f is continuous.

Exercise 5.12. If f € CY(T), then f(n) = O(1/n). More generally, f € C*(T) implies
f(n) = O(1/n").
Example 5.13. Let f(z) = 22, |z| < 7. Note that
~ ™ 3
2 £(0) :/ ridr = 2?

—T

so that f(0) = 72/3, and for n # 0,

orf(n) = / R

—T

e—inx . ™ e—in:c
—im J1—-m _ —1n

™

- = ]

—in (—in)?l—#

e—inz P 6—inw P einx

- |:2$(—Zn)2j| -7 - |:2x n2 ]—w = dm n2
(="
= 4r 2
Hence, for n # 0,
; (="
fln) =2——.

Thus,

2 (@) n 2 o n
2 T (=" e _m (-1)
o 3 +2 n%éo 5 e = Y +4 51 3 COSNI.

Since the series of coefficients converges absolutely, we have

fla) =" +4) L

cosnx.
n
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Taking x = 0,
7.‘_3 > (_1)n
0=—+4
Thus,
i (_1)n+1 B 2
n? 12
n=1
Taking x =,
3 o n 3 0
5 (—1) . T 1
=— 44 -1)'=—+4 —
R P R T
Thus,
=1 _7r2
_ =
—~n 6

Example 5.14. Let f(2) = x, 2 € [—, x1]. Note that f(0) = 0 and for n # 0,

L e e M = T F

o —in 1z _e —in —in
Thus,
. —iNT 1 1 ) ) inm
2nf(n) = [xe _ ] = —[me”""" 4+ 7w = o
—inl-r —in —in
so that X
R —1)" -1 n-+
PR Ve Vi
—inm inT
Hence,
_ = (_1>n+1 int __ (_1)n+1 inc —inz] __ (_1)n+1 .
x—ZTe —ZT[e —e ]—22 S ——sinng
n#0 n=1 n=1
Taking x = /2 we obtain the Madhava-Nilakaritha series
T o= (D" nr K (=)
4_; n sz_nz%mwr 0

6. DIVERGENCE OF FOURIER SERIES

Theorem 6.1. There exists f € C(T) such that {Sy(f,0)} is unbounded; in particular,
the Fourier series of f does not converge to f at 0.

For this we shall make use of the Uniform Boundedness Principle from Functional
Analysis:



TOPICS IN FOURIER ANALYSIS 19

Theorem 6.2. (Uniform Boundedness Principle) Let (1),) be a sequence of con-
tinuous linear transformations from a Banach space X to a normed linear space Y . If
for each u € X, the set {||T,,ul| : n € N} is bounded, then there exists M > 0 such that

sup ||Thul| < M VneN.

[[ull<1

Let
@N(f) = SN(f70)7 fGO(T)
We see that ¢y : C(T) — C is a linear functional for each N € N and

ox (Nl = 157,01 = |5 [ 0000t < 171 (52 [ 10w(0le).

Hence, each ¢y is a continuous linear functional on C(7") and

o lov(Dl < 5= [ " D (0)dt.

lulloo <1 Iz
In fact,
Theorem 6.3.
1 iy
sup_fex(f)| =5 [ IDx(o)de
llullo<1 T J—x
and

Proof of Theorem 6.1. By Theorem 6.3, there does not exist M > 0 such that
SUD|jy<1 19N (f)] < M for all n € N. Hence, by Theorem 6.2, there exists f € C(T)
such that {|p,(f)| : n € N} is unbounded. Hence, there exists f € C(T) such that
Fourier series of f diverges at 0. O

Remark 6.4. Let D := {f € C(T) : {Sy(f,0)} does not converge}. Then C(T) \ D
is a subspace of C(T'), and by Theorem 6.1, C(T) \ D is a proper subspace. Hence,
C(T) \ D is nowhere dense, and hence D is dense in C(7"). Thus, we have proved the
following;:

There exists a dense subset D of C(T') such that for each f € D, the
Fourier series of f diverges at 0.

