

TOPICS IN FOURIER ANALYSIS-IV

M.T. NAIR

CONTENTS

1. Test functions and distributions	2
2. Convolution revisited	8
3. Proof of uniqueness theorem	13
4. A characterization of distributions	14
5. Distributions of finite and infinite orders	15
6. Restrictions and support of distributions	15
7. Multiplication by C^∞ functions	16
8. Translation of distributions	17
9. The spaces $\mathcal{E}(\Omega)$ and $\mathcal{E}'(\Omega)$	17
10. Differentiation of distributions	21
11. Convolution involving distributions	23
12. Schwarz space and tempered distributions	25
13. Fourier transform of distributions	28
14. Problems	30
References	32

NOTES PREPARED FOR PART OF AN ELECTIVE COURSE *FOURIER ANALYSIS*
FOR M.SC. STUDENTS OF IIT MADRAS, JULY-NOVEMBER, 2014.

1. TEST FUNCTIONS AND DISTRIBUTIONS

Let Ω be an open subset of \mathbb{R}^d . We shall denote the vector space $C_c^\infty(\Omega)$ by $\mathcal{D}(\Omega)$, and call this space as **space of test functions**.

Definition 1.1. A sequence (φ_n) in $\mathcal{D}(\Omega)$ is said to converge to $\varphi \in \mathcal{D}(\Omega)$ if

- (1) there exists a compact set $K \subset \Omega$ such that $\text{supp}(\varphi_n) \subseteq K$ for all $n \in \mathbb{N}$ and
- (2) $\partial^\alpha \varphi_n \rightarrow \partial^\alpha \varphi$ uniformly on Ω for every $\alpha \in \mathbb{N}_0^d$.

Notation 1.2. For $x_0 \in \mathbb{R}^d$ and $r > 0$, we denote:

$$B_r(x_0) := \{x \in \mathbb{R}^d : |x| < r\}$$

and its closure by $\overline{B_r(x_0)}$, i.e., $\overline{B_r(x_0)} := \{x \in \mathbb{R}^d : |x| \leq r\}$.

Let us give an example of a function in $\mathcal{D}(\mathbb{R}^d)$:

Example 1.3. Let

$$\psi(x) = \begin{cases} e^{-\frac{1}{1-|x|^2}} & \text{if } |x| < 1, \\ 0 & \text{if } |x| \geq 1. \end{cases}$$

Then $\psi \in \mathcal{D}(\mathbb{R}^d)$ with $\text{supp}(\psi) \subset \overline{B_1(0)}$. For $\varepsilon > 0$, let

$$\psi_\varepsilon(x) := \frac{1}{\varepsilon^d} \psi\left(\frac{x}{\varepsilon}\right).$$

Then $\psi_\varepsilon \in \mathcal{D}(\mathbb{R}^d)$ with $\text{supp}(\psi_\varepsilon) \subset \overline{B_\varepsilon(0)}$. □

Definition 1.4. A **distribution** on Ω is a linear functional u on $\mathcal{D}(\Omega)$ such that for every (φ_n) in $\mathcal{D}(\Omega)$, $\varphi_n \rightarrow \varphi$ in $\mathcal{D}(\Omega)$ implies $u(\varphi_n) \rightarrow u(\varphi)$.

The set of all distributions on Ω is denoted by $\mathcal{D}'(\Omega)$.

Definition 1.5. A sequence (u_n) of distributions on Ω is said to **converge** to a distribution u on Ω if

$$u_n(\varphi) \rightarrow u(\varphi) \quad \text{for every } \varphi \in \mathcal{D}(\Omega).$$

Notation 1.6. For $1 \leq p < \infty$, $L_{\text{loc}}^1(\Omega)$ denotes the the space of all complex valued measurable functions f on Ω such that

$$\int_K |f(x)| dx < \infty \quad \text{for all compact } K \subseteq \Omega.$$

Recall that K is compact if and only if K contains all its boundary points, i.e., points x such that $B_r(x) \cap K$ and $B_r(x) \cap K^c$ are nonempty for every $r > 0$.

