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1. TEST FUNCTIONS AND DISTRIBUTIONS
Let € be an open subset of R?. We shall denote the vector space C>(£2) by D(Q2),
and call this space as space of test functions.

Definition 1.1. A sequence (¢,) in D(£2) is said to converge to ¢ € D(QQ) if

(1) there exists a compact set K C €2 such that supp(¢,) C K for all n € N and
(2) 0%p, — 0%p uniformly on 2 for every o € Ng.

Notation 1.2. For 25 € R? and r > 0, we denote:
B (20) == {r e R : |z| < 7}
and its closure by B,(z), i.e., B.(x¢) := {x € R?: |z| < r}.

Let us give an example of a function in D(R?):

Example 1.3. Let

1
e =P if |z| <1,
xTr) =
Vi) { 0 if |z| > 1.

Then ¢ € D(R?) with supp(v)) C B;(0). For € > 0, let

1 x
vola) =50 (2)-
Then . € D(R?) with supp(¢).) C B.(0). O
Definition 1.4. A distribution on € is a linear functional v on D(f2) such that for
every (¢,) in D(Q) , v, — ¢ in D(Q) implies u(p,) — u(yp).
The set of all distributions on €2 is denoted by D’().

Definition 1.5. A sequence (u,) of distributions on € is said to converge to a dis-
tribution u on 2 if
un (@) = u(p) for every ¢ € D(Q).

Notation 1.6. For 1 < p < oo, LL () denotes the the space of all complex valued

loc
measurable functions f on €2 such that

/ |f(x)|dx < oo for all compact K C €.
K

Recall that K is compact if and only if K contains all its boundary points, i.e., points
x such that B,(x) N K and B,(x) N K¢ are nonempty for every r > 0.

Observe that LP(Q) C L () for every p with 1 < p < oo.
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Example 1.7. Corresponding to f € L (), let

loc

we) = [ fe)e@is, ¢ eD@).aen

Then uy is a distribution: Clearly, uy is a linear functional on D(Q2). Now, let (¢,,) in
D(Q2) be such that ¢, — ¢ for some ¢ € D(2). Then we have

up(on) —up(O)l = [us(enip)l

< [ W@l
S\wn—ﬂullﬂ@wx

Hence, u(p,) — u(yp).

Definition 1.8. A distribution u on 2 is called a regular distributions if u = uy for
some f € Ll (), and in that case u; is said to be the distribution' generated by f.

loc

There are distributions that are not regular.

Example 1.9. Let ¢ be as in Example 1.21. For a € €, let
da(p) == (a), € D).

It is easily seen that J, is a distribution on €. But it is not a regular distribution: To
see this, suppose there exists f € L} _(Q) such that §, = uy, i.e.,

loc

ww_/f@w@m for all o € D(Q).
Q
Let ¢ be as in Example 1.21 and let € > 0 be small enough such B.(a) C Q. Let
£ )
Then @, € D(Q) and supp(@.) C {x € R?: |z — a| < ¢} and we have
o) = [ 1@Edz= [ sz
r—a|<e

r —a

958(35) = 90(

Note that
/ f(x)@e(x)dx| < / |f(z)|de =0 as e—0.
_— |z—al<e |z—al|<e
!@a(a)\ﬁ/ |f(x)|de — 0 as e —0.
This is a contradiction, since gagl(gz)_)a?o. U

'We shall prove that a regular distribution can be generated by only one function in Lll0 . (RY).
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Definition 1.10. The distribution 9, in Example 1.9 is called a delta distribution.

In view of Example 1.9, a delta-distribution is not a regular distribution. However,
we have the following:

Theorem 1.11. There exists a sequence u, of reqular distributions which converge to

a delta distribution. In fact, taking f, := gXEn, where B, == {zx € Q:|x—a| <1/n},

uf, — 0q as N — 00.

Proof. Let f,, := §x, , where E, := {x € Q: |z —a| < 1/n}, and let u, := uy,. Let

v € D(Q2). Then
Un(p) = 5/ o(z)dz.
|z—al<1/n

Note that
n n
un() = 5 pla)de = 5 [o(z) = p(a)ldz + p(a)
lx—a|<1/n |z—al<1l/n

and

E/ lp(z) — p(a)lde < max |p(z) —¢(a)] -0 as n — occ.

2 lz—al<1l/n le—al<1/n
Thus, u,(¢) = ¢(a) as n — oc. O

Example 1.12. For n € N, let

Un(p) == /Rgo(:v)emwd:v, v € D(R).

Note that, defining f,(x) := e™*, x € R, we see that u, = uy,. Thus u, is a regular
distribution for every n € N. Further, by Riemann-Lebesgue lemma,

un(p) = / o(z)e™dr — 0 as n — o0
R
for every ¢ € D(R). Thus, (u,) converges t the zero distribution.

Remark 1.13. In the books on signals and systems one comes across a function called
implulse function.

It is defined as a function 6 : R — [0, co] such that

(1) /_OO d(z)dr =1,
for x #0, and

Unfortunately, there is no function having the above two properties!
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Even though we can define a function § : R — [0, co| satisfying

0 for x#0, and
(2) 6(0) = oo,

o0

such a function cannot satisfy the requirement / d(z)dz = 1.

—0o0

Then what does one have?

We can only have an e-impulse function which can be defined as follows:

Definition 1.14. For € > 0, an e-impulse function is a non-negative function J.(z)
defined for —oo < z < oo such that

W [ a1,
(2) 6.(2) =0 for |z|>e.
(3) 6:(0) — o0 as e — 0.

Example 1.15. (i) Define d.(x) to be a function whose graph is an isosceles triangle
with base [—¢,¢] and hight 1/e. Then ¢, is an e-impulse function.

(ii) Define 6.(z) to be 1/2¢ in the interval [—¢,¢| and 0 elsewhere. Then 6. is an
e-impulse function.

Theorem 1.16. For ¢ > 0, if d. is an e-impulse function, then us. — oy as € — 0,
where dq is the delta-distribution at 0.
Proof. The proof is along the same line as that of Theorem 1.11:

Let ¢ be a continuous function defined on R and 6.(z) is an e-impulse function.
Then we have

/OO o(x)d(x)dx = /E o(x)d.(x)dx.