In place of 0, we can take any point in [—7, 7] and obtain similar divergence result at
that point.
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7. UNIQUENESS

Theorem 7.1. (Uniqueness of Fourier series) Let f € LY(T). If f(n) = 0 for all
n €N, then f =0 a.e.

Proof. Let
o(t) = /_ f@)de, te |- ).

Then, by Fundamental Theorem of Lebesgue Integration (FTLI), g is absolutely con-
tinuous, ¢’ exists a.e. and ¢’ = f a.e. Note that

™

t+2m N
g(t+2m) —g(t) = /t f(z)de = f(x)dx =27 f(0) = 0.

—T

Hence g is 2m-periodic. Let

Then we see that

h(t + 27) — h(t) = /t T @) = / " g(2)dx = 273(0).

Taking

we have

Gt +2m) — G(t) = / " [9(x) — §(0)]dz = 2x[3(0) — §(0)] = 0.

—Tr

Thus, G is 27-periodic, and G” = f a.e.Hence,

f(n) =G"(n) = (in)?G(n) for all n 0.
Therefore, G(n) = 0 for all n # 0. Hence, by Corollary 5.9, G(z) = G(0), and hence
G" =0, so that f =0 a.e. O

Recall that for each f € L}(T),

f(n) =0 as |n| — oco.
Thus, (f(n)) € co(Z) for every f € L'[—n, x].

Notation: ¢((Z) is the set of all sequences ¢ : Z — C such that p(n) — 0 as |n| — oc.
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Theorem 7.2. The map F : L*(T) — ¢o(Z) be defined by
F(f)=(f(n), feLXT)

1S an injective continuous linear operator which is not onto.

Proof. For f,g € L}(T) and a € C, we have

L — ~

(f +9)(n)) = f(n) +g(n) forall neZ,

a}(n)) =af(n). forall neZ,

Thus, F is a linear operator. Note that

o 1 m ) 1 ™
ol = |5 [ s@eas| < o [ i

Thus, if we endow L![—7, 7] with the norm

Il =5 [ 1r@ldn, £ e L),

then we see that F is a continuous linear operator. By Theorem 7.1, F is injective. So,
it remains to show that F is not onto. If it is onto, then my Bounded Inverse Theorem,
its inverse is also continuous. Note that

F(Dy) = {Dn(n)}
and
lA)N(n) =1 for |n|>N
so that
I(F(Dy))|lwo =1 forall N e€N.

If F is onto, then, by Bounded Inverse Theorem® its inverse F~! is continuous so that

(IDx 1) = {IIF*(F(Dn)||} is bounded, which is not true. O

By the above theorem there exists (c,) € co(Z) such that there is no f € LT)
satisfying ¢, = f(n) for all n € N. It is a natural urge to have an example of such a
sequence ¢, ). We shall show that ¢,) with

. 1/log(n), n>2,
"0, n<l1,

is such a sequence. This is a consequence of the first part of the following theorem.

“If X and Y are Banach spaces and T : X — Y is a continuous bijective linear operator, then 7!
is also continuous.
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Theorem 7.3. Let f € LY(T). Then Z f e converges at every x € R and
n#0

/f da:_Z/f )™ d.

nez

For proving the above theorem we shall make use of the following theorem:

Theorem 7.4. (Jordan) If f € L'(T) is of bounded variation®, then for every x € R,
Sw(f,2) = 5(f@H) + =) as N oo
In particular, if f € AC(T), then
Sn(f,z) = f(z) as N — o0

for every x € R.

It can be easily shown that:

Every absolutely continuous function is of bounded variation.
Proof of Theorem 7.3. Let

o(t) = / F(x) — F(0))da

Then g is absolutely continuous and g is 2r-periodic, i.e., g € AC(T), ¢’ € L*(T) and
g = f — f(0) a.e. Therefore, g'(n) = ing(n) for all n # 0 so that

) f(n
=1 wzo
m
By Jordan’s theorem,
A ~ mnr __ -~ f(n) nT
o) = 9(0)+ 3 gme = 4(0) + 3 L e
n#0 n#0

In particular, Z f( e™ converges. Also,
n#0

f ma: znm ¢ m
=) -~ — %: f(n /y tdt.