Observe that $L^p(\Omega) \subseteq L_{\text{loc}}^1(\Omega)$ for every p with $1 \leq p < \infty$.

Example 1.7. Corresponding to $f \in L^1_{\text{loc}}(\Omega)$, let

$$u_f(\varphi) := \int_{\Omega} f(x)\varphi(x)dx, \quad \varphi \in \mathcal{D}(\Omega), x \in \Omega.$$

Then u_f is a distribution: Clearly, u_f is a linear functional on $\mathcal{D}(\Omega)$. Now, let (φ_n) in $\mathcal{D}(\Omega)$ be such that $\varphi_n \rightarrow \varphi$ for some $\varphi \in \mathcal{D}(\Omega)$. Then we have

$$\begin{aligned} |u_f(\varphi_n) - u_f(\varphi)| &= |u_f(\varphi_n - \varphi)| \\ &\leq \int_{\mathbb{R}^d} |f(x)| |(\varphi_n - \varphi)(x)| dx \\ &\leq \|\varphi_n - \varphi\|_{\infty} \int_{\Omega} |f(x)| dx. \end{aligned}$$

Hence, $u(\varphi_n) \rightarrow u(\varphi)$.

Definition 1.8. A distribution u on Ω is called a **regular distributions** if $u = u_f$ for some $f \in L^1_{\text{loc}}(\Omega)$, and in that case u_f is said to be the distribution¹ generated by f .

There are distributions that are not regular.

Example 1.9. Let φ be as in Example 1.21. For $a \in \Omega$, let

$$\delta_a(\varphi) := \varphi(a), \quad \varphi \in \mathcal{D}(\Omega).$$

It is easily seen that δ_a is a distribution on Ω . But it is not a regular distribution: To see this, suppose there exists $f \in L^1_{\text{loc}}(\Omega)$ such that $\delta_a = u_f$, i.e.,

$$\varphi(a) = \int_{\Omega} f(x)\varphi(x)dx \quad \text{for all } \varphi \in \mathcal{D}(\Omega).$$

Let φ be as in Example 1.21 and let $\varepsilon > 0$ be small enough such $B_{\varepsilon}(a) \subseteq \Omega$. Let

$$\tilde{\varphi}_{\varepsilon}(x) := \varphi\left(\frac{x-a}{\varepsilon}\right).$$

Then $\tilde{\varphi}_{\varepsilon} \in \mathcal{D}(\Omega)$ and $\text{supp}(\tilde{\varphi}_{\varepsilon}) \subset \{x \in \mathbb{R}^d : |x-a| < \varepsilon\}$ and we have

$$\tilde{\varphi}_{\varepsilon}(a) = \int_{\Omega} f(x)\tilde{\varphi}_{\varepsilon}(x)dx = \int_{|x-a|<\varepsilon} f(x)\tilde{\varphi}_{\varepsilon}(x)dx$$

Note that

$$\left| \int_{|x-a|<\varepsilon} f(x)\tilde{\varphi}_{\varepsilon}(x)dx \right| \leq \int_{|x-a|<\varepsilon} |f(x)| dx \rightarrow 0 \quad \text{as } \varepsilon \rightarrow 0.$$

Thus,

$$|\tilde{\varphi}_{\varepsilon}(a)| \leq \int_{|x-a|<\varepsilon} |f(x)| dx \rightarrow 0 \quad \text{as } \varepsilon \rightarrow 0.$$

This is a contradiction, since $\tilde{\varphi}_{\varepsilon}(0) \neq 0$. □

¹We shall prove that a regular distribution can be generated by only one function in $L^1_{\text{loc}}(\mathbb{R}^d)$.

Definition 1.10. The distribution δ_a in Example 1.9 is called a **delta distribution**.