—00 —&

Hence,

‘/_Z p(x)de(x)dr — @(0)’ = ‘/_i o(2)b(x)dx — /:w(o)ég(a:)d:c _

Thus we have

[ st - o) < [ 1o - 0.0l
Since ¢ is continuous, for any given o > 0, there is an € > 0 such that

lo(x) —¢(0)] < @ whenever |z] < e.
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Hence, for such an € > 0, we have

/Oogo( 6. (2)dz — o ‘ /|<p |5()dx§oz/865(x)dx:oz.

—00

That is, for every a > 0, there is an € > 0 such that

‘/ x)dr — (O)‘<oz.

/00 o(z)0e(z)dr — p(0) as & — 0.

and hence, us_ (@) — do(p) as € — 0. where &y is the delta distribution at 0. O

Thus,

In view of the following theorem, regular distributions can be identified with the
functions that correspond to them. That is, regular distributions are uniquely defined
by functions in L{ ().

Theorem 1.17. (Uniqueness theorem) For f,g € L (Q),
up=u, = f=g9g ua.e

Before proving the above we shall introduce some definitions and consider some
results.

Throughout, we shall make use of a special type of function in C2°(Q2), called a
mollifier. In the due course it wil be showed why such functions are called mollifiers.

Definition 1.18. A non-negative function ¢ defined on R? is called a mollifier if

p € CZ(RY), supp(p) C B1(0) and / o(z)dr = 1.
Rd

Here is an example of a mollifier.

Example 1.19. Let ¥ be as in Example 1.21, and let

o(x) = Cop(z) where Cj:= 1//R¢(x)dx

Then ¢ is a mollifier.

In fact functions . € C*(RY), ¢ > 0, with

supp(e) € B0 and [ pufa)ds =1
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are also called mollifiers. Such mollifiers can be constructed from a given mollifer by
defining
@) = (%)
() = —=p(—).
7 27\ 2
Clearly,

b€ CR®Y), supp(e) C B0 and [ oo =1
Rd

Also, for any a € R? and € > 0, the function ., defined by

1 Tr—a
PealT) = QSO( € >

satisfies

Yea € OF(RY),  supp(p.,) C B:(a) and / Qe q(r)dr = 1.
R4

Observe that
©(0)

gd

Peala) ==
In particular,
Yeala) > 00 as €—0.

Definition 1.20. A non-negative function ¢ defined on R¢ is called a mollifier if

Y E Cfo(Rd), supp(¢) € B1(0) and / o(z)dr = 1.
Rd

Example 1.21. Let

1
() = | €T itlal <1,
’ 0 if 2| > 1

and
o(x) = Copo(z) with Cp = 1/[R¢o(x)d$.

Then ¢ is a mollifier on RY.

Suppose @ is a mollifier and € > 0. Let
1 T
p=(z) = ;@(g)-
Then
@. € C(RY) and supp(yp.) C B.(0).
Also, for any @ € R? and € > 0, the function ., defined by

( ) 1 (x—a)
g,a\l) ‘= —
Pe, 5d90 -

satisfies

Pea € C’;’O(Rd) and supp(y:) C B:(a).
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2. CONVOLUTION REVISITED

Proof of the following theorem is easy and hence we mot the proof.

Theorem 2.1. If f,g € LY(R?), then sup(f x g) C supp(f) + supp(g).
In particular, if 1 < p < oo and f,g € LP(R?) are with compact support, then

sup(f * g) € supp(f) + supp(g)-
Proposition 2.2. Suppose f € LP(R?) with 1 < p < oo and g € C*(R?) with d°g €
LY(Q) for |a| < k. Then f*g e C*R?) and 0“(f * g) = f * 0% for |a| < k.

In particular, for 1 < p < oo, if f € LP(R?) is with compact support and g € C>°(RY),
then fx g € C(RY) and and 0*(f * g) = f * 0%g for all o € N{.

Proof. We prove the case for p =1 and k = 1, i.e., |a| = 1. Proof of the case of k > 1
will follow similarly. The case of p > 1 involves more calculations.

Let a = (v, ..., aq) and let j be such that a; = 1 and «; = 0 for ¢ # j. We have to

show that
i ¥ 9)(@ + hey) — (f * g)(x)
h—0 h

and it is equal to (f * 0;¢)(x). Note that

(f *g)(@ + hej) — (f xg)(x) _
h

exists

e y)g(y +hej) —9(y)

h Y.

Since

St heii) —9W) , dig(y) as h—0 and ;g€ L™(Q),

there exists a > 0 such that for all h with |h| < «a,

)l \““’wﬂ') —9G)| < | pw = ) l(18,90)] + D).

) ;
Since y — | f(z — y)|(10;9(y)| + 1) belongs to L'(Q2), by DCT, we have
+ he;)
o= ERAZI gy [ e g0y
R
Thus, 0;(f * g) exists and 9;(f * g) = f*0,g. O

Proposition 2.3. If K is a compact subset of 2, then there exists 1 € D() such that
0<yv<landyy=1onK.

Proof. Let K be a compact subset of Q and let § := dist(K, Q). Let a :==§/3 and G,
be the a-neighbourhood of K i.e.,

Go = {zx € Q : dist(z,Q) < a}.
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Let ¢ be a mollifier and for ¢ > 0, let ¥, := ¢ * x4, Where x, = xg, and @, =
(1/eb)p(x/e). Since o € LY(R?), by Proposition 2.2, 1. € C*(R?). Note that

Ve(x) = /Rd @e(T — y)Xa(y)dy < /Rd p-(z —y)dy = 1.

Further, if x € K and ¢ < «, then

Ve(x) = /Rd P (Y)Xa(r — y)dy = / o e (Y)Xalr —y)dy =1,

since
re K, yeB.(0) implies z—y€G,.
Thus, 0 <9, <1 and ¢, =1 on K.

Also,
Ye() = /Rd 0 (= Y)Xa(y)dy = 0

whenever x is not in the e-neighbourhood of G,. Since a-neighbourhood of G, is
contained in the 2a-neighbourhood of K, taking e < a, we have supp(¢.) C Ga,. O

Theorem 2.4. Let 1 < p < oo. If f € LP(R?) for and g € L'(R?), then
frge LPRY) and |f*gll, <IIfllllgll:-

In particular,

fEPRY) = fxp. € LP(RY) and |If ey < [If]l,.