A function f : [a,b] — C is of bounded variation if there exits k > 0 such that for every partition
xo <1 <o <@y =b, 3 | f(wker) = flaw| <k
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mw—mwz[vwﬁz/v< Yt = /f )t — F(0)(z — y)dt.

l :E;/ Jeint dt.

This competes the theorem.
Corollary 7.5. Let (c,) be with

. _{ 1/log(n), n>2,

0, n<l,
Then there is no f € LY (T) satisfying c,, = f(n) for all m € N.

Proof. Suppose f € L'(T) satisfying ¢n = f(n) for all n € N. Then by the first part of
1

Theorem 7.3, the series > 7, nbgn converges. In particular, taking z =0, >~ TTogn
converges, which is not true (e.g., by integral test).

4

8. CONVOLUTION

Given f,g € L'(T), it can be shown that
(z,y) = flz —y)g(y)
is measurable on R x R, and hence, for each x € [—m, 7], the integral

(= gty

converges.

Definition 8.1. The convolution of f,g € L*(T) is defined by

(f = /f:r— y)dy, € |-, 7).

We observe the following:
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(1) f*ge LNT) and |[f = gls < [If N9l -

/Z/ZIf(x—y)llg(yﬂdydw = /1 [/:|f(:ﬂ—y)|dm} l9(y)|dy

_ / 27| f1ls g (y)|dy
= 0% flhllglh-

(2) frg=gx[:

/1 fle—y)g(y)dy = /: f(r)g(z —7)dy
[ iate =iy
-/ :f(T)g(x—T)dy-

—

(3) f*g(n) = g(nf(n) for all n € Z:

/ :(f xg)(x)e "dr = / : { / - y)g(y)e‘m(w‘y)e‘i”ydy} dx
/

= [ | st e as gty
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(4) (f*xg)xh=fx*(gx*h):

/F (f*g)(xz —yhly)dy = /7; [/: fle—y— t)g(t)dt] h(y)dy

) - [ [ | #a=matr - y)df} h(y)dy
— /_7; fle—1) [/_19(7 - y)h(y)dy] dr

= 27r/_7r flz—71)(g=h)(T)dr
= (2m)*[f * (g% h)] ().

Theorem 8.2. With respect to convolution as multiplication, L'(T) is a Banach alge-

bra.
e The Banach algebra L!(T') does not have a multiplicative identity:
Suppose there exists ¢ € L{T) such that f * ¢ = f for all f € L'(T). Then
f(n)p(n) = f(n) for all f € LY(T). Hence, p(n) = 1 whenever p(n) # 0. But,
o(n) — 0 as |n| — oco. Hence, there exists N € N such that ¢(n) = 0 for all
n > N. Let f € LY(T) be such that f(n) # 0 for some n > N. Then for such
n, we obtain
0= f(n)p(n) = f(n) #0,

which is a contradiction.

However,

e There exists (¢,) in L*(T) such that || f * o, — f|1 — O.
In fact, we have the following.

Theorem 8.3. Let K,, be the Fejér kernel. Then, for every f € LY(T),

lf*K,—flh =0 as N — .