In view of Example 1.9, a delta-distribution is not a regular distribution. However, we have the following:

Theorem 1.11. *There exists a sequence u_n of regular distributions which converge to a delta distribution. In fact, taking $f_n := \frac{n}{2}\chi_{E_n}$, where $E_n := \{x \in \Omega : |x - a| < 1/n\}$,*

$$u_{f_n} \rightarrow \delta_a \quad \text{as } n \rightarrow \infty.$$

Proof. Let $f_n := \frac{n}{2}\chi_{E_n}$, where $E_n := \{x \in \Omega : |x - a| < 1/n\}$, and let $u_n := u_{f_n}$. Let $\varphi \in \mathcal{D}(\Omega)$. Then

$$u_n(\varphi) = \frac{n}{2} \int_{|x-a|<1/n} \varphi(x) dx.$$

Note that

$$u_n(\varphi) = \frac{n}{2} \int_{|x-a|<1/n} \varphi(x) dx = \frac{n}{2} \int_{|x-a|<1/n} [\varphi(x) - \varphi(a)] dx + \varphi(a)$$

and

$$\frac{n}{2} \int_{|x-a|<1/n} |\varphi(x) - \varphi(a)| dx \leq \max_{|x-a|<1/n} |\varphi(x) - \varphi(a)| \rightarrow 0 \quad \text{as } n \rightarrow \infty.$$

Thus, $u_n(\varphi) \rightarrow \varphi(a)$ as $n \rightarrow \infty$. □

Example 1.12. For $n \in \mathbb{N}$, let

$$u_n(\varphi) := \int_{\mathbb{R}} \varphi(x) e^{inx} dx, \quad \varphi \in \mathcal{D}(\mathbb{R}).$$

Note that, defining $f_n(x) := e^{inx}$, $x \in \mathbb{R}$, we see that $u_n = u_{f_n}$. Thus u_n is a regular distribution for every $n \in \mathbb{N}$. Further, by Riemann-Lebesgue lemma,

$$u_n(\varphi) = \int_{\mathbb{R}} \varphi(x) e^{inx} dx \rightarrow 0 \quad \text{as } n \rightarrow \infty$$

for every $\varphi \in \mathcal{D}(\mathbb{R})$. Thus, (u_n) converges to the zero distribution.

Remark 1.13. In the books on *signals and systems* one comes across a function called **impulse function**.

It is defined as a function $\delta : \mathbb{R} \rightarrow [0, \infty]$ such that

- (1) $\int_{-\infty}^{\infty} \delta(x) dx = 1$,
- (2) $\delta(x) = 0$ for $x \neq 0$, and
- (3) $\delta(0) = \infty$.

Unfortunately, there is no function having the above two properties!

Even though we can define a function $\delta : \mathbb{R} \rightarrow [0, \infty]$ satisfying

- (1) $\delta(x) = 0$ for $x \neq 0$, and
- (2) $\delta(0) = \infty$,

such a function cannot satisfy the requirement $\int_{-\infty}^{\infty} \delta(x)dx = 1$.

Then what does one have?

We can only have an **ε -impulse function** which can be defined as follows:

Definition 1.14. For $\varepsilon > 0$, an **ε -impulse function** is a non-negative function $\delta_{\varepsilon}(x)$ defined for $-\infty < x < \infty$ such that

- (1) $\int_{-\infty}^{\infty} \delta_{\varepsilon}(x)dx = 1$,
- (2) $\delta_{\varepsilon}(x) = 0$ for $|x| > \varepsilon$.
- (3) $\delta_{\varepsilon}(0) \rightarrow \infty$ as $\varepsilon \rightarrow 0$.

Example 1.15. (i) Define $\delta_{\varepsilon}(x)$ to be a function whose graph is an isosceles triangle with base $[-\varepsilon, \varepsilon]$ and height $1/\varepsilon$. Then δ_{ε} is an ε -impulse function.

(ii) Define $\delta_{\varepsilon}(x)$ to be $1/2\varepsilon$ in the interval $[-\varepsilon, \varepsilon]$ and 0 elsewhere. Then δ_{ε} is an ε -impulse function.

Theorem 1.16. For $\varepsilon > 0$, if δ_{ε} is an ε -impulse function, then $u_{\delta_{\varepsilon}} \rightarrow \delta_0$ as $\varepsilon \rightarrow 0$, where δ_0 is the delta-distribution at 0.