Proof. Let f € LP(R?) for and g € L}(R?). First let = 1. Then,

Jirsa@i < [([1re=awiay) iz
[ ([ 156 = it ) 1wt
= 171lgl

Next, let 1 < p < 0o and let g such that (1/p) + (1/q) = 1. Then
£ra)@l < [ 1= gy
sl/v@—yMﬂwﬁﬂmmWwy

< (/\fx— DPlg(y) dy)l (/|g !dy)
- (fue-» mm>m0 gl

<
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Hence,
it a@ras = e [ ( [ 1= nbrlawiar) o
= N [ ([ 15 = bz ) lotwlas
= gl 11
so that
(f1-ae |pdx) " ol £l = ol 1,
Thus, £ +g € LR and | * gl < /1, gl .

Corollary 2.5. If f € LP(R?) with 1 < p < oo, then
fro. € LPRY) and |[f*¢elly < |Ifll,.
Theorem 2.6. Let LP(Q) for 1 <p < oo. Then f* p. € C=() N LP(RY) and

\f*¢:—fll, >0 as e—0.

Proof. By Proposition 2.2, f * p. € C®(Q). If Q # R?, then we extend f to all of R?
by defining it to be zero on Q°¢. First let p = 1. Then we have

Jiseawiae < [ [ - 16— ety

NG )l (y)dyde
< /(/|f |da:) (y)dy

- /||f—Tyf||1soe y)dy

Next let 1 < p < co. Then we have

@) = (fxp)(@)] < / f 9)le () dy
/ (@) — f(z— )W)l ()] dy

e Dy " (e "
- (1) P (i) "

dx

IN

IN
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S = rpa@pas < [ ([150)- - DPetniy) do
- [(Jue - se- y)!)\”dx) (o)

- / 1 — o f B () dy

Hence,

Thus, for 1 < p < oo, we have

[15@ = (£ eo@Pas < [ 17 =7 flze.)dy

Now, recall that ||f — 7, f||> — 0 as y — . Therefore, for any given n > 0, there exists
0 > 0 such that

|f =7 flls <n whenever [y| <é.

Also, we know that ||7,f||, = || f|l, and for any r > 0,

/ o:(y)dy -0 as e —0.
ly|>r

Hence, there exists €y > 0 such that

/ ¢-(y)dy <n whenever 0 < e < g.
ly|>6

Thus, we obtain

J1s@ = edaras < [ 17 = flgewiy
=/ 1 = 7 f e () dy + / 1 = 7 Ee(y)dy
ly|<d

ly|>d

< n/yk(s o (y)dy + 2| f|lp)" /|y|25 ©:(y)dy

< (T4 A" )m

whenever £ < gy. Thus, we have proved that f * ¢, € LP(R?) and ||f * o. — f|, = 0
as € — 0. U

Theorem 2.7. C°(2) is dense in LP(S).

Proof. The proof involves the following two steps:

(1) For every f € LP(Q2) and € > 0, there exists g € LP(2) with compact support
such that || f —¢|| <e.
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(2) For every g € LP(Q2) with compact support, g*p. € C°(2) and ||g—g*p.|| — 0
as e — 0.

Proof of Step (1): Let f € LP(Q). For n € N, let

K,={x€Q: |z| <n,dist(z,Q°) > 1/n}.

Then each K, is a compact subset of Q. Taking f, := fx,., , we see that f, € LP(Q)
with supp(f,) C K,, and

|f— fall, >0 as n — oco.
Thus, given € > 0, there exists g := fy such that || f — g||, < e.

Proof of Step (2): Let g € LP(2) with compact support. Let ¢ be a mollifier and ¢ > 0
be given. By Proposition 2.2, g . € C%°(R?), where ¢ () := (1/e%)p(x/c). We may
take € small enough such that supp(g * ¢.) C Q. Also, by Theorem 2.6,

lg — (g*@)|l, >0 as &—0.

Now, let f € L?(Q2) and € > 0. Then by Step (1), there exists g € LP(Q2) with
compact support such that ||f — ¢g||, < ¢ and by Step (2), g *x p. € C*(Q) and
lg — g% || = 0 as e — 0. Thus,

If—=g*x¢cllp < If —gllp + llg — g% @ell[p = 0

as € — 0. This completes the proof. U

We have proved in Theorem 2.6 that || f — f* .||, = 0 as e — 0 for evert f € LP(Q)
with 1 < p < co. Thne next theorem show that the convergence can be strongerif

e Ce(2).
Theorem 2.8. Suppose f € C.(Q). Then f* p. — f uniformly on €.

Proof. For z € Q, we have
1) = (F+ @)@ < [ 17(0) = o = )l

Since f is uniformly on supp(f),
[15@) - fa = plewiy < / @) = 1= ey

< sup{|f(z) — f(z —y)| : © € supp(f), y| <&}
—0 as e—0.
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3. PROOF OF UNIQUENESS THEOREM

Proof of Theorem 1.17. It is enough to proof that

fELL(Y, uy=0 = f=0 ae.

loc

So, let f € L, () such that uy =0, i.e., [, f(z)p(x)dr = 0 for all ¢ € D(Q). Let K
be a compact subset of Q and v be as in Proposition 2.3. Then fi¢ € L*(R?). This is
seen as follows: Let K := supp(¢). Then

L= [ o<l [ <o

Let ¢ be a mollifier on R? and ¢.(z) := Z¢(%). Then we have

(ex J0)0) = [ oule =) fu)ol)dy =0

for every x € R? since y — ¢.(x — y)1(y) belongs to D(Q). Also, by Theorem 2.6, we
have

e * fio = foli =0 as e —0.
Hence, fi» = 0 in L*(R%) so that f = 0 a.e. on K. Since  can be written as a
countable union of compact subsets it follows that f = 0 a.e. on €. O
Example 3.1. For each k£ € N, let

k

fr(x) = Z ez eR.

n=—k

Then, we have

us (i) = / NOECEDS / p@)emde =2 S G(—n).

n=—~k n=—k
Hence, for every ¢ € D(R),
ug () = 21> p(n) = 2mp(0) = 2o ().
neN
Thus, uy, — 270y as k — oo. Identifying uy, with fi, we may write the above fact as
Z e, = 270y,
nez

where e, () := e™?.
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4. A CHARACTERIZATION OF DISTRIBUTIONS

First a characterization theorem.