Proof. Recall that if ¢ € C(T), then ||g * ¢, — g|l1 = 0. Let f € LY(T) and ¢ > 0
be given. Let g € C(T) be such that ||f — g|l1 < ¢, and let N € N be such that
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llg * on — gll1 < e for all n > N. Then, for n > N, we have
1f K = flly 1S # K = g% K[y + [lg * Ko = glls + llg — flIa
I(f =g)« Kulli +e+e
1(f = g) * Knlls + 2¢
If = gl Knlly + 22
3e.
The last inequality is due the fact that 5= [ |K,(¢)|dt = 5= [7_ K, (t)dt = 1. O

VAN VAN VANRN VAR VAN

9. L2-THEORY

The norm on L?(T) is given by
17 1/2
1= (55 [ Wrpar)

(1) If u,(z) := €™ n € Z, then the set {u, : n € Z} is an orthonormal set and
span{u, : n € Z}, the space of all trigonometric polynomials, is dense in L*(T)).
(2) Let f € L*(T) and Sy(f) := Sn(f,-). Then
N

(a) SN(f) = Z <f7 un)“n

n=—N

() [Sv(HIZ= D If ()

(c) IIf = Sn(Nlz = IIFIE = ISx (N2 = ILF15 = Z f(n

Observe:

(d) (Bessel’s inequality): Z If(n)> < |IflI} VN e N. In particular,

f(n)—>0as In| — oo.
(e) (f = Sn(f);un) =0 Vin| < N}
() IIf =Sn(Dllz < If =gl Vg €span{u, :n € Z, |n| < N}.

Only (2)(f) requires some explanation.

Note that for every g € span{u,, : n € Z, |n| < N},

1f = gllz = If = Sn(Hlz + I1Sx(f) = gllz,
because, in view of (2)(e), (f — Sn(f), Sn(f) —g) =0.
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e The result in (2)(d) gives another proof for the Riemann Lebesgue lemma,
because L?(T) is dense in L*(T).
e In view of (2)(f),

1f = Sn(Hllz = nf{|lf = gll2: g € Xn},

where Xy := span{u, : n € Z, |n| < N}. In other words, Sy (f) is the (unique!)
best approximation of f from X . Uniqueness is due to the following: Suppose
© be in Xy such that

If = @lla = mf{[lf —gll2: g € Xn}-
Then,
1f = ll3 = If = Sn(HIE+ 15w (f) = ¢ll3
since (f — Sn(f), Sn(f) — ¢) = 0 so that we obtain [|Sx(f) — ¢|l2 = 0.

Theorem 9.1. Let f € L*(T). Then we have the following:

(1) span{u, : n € Z} is an orthonormal basis of L*(T), i.e., a mazimal orthonormal
set in L*(T).
(2) (Fourier expansion) f = Z f(n)u, in L*(T).
neZ

(3) (Parseval’s formula) || f|5 = Z |f(n))?.

nez
Proof. (1) Tt can be seen that (f,u,) =0 for all n € Z implies f = 0 in L?(T). Hence,
span{u, : n € Z} is a maximal orthonormal set in L*(T).

(3) We observe that, for n > m,

1S.(f) = Su(HIZ < D 1fm)]”

n<|k|<m

Hence, {S,(f)} is a cauchy sequence in L*(T). Therefore, it converges to some g €
L*(T). Tt can be seen that g(n) = f(n) for all n € Z. Therefore, g = f in L*(T).

(3) Follows from (2). O

Now, we give another proof for the following theorem:

Theorem 9.2. If f € CY(T), then the Fourier series of f converges absolutely, and
uniformly to f. Further,

I = Sx(f, )loe = O (%N) |
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Proof.
feCciT) = ['n)=inf(n).
Hence,
1 1 1 2
¢ y ¢ — _ A/ _ A/ — i A/ .
g%lf(n)l = §5| inf(n)| = ;7%' |f'(n)] < (gﬁ% n2> 112 \/gllf 2

Hence the Fourier series of f converges absolutely, and uniformly to a continuous
function, say g € C(T'). Since g(n) = f(n) for all n € Z, we obtain g = f. We also
observe that, for all z € R,

1/2 X
; Loz 1 ; [1f']]2
@) =Sn(fo)l < D Ifm)l =Y ~IFmI<| Y 5| IF:< :
[n|>N n#0 " |n|>N " \/N
This completes the proof. O
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