Theorem 4.1. Let u be a linear functional on D(2). Then w is a distribution if and
only if for each compact K C ), there exists a constant C' > 0 and an N € Ny such
that

u(@)] <C D 10°¢lls (1)

o] <N

for all p € D(Q) with supp(y) C K.

Proof. Suppose u is a distribution. Assume for a moment that there exists a compact
K C Q such that (1) is not satisfied for any C' > 0 and N € N. Then for every N € N
and C' > 0, there exists ¢, depending on (N, C), such that supp(¢) C K and

(@) >C Y 0%l

lo| <N

In particular, for every N € N, there exists ¢y such that supp(py) C K and
ulen)] > N 3 0% o

la| <N

Let on := on/|u(on)], N € N. Then we have
L= [u(@n)] > N D (10wl = N0 nloc
la|<N

for all N € N. Hence, px — 0 in D(Q2) as N — oo. But, u(¢y) =1 for all N € N.
Thus, we arrived at a contradiction to the fact that w is a distribution.

Conversely, let (¢,) in D(Q2) such that ¢, — 0 in D(Q2). Let K C Q be a compact
set with supp(¢,) C K for all n € N. Suppose that there exists a constant C' > 0 and
N € Ny such that

u(@) < C D 1107l

la|<N

for all ¢ € D(Q2) with supp(¢) € K. Then we have

[ula) < C Y 110%0nlloc-

lo|<N

By the assumption on (p,), u(p,) — 0. O
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5. DISTRIBUTIONS OF FINITE AND INFINITE ORDERS
Definition 5.1. Let u be a distribution on 2. Then w is said to be of finite order,
if there exists N € Ny satisfying the condition in Theorem 4.1 which is valid for all

compact set K C 2, and in that case, the infimum of all such N is called the order of
u. If w is not of finite order, then it is said to be of infinite order.

Example 5.2. Every regular distribution is of finite order: To see this, let f € LL ().

loc

Then for every ¢ € D(2), we have

) < [ @l lp@ide < liel [ 1fa)ld.
Thus, (1) in Theorem 4.1 is satisfied with N =0 and C = [, | f(x)|dz.
Example 5.3. Define

u(p) = Zs&“’(j% ¢ € D(R).

Note that, since ¢ is with compact support, the above is a finite sum for each ¢. More
precisely, if supp(p) C [—k, k] for some k € N, then

for every ¢ € D(R) with supp(¢) C K. Hence, by Theorem 4.1, u € D'(R). This
distribution is of infinite order (Why?).

Exercise 5.4. Show that the delta-distribution is of 0 order.

Exercise 5.5. Show that the distribution in Example 5.3 is of infinite order.

6. RESTRICTIONS AND SUPPORT OF DISTRIBUTIONS
Definition 6.1. Let u be a distribution on €2 and €2y be an open subset of €2. Then
restriction of u to €}y, denoted by ug, is a distribution on €2y defined by
uq, () :=u(p) for every ¢ € D(Qyp).
Definition 6.2. Let u be a distribution on 2. Then the support of u is the set
supp(u) := {z € Q : ug # 0 for every open set G C Q with = € G}.
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Note that, for u € D'(Q2) and z € Q,
x & supp(u) <= Jopen set G C Q2 with = € G such that ug = 0.

Hence,
supp(u) = Q\ U{G tug = 0},
Thus, supp(u) is a closed subset of 2.
Exercise 6.3. supp(d,) = {a}.
Exercise 6.4. For f € L;. (Q), supp(uy) = supp(f).

loc

Exercise 6.5. For u € D'(2) and ¢ € D(R2), supp(u) Nsupp(f) =0 = u(p) =0.

7. MULTIPLICATION BY (C'°° FUNCTIONS
Theorem 7.1. If f € C(Q), then fo € D(Q) for every ¢ € D(2).

Proof. Exercise. U
Theorem 7.2. For f € C*(Q) and u € D'(Q), then the map

o= u(fe), ¢€DQ),

1s a distribution.

Proof. Suppose ¢,, — ¢ in D(£2). Then it can be seen that fy, — f in D(2). Hence,
u(feon) = u(fe). O

Notation 7.3. For f € C*(Q) and u € D'(12), the distribution f — fy as in Theorem
7.2 is denoted by fu.

Example 7.4. f € C*(Q) and a € 2, we have

(3a)(¢) = da(fp) = fla)p(a) = fa)da(p) ¥ € D(Q).
Hence, fd, = f(a)d.

Example 7.5. f,g € LL (), we have

loc
(Fu)(@) = w(Fe) = [ gla)f@)o(e)in = upe) Vo€ D).
Hence, fuy = uy,.
Theorem 7.6. Let f € C*(2). Then the map u— fu is continuous in the sense that
u, > uin D'(Q) = fu, — fuin D'(Q).
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8. TRANSLATION OF DISTRIBUTIONS
We observe that if f € L _(RY) and h € R?,

() = [ @@its = [ 1= Wplade = [ f@)plo+ Rds = uy(rap).

Identifying L{ -functions with the corresponding distributions, we may write the above

loc™
as

(mf)(@) = f(r-np) Vo € D(RY).
Motivated by this, for u € D'(R?) and h € R? we may define
| (mw)(@) = u(rp), ¢ € DRY). |
Theorem 8.1. If u € D'(R?) and h € RY, then T,u defined by
(muu)(¢) = ulr-nyp), ¢ € D(R?),

1s s distribution.
Definition 8.2. For u € D'(R%) and h € R?, the distribution 7,u defined by
(1)) = u(r ), ¢ € D(RY,
is called the translation of u by h.
Example 8.3. Observe that
(Th0a) () = da(T-ntp) = (T-nip)(a) = ©(a+ h) = datn(e)-
Hence, 7,0, = 0qih-

Theorem 8.4. For each h € R%, the map u — T,u is continuous on D'(R?) in the
sense that u, — u in D'(RY) implies Thu, — mu in D' (RY).

9. THE SPACES £(2) AND &'(Q)

Definition 9.1. The space C*°(§2) with the notion of convergence defined by
fo— f <= 0°f, — 0*f uniformly on every compact K CQ Va € NI
is denoted by £(£2).
Clearly,
D(Q) CE(Q).

Theorem 9.2. Let u be a distribution. Then the map f — fu from E(2) to D'(Q) is
continuous in the sense that

fo—=fmEQ) = fou— fuin D'(Q).
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Recall that f € £(Q) and u € D'(2), fu defined by
(fu)(e) =u(fe), ¢ € D),

is a distribution.
Theorem 9.3. Let f € £(2) and u € D'(2). Then

supp( fu) C supp(f) N supp(u).

Proof. Suppose xy & supp(f). Then there exists an open nbd Qy C Q of z( such that
f =0 on Q. Hence,

(fu)(p) =0 Ve e D()

so that fu = 0 on €y. Therefore, zy & supp(fu). Also, zo & supp(f) implies there
exists an open nbd ¢ C € of xy such that u = 0 on 4 so that fu = 0 on Q4 and
hence, xq & supp(fu) O

Corollary 9.4. Ifu is a distribution with compact support, then for any f € £(2), fu
15 also of compact support.

Definition 9.5. The set of all linear functionals u on £(2) such that
pn = @ in E(Q) = ulpn) = u(p)

is denoted by £'(£2). A sequence (u,) in £'(2) is said to converge to u € £'(§2), weritten
Uy, — u if

un(f) = ulf) Vfe&)

Theorem 9.6. If u € £'(QY), then uy = ulp) € D'(Q). Further, the map u — uq is
continuous from E'(2) to D'(R2), in the sense that,

u, > u in Q) = wup, —uy in D(Q).
Proof. Let u € £'(Y), Let ¢, — ¢ in D(2). Then there exists a compact set Ky C
such that supp, ¢,, ¢ C Ky and 0%, — 0% uniformly on 2. Hence, 0%p,, — 0%

uniformly on every compact subset of 2. Thus, ¢, — ¢ in £(Q2) so that by hypothesis,
u(on) = ulp), i-e., ug(pn) = uo(w). The last part is obvious. O

In view of the above theorem, we may say that
E'(?) is embedded in D'(Q).
We shall show that the distribution ug in the above theorem is with compact support.

Theorem 9.7. If u € D'(Q) is with compact support, then v € E'(Y) in the sense that
there exists a unique @ € E'(Q) such that
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U|p) = u and
(2) f € &) with supp(u) Nsupp(f) = O implies u(f) = 0.

For proving the above theorem we shall make use of the following lemma.

Lemma 9.8. If u € D'(Q) and ¢ € D(Y) are such that supp(u) Nsupp(p) = 0, then
u(p) = 0.

Proof of Theorem 9.7. Suppose v € D'(f2) is with compact support, say K :=
supp(u). Let ¢ € D(2) be such that v = 1 on K. Then, for every ¢ € D(2), we
have

u(p) = w(vyp + (1 = ¥)p) = u(p) +u((l = P)p).
Note that supp(u) Nsup((1 — ¢)p) = (. Hence by the last lemma, u((1 — ¢)p) = 0.
Thus,

u(p) =u(vy) Ve D).
Now, define
a(f) =uf), [fe&W).
Then we have @ € £'(2) and @|pq) = u. [To see that @ € £'(2), we may observe that
fo — fin £(Q) implies ¥ f, — ¥ f in D(Q).]
To see the uniqueness, suppose v € £'(£) is such that

(1) v|lp) = uw and
(2) f € &(Q2) with supp(u) Nsupp(f) = 0 implies v(f) = 0.

Then, for f € £(Q2), we have
v(f) =v(f + (1 =) f) =v(f) +o((1 =) f) = u@f) +v((1 =) [).
Since (1 —4¢)f = 0 on K := supp(u), assumption (2) on v implies v((1 —¢)f) = 0.
Thus, v(f) = u(yf) = a(f). O
For the proof of Lemma 9.8, we make use of partition of unity:

Proposition 9.9. (Partition of unity) Let K be a compact set and €, ..., be
open subsets of R? such that K C UG_,8. Then there exists i1, ...,y in D() with
Qo := U7_,Q; such that supp(y;) € Q; and 377 ¢ =1 on K.

Proof. Let x € K. Then x € Q; for some i € {1,...,n}. Let G, be an open nbd of z
such that G, is compact and G, C €. Since K is compact, there exist z1,..., 2, € K
such that K C U?Zl G,,. For each i € {1,...,n}, let H; be the union of those G,,
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such that @I]. C ;. Then each H — i is compact and H; C €);. Hence, there exists
gi € D(€;) such that g; = 1 on H,. Note that K C |J;_, H;. Now, define

P = g1, ¢2:(1—91)92, cey ?ﬂn:(1—91)(1—92)"'(1—%—1)%-

It can be seen by induction that

it = 1= (1= g) (L= go) -+ (1 - g,).

Since K C |J;_, H;, and since g; = 1 on H;, we obtain ¢; +--- 4+, =1 on K. O

Proof of Lemma 9.8. Let u € D'(§2) and ¢ € D(Q) are such that supp(u)Nsupp(p) =
(). To prove that u(p) = 0. For this, let K = supp(yp). For each z € K, since x ¢
supp(u), there exists open set 2, C Q such that = € Q,. Then {€2, : x € K} is an open
cover of K. Since K is compact, there exists x1,...,z, in K such that K C Uj_,Q,,.
By partition of unity, there there exists ¢1,...,v, in D(Q) with Qy := Uj_,Q, such
that supp(¢;) C €, and 377 ¢ = 1 on K. Then we have ¢ = 3°7 | ¥;¢ so that
u(p) = >0 u(jp) = 0, since Yo € D(SY,;) and Q,; Nsupp(u) = (. O

Now the theorem that we had promised:

Theorem 9.10. Ifu € £'(QY), then u|p) is a distribution with compact support.

For its proof we use the following characterization:

Theorem 9.11. Let u be a linear functional on £(Y). Then u € £'(Q) if and only if
there exists a compact K C €, constant C' > 0 and m € Ny such that
u()] <C Y sup [(9°f) ()| Y fe€EQ).

la|<m rzeK

Proof. (<): Obvious.

(<): Suppose the conclusion is not true. Then for any triple  := (K, C,m) there
exists ¢, € £() such that

[u(f)] > C Y sup|(9°f)(x)].

la|<m reK

So, for m € N, let K,,, := B,,,(0) and f,, € £(Q2) such that

u(fu)l >m Y sup (0% fn)(@)]:

laj<m “EEm
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Let gm = fim/[m D201 <m SWsek,, (0% fm)(x)]]. Then for every 5 € N¢ with |3] < m
and K C Q with K C K,,,, we have

1
3 2 —
supagm<§ sup [(07gm) ()| = —.
Do ’ H _Mgmxe m‘( )( )’

Thus, f, — 0in £(Q) but |u(f,,)| > 1 for all m € N. This is a contradiction. O

Proof of Theorem 9.10. Let v € £'(£2). We have already seen that u|pi) is a
distribution. Let K be as in Theorem 9.11. We claim that supp(u) € K. To prove
this claim, suppose x € K. Then there exists an open neighbourhood G, C € of z
such that G, N K = (). Hence, ¢ € D(G,) implies supp(p) N K = (). Hence, from the
relation

[w(HIC Y swl|(@ )| VfeEQ)

la|<m zeK

in Theorem 9.11, we have u(¢) = 0. Therefore, z ¢ supp(u). Thus we have proved
that = ¢ K implies x ¢ supp(u). Equivalently, supp(u) C K. O

In view of Theorems 9.7 and 9.10, there is a one-one correspondence between £'(2)
and distributions with compact support. Therefore, distributions with compact sup-
port is also denoted by £'().

10. DIFFERENTIATION OF DISTRIBUTIONS
Let f € C'(0,1) N C[0,1]. Then for every ¢ € C°(0,1), we have

/0 F(@)(x)de = (@) f@)]} - / o () f (2)dx = — / o (2)(2)d.

Thus,
up () = —us(¢).
More generally, it can be seen that:

If f € CYQ)NC(Q), then for every p € C>(Q) and for every o € N¢,

/Q 0 ) ()pla)d = (~1) / £ (2)(0° ) (x)da

so that
uge p(9) = (—1)%up (8%9).

I _functions with the corresponding distributions, we may write the above

loc

[dentifying L
as

| (0°N)(p) = (1)l f(0°) Ve D(Q).]




22 M.T. NAIR

Theorem 10.1. For u € D'(Q) and o € N&, the map 0%u : D(2) — C defined by
(0%u)(p) = (=1)*u(0%p), v € D(0),

15 a distribution.

Definition 10.2. For u € D'(Q) and o € N¢, the distribution 9*u defined by
(0*u) () = (=1)u(d%p), ¢ € D(0),

is called the a-th derivative of w.

Notation 10.3. If f € L .(Q), then 0%uy is usually denoted by 0*f.

Example 10.4. Consider the Heaveside function:

0, =<0,
H(x):{l x> 0.

Then .
4H@wmwx=%<ﬂww:—wmz—%w>
Thus, H = .

Suppose u € D'(Q) and o € N.

(1) We say that 9®u belongs to L (), and write as 0®u € Li. (Q) if there exists
a function f € LL () such that

(0%u)(p) = us(¢) Ve € D(O).
(2) We say that 0%“u € LP(Q) iff there exists a function f € LP(2) such that

(0%u)(¢) = us(p) V¢ € D(Q).
Suppose f € L .(Q).
(1) We say that 9°f € L{ () iff there exists a function g € Li. () such that
(0%us)(p) = ugpp) Vo € D(),
ie., iff
V! [ 1@ = [ saeta)ds Ve e D)
and this fact is also written as

/(aafx) (z)dx = ( “'/f )(8%p)(z)dz Y € D(R).
Q
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(2) We say that 0“f € LP(Q2) iff there exists a function g € LP(2) such that
(0%uy)(p) = ug(p) Vo € D),
ie., iff
1)l / f(@)(0%)(z)da = / g(x)p(x)dz Ve D),
and this fact is also written as

[ @ @i = e [ j@e @i veepo).

Definition 10.5. (Sobolev spaces) For r € Ny and 1 < p < oo, the Sobolev space
WrP(Q) is defined as the vector space

W(Q) = {f € Q) : 6°f € LM(Q) Y]a] < ).
Thus, if f € LP(Q), then f € W™P(Q) iff there exists g € LP(Q2) such that
1)l / f(x)(0%)(x)dx = / g(z)p(x)dz Y e D).
Theorem 10.6. For every multi-index o, u — 0%u is continuous on D'(Q), i.e.,
u, = uin D'(Q) = 9%, = 0%u in D'(Q).

Proof. Follows from the definitions. 0

11. CONVOLUTION INVOLVING DISTRIBUTIONS
Suppose f € Ll .(RY) and ¢ € D(R?). Then we have

(f * ) / e ), reR
Let us introduce the notation:
$(x) = o(—x), ¢ € CRY), zeR™
Then
plr—y) =o(y —z) = (1.0)(y)-
Thus, we have
(f *@)(x) = up(12), @ € DR?), z € R,
Motivated by this, we have the following definition.
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Definition 11.1. The convolution of u € D'(R?) and ¢ € D(R) is defined by
(u*p)(2) = u(rp), =eR,

where ¢(s) = p(—s).

Theorem 11.2. Let u € D'(R?) and ¢, € D(Q). Then

1) ux @ e C®(RY),

(1)
(2) supp(u * ) C supp(u) + supp(y),
(3) 0%(u* @) = ux 0% = (0%u) * p.
(4) ux (px) = (ux*p)*.

Recall that, if ¢ € D is such tha ¢ > 0 and [ ¢ =1 and for & > 0if p.(z) = Z(ze),
then ¢, € D and {p. : € > 0} is called an approximate identity. It is known that

(1) f € L (RY) implies f * p. € C°(RY).

(2) f € C.(R?) implies f * . — f uniformly as ¢ — 0.

(3) f continuous at = implies (f * ¢.)(x) — f(z) as e — 0.

(4) f € LP(RY) for 1 < p < oo implies f * . — f in LP(RY) as ¢ — 0.

In the following we use the notation ¢, for an approximate identity.

Theorem 11.3. (Regularization of distributions) Let u € D'(R?) and {y. : ¢ > 0}
be an approximate identity. Then

ux . —u in D(RY),

Proof. For 1 € D(R?), we have

(ux0)(®) = / (w5 0) () (y)dy = / (1w 92) ()00 — y)dy = [(ux p2) * F](0)

= [ux(p#9))(0) = (ux¥)(0) as =—0.
But,
(ux)(0) = ulror)) = u(¥)).
Thus, u * ¢, — u in D'(RY) as ¢ — 0. O

Corollary 11.4. Let u € D'(R) such that v’ = 0. Then u is a constant.

Proof. Let u. := u* ¢.. Then u. = v’ * ¢. = 0. Hence, u. = C., constants. But,
ue, — u. Therefore, there exists a constant C' such that u, — C' and hence u = C. 0O
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Now, suppose f,g € L'(R?). Then for ¢ € D(R?), we have

o) = [ awptne= [ ([ st - nay) elo
z/f(y)(/ —y)e( dm>dy—/f (/ (s+y)d8)d
- / e (/ -y )(s)ds ) dy

where
©g(y) = g(T_yp).
Definition 11.5. For u,v € D'(R?),

(uxv)(p) == u(py)
where

pu(y) = v(T—yp).
Exercise 11.6. Show that

—_—

(uxv)(p) =ux*(v*p).
12. SCHWARZ SPACE AND TEMPERED DISTRIBUTIONS

Definition 12.1. The Schwarz space S(R?) is the space of all functions in C§°(R?)
such that for every a, 8 € N&, 229° f € Cy(R?). The elements of S(R?) are called the
rapidly decreasing functions.

Thus, if f € C°(RY), then

feSMRY «— sup [2°0°f(z)] < o0
zER?

for every a, 3 € N
We observe that for each «, 5 € Ng,
f = 1 fllas == sup [2°0° f(z)|

z€RY
defines a semi norm on S(R?).
Note that if f € Cf°(RY), f € S(R?) if and only if for every «, 3 € N4, there exists
Cop > 0 such that

0% f(2)] < %C;T vz e R
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In fact,

where

1 £llas = sup [220" f(x)].

z€R4
It can be seen that, for each a, 3 € N4,

f e 1 fllap = sup [20” f ()]

zC€R4

defines a norm on S(R%). In view of the above observation, elements of S(R?) are also
called rapidly decreasing functions.

Theorem 12.2. For 1 < p < oo, S(R?) C LP(R?). In fact, for f € S(RY),

1l < Cp Y MIflags

la|<2d

1/
where C), = (f (H"’lﬁ) " for 1 < p < oo and Cy, = 1. Further, S(R?) is dense in

LP(RY) for 1 < p < 0.

Proof. Let f € S(R%). The result is trivially true if p = co. So, let 1 < p < oo. Then

P __ 1+|$|)|f|p 2\p| £|p
/\fl = [ S <O Py

where C := f 1+|I| . But,

L+ [2[*)If] = <1+Zx>m \f!+Z!x2f\< > [flla-

|aj<2d

Thus, we obtain f € LP(R?), and
11l < G737 1 F o

la|<2d
The last part follows, because, D(R?) is dense in LP(RY). O
Definition 12.3. A sequence (f,,) in S(R?) is said to converge to f € S(R?) if
| fn— fllag—0 as n— oo

for each o, 8 € N4, and in that case we write f, — f in S(R?).

Theorem 12.4. The space S(R?) is complete, in the sense that, if (f,) in S(RY) is
a Cauchy sequence with respect to || - ||ap for every o, 3 € N&, then it converges to a
function in S(R?).
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Theorem 12.5. The space D(R?) is a subspace of S(R?) and for ¢,,o € D(R?),
©n — @ in D(RY) implies o, — ¢ in S(R?).

Proof. Clearly, D(R?) C S(R?). Let ¢, € D such that ¢, — ¢ in D(R?). Let K be a
compact set in R? such that supp(¢,) Usupp(p) C K for all n € N. Then for every
o, € Ng,

lon = @llas = sup |270° (¢, — ) (2)] < Cusup [0° (¢ — @) (2)]
reK rxeK

for some C,, > 0. Since ¢, — ¢ in D(R?), sup,cx |0°(on — ¢)(z)| — 0 so that ,, — ¢
in the space S(RY). O

In fact,
Theorem 12.6. The space D(R?) is a dense subspace of S(RY).

Definition 12.7. A linear functional u on S(R?) is called a tempered distribution if
for every sequence (f,,) in S(RY) and f € S(R?), f, — fin S(R?) implies u(f,) — u(f).
The space of all tempered distributions is denoted by S'(R%).

Definition 12.8. A sequence (u,) in &'(R?) is said to converge to u € S'(R?) if

un(f) = u(f)
for every f € S(RY).
Notation 12.9.
S :=SRY, S :=8R.
D :=DR?Y), D :=D'(R?.

Theorem 12.10. The restrictions of tempered distributions to D are in D'. Further,
the map u — u|p is a continuous embedding of S'(R?) into D'(R?).

Proof. Let uw € §'. Let ¢, € D be such that ¢, — ¢ in D. Then by Theorem 12.5,
¢on — ¢ in S. Hence, u(p,) — u(yp). Thus, u|p € D'. Since D(R?) is dense in S(R?),
ulp = 0 implies u = 0. Clearly, for a sequence (u,) in S'(R?), u,, — u in S'(R?) implies
that u,|p — ulp in D'(RY). O

Theorem 12.11. Let u be a linear functional on S(RY). Then u € S'(RY) if and only
if there is a constant C' > 0 and m € Ny such that

uNI<C D I llas

laf,|B]<m

for all f € S(RY).
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Theorem 12.12. For 1 < p < oo, LP(R?) C S'(R?), and f, — f in LP(R?) implies
uy, — uy in S'(RY). In other words, the inclusion LP(R?) C 8'(R?) is a (sequentially
continuous) imbedding.

Proof. Let u € 8'(R%) and ¢ € S(R?). Then

us ()] < /|f| ol < ANl Nla-
By Theorem 12.2, || f{lg < €37, <04 | flla,0 for some C' > 0. Hence,

ur (@ <C Y (1 fllao

la|<2d

for some C' > 0. Hence, by Theorem 12.11, u € §'(R?).

Next, suppose f,, f € LP(R?%) be such that f, — f in LP(R%). Then, for every
p € S(RY),

|un(p) — u(p)] < /|fn($) — f@)|le(@)ldz < [|fu = flipllellg = 0.
Thus, uy, — uy in S'(RY). O

We have
£(RY) C 8(RY) C D/(RY)

in the sense of (sequentially) continuous embedding,.

Exercise 12.13. The space of polynomials on R? is a subspace of S'(R?).

13. FOURIER TRANSFORM OF DISTRIBUTIONS

Recall that for f € L'(R?),

f&) = [ flx)e™da, ¢eR™
R
Hence, for f € LY(RY) and ¢ € D(R?),

[ Fsies — ) =sar) pl6)i

J
| ol =sde) swa

So, formally, we write
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Formally, because,
¢ € D(RY)  does not imply ¢ € D(R?).
However,
peSRY) = pcSRY.
In fact, we have:

Theorem 13.1. For every ¢ € S(R?), $ € S(RY) and the map p — $ is a (bijective)
homeomorphism (with respect to sequential continuity), and

12l = @m) 2| fll2 Vo € SRY).

Thus, for f € L'(R?) and ¢ € S(RY), us(p) makes sense and
p = up(P)
is a tempered distribution.
Theorem 13.2. For u € §'(R?), 4 : S(RY) — C defined by
a(f) = u(f), f € SR,
belongs to S'(R?).
Proof. Exercise. O

The above theorem motivates the following definition.
Definition 13.3. The Fourier transform of u € S'(R%) is defined by
a(f) =u(f) vfeSR).
Exercise 13.4. Prove the following. The following results hold:
(1) Forue S'(RY), a(f) = u(f), f € S(RY), belongs to S'(RY).
(2) u > 4 is continuous on S'(R%).
(3) For f € L'(RY), uf(p) = us(f) for all ¢ € S(RY).
(4) 6
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14. PROBLEMS

Throughout, £ denotes a nonempty open subset of R, where d € N.

(1) Let ¢ be a molliﬁer For a € Q and € > 0 be such that B.(a) C Q, let
Vea(x) == (%2, Show that ., € D(2) such that supp(¢.,) € B.(a) and
fQ we,a r=1

(2) Let 1., be as Problem 1, and let . := t.o. Prove that for f € C.(R?),
f *1. — f uniformly.

(3) Show that D(f2) is sequentially complete. That is, if (¢,) in D(£2) is such
that for every ¢ > 0 and for every a € N@ there exists N € N such that
|10%(¢n — ©m)|lo < € for all n > N, then there exists ¢ € D(Q2) such that
10%(0n — ©)|lc = 0 as n — oo for each o € Nd.

(4) Corresponding to f € L (), let

11

loc

/f dr, ¢eDQ), zec.

Show that uy is a distribution, and it is of order 0.

(5) Show that the delta-distribution is not a regular distribution.

(6) Show every delta-distribution is a limit of a sequence of regular distributions.

(7) Let (f,) in LL () and f : Q — C be such that f,, — f a.e. on Q and for every
compact K C €, there exists g € L'(2) such that |f,| < |g| a.e. on K. Prove
that f € Li () and f,, — f in the sense of distribution.

(8) Let fn, f € C(2) such that f,, — f uniformly on compact subsets of Q2. Prove
that f, — f in the sense of distribution.
(9) Let f,(x) :=e™ 2 € R. Show that (uy,) converges to the zero distribution.

(10) Making use of necessary results, prove that for f,g € Li..(Q2), us = u, implies
f=gae.

(11) Let u be a linear functional on D(£2). Prove that u is a distribution if and only
if for each compact K C (), there exists a constant C' > 0 and an N € Ny such
that

w(@) <C D 0% (1)
<N
for all ¢ € D(2) with supp(y) C K.

(12) Define u(p) = > 277, ©9(5), ¢ € D(R). Show that u € D'(R), and it is of
infinite order.

(13) Prove that

(a) supp(da) = {a}.
(b) For f € L .(Q), supp(uy) = supp(f).
(c) For u € D'(2) and ¢ € D(R), supp(u) Nsupp(f) =0 = u(p) =0.
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(14) If f € C>(9Q), then prove that fo € D() for every ¢ € D(0Q).

(15) For f € C*(Q)) and u € D'(Q), prove that the map ¢ — u(fp), ¢ € D(Q),
is a distribution.

(16) If f € C>(Q2) and a € Q, show that fd, = f(a)o.

(17) For f,g € Li..(Q2), show that fu, = uy,.

(18) Let f € £(Q) and u € D'(2). Prove that supp(fu) C supp(f) Nsupp(u).

(19) If u is a distribution with compact support, then prove that for any f € £(2),
fu is also of compact support.

(20) If uw € D'(2) is with compact support, then prove that u € £'(€2) in the sense
that for every u € D'(Q2), there exists a unique a € D'(2) such that u|p) = @.

(21) If u € £'(Q), then prove that u|p) € D’'(f2) is with compact support.

(22) Prove that 7,0, = dqyn. (Recall: For u € D'(R?) and h € R?, the distribution
mpu is defined by (m,u) (@) = u(7_rp), © € D(RY).

(23) For each h € RY, show that the map u — T,u is continuous on D’'(R?) in the
sense that u, — u in D'(RY) implies 7,u,, — T,u in D'(R?).

(24) For u € D'() and o« € N¢, show that the map 9%u : D(Q) — C defined by
(0°u)(p) := (=D)lu(9*¢), € D(0), is a distribution.

(25) Let H be the Heaviside function, i.e., H(x) = { 0, =<0,

1, z>0.

(26) For a € N¢, xy € Q, prove that u defined by u(¢) = (0%p)(zo) defines a
distribution of order a.

(27) Let (,) be a sequence in 2 without a limit point in Q and (a(™) be a sequence
in N&. Let u(p) :== > .02 0% ¢(x,). Prove that u is a distribution, and it has

n=1

Show that H' = dy.

finite order if and only if sup || < co and in that case the order is sup [a™|.
(28) If u € D'(Q) and ¢ € D(Q) such that supp(u) Nsupp(p) = O, then prove that

u(yp) = 0.
(29) Suppose u is a linear functional on £(?) such that there exists compact K C €,
C > 0 and m € Nj satisfying

u(@) C Y [10%¢ller Vo € E(Q).

laj<m

Prove that u € £'(12).
(30) Suppose u € &'(Q2) and there exists compact K C Q, C > 0 and m € Ny
satisfying

ul@) < C Y 0%l Vo € E(Q).

la|<m

Prove that u|p(q) is a distribution with compact support.
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