Proof. The proof is along the same line as that of Theorem 1.11:

Let φ be a continuous function defined on \mathbb{R} and $\delta_{\varepsilon}(x)$ is an ε -impulse function. Then we have

$$\int_{-\infty}^{\infty} \varphi(x)\delta_{\varepsilon}(x)dx = \int_{-\varepsilon}^{\varepsilon} \varphi(x)\delta_{\varepsilon}(x)dx.$$

Hence,

$$\left| \int_{-\infty}^{\infty} \varphi(x)\delta_{\varepsilon}(x)dx - \varphi(0) \right| = \left| \int_{-\varepsilon}^{\varepsilon} \varphi(x)\delta_{\varepsilon}(x)dx - \int_{\varepsilon}^{\varepsilon} \varphi(0)\delta_{\varepsilon}(x)dx \right|.$$

Thus we have

$$\left| \int_{-\infty}^{\infty} \varphi(x)\delta_{\varepsilon}(x)dx - \varphi(0) \right| \leq \int_{-\varepsilon}^{\varepsilon} |\varphi(x) - \varphi(0)|\delta_{\varepsilon}(x)dx.$$

Since φ is continuous, for any given $\alpha > 0$, there is an $\varepsilon > 0$ such that

$$|\varphi(x) - \varphi(0)| < \alpha \quad \text{whenever} \quad |x| < \varepsilon.$$

Hence, for such an $\varepsilon > 0$, we have

$$\left| \int_{-\infty}^{\infty} \varphi(x)\delta_{\varepsilon}(x)dx - \varphi(0) \right| \leq \int_{-\varepsilon}^{\varepsilon} |\varphi(x) - \varphi(0)|\delta_{\varepsilon}(x)dx \leq \alpha \int_{-\varepsilon}^{\varepsilon} \delta_{\varepsilon}(x)dx = \alpha.$$

That is, for every $\alpha > 0$, there is an $\varepsilon > 0$ such that

$$\left| \int_{-\infty}^{\infty} \varphi(x)\delta_{\varepsilon}(x)dx - \varphi(0) \right| < \alpha.$$

Thus,

$$\int_{-\infty}^{\infty} \varphi(x)\delta_{\varepsilon}(x)dx \rightarrow \varphi(0) \quad \text{as } \varepsilon \rightarrow 0.$$

and hence, $u_{\delta_{\varepsilon}}(\varphi) \rightarrow \delta_0(\varphi)$ as $\varepsilon \rightarrow 0$. where δ_0 is the *delta distribution* at 0. \square

In view of the following theorem, regular distributions can be identified with the functions that correspond to them. That is, regular distributions are uniquely defined by functions in $L^1_{\text{loc}}(\Omega)$.

Theorem 1.17. (Uniqueness theorem) *For $f, g \in L^1_{\text{loc}}(\Omega)$,*

$$u_f = u_g \implies f = g \quad \text{a.e.}$$

Before proving the above we shall introduce some definitions and consider some results.

Throughout, we shall make use of a special type of function in $C_c^{\infty}(\Omega)$, called a *mollifier*. In the due course it will be shown why such functions are called mollifiers.

Definition 1.18. A non-negative function φ defined on \mathbb{R}^d is called a **mollifier** if

$$\varphi \in C_c^{\infty}(\mathbb{R}^d), \quad \text{supp}(\varphi) \subseteq \overline{B_1(0)} \quad \text{and} \quad \int_{\mathbb{R}^d} \varphi(x)dx = 1.$$

Here is an example of a mollifier.

Example 1.19. Let ψ be as in Example 1.21, and let

$$\varphi(x) = C_0 \psi(x) \quad \text{where} \quad C_0 := 1 / \int_{\mathbb{R}} \psi(x)dx.$$

Then φ is a mollifier.

In fact functions $\varphi_{\varepsilon} \in C_c^{\infty}(\mathbb{R}^d)$, $\varepsilon > 0$, with

$$\text{supp}(\varphi) \subseteq \overline{B_{\varepsilon}(0)} \quad \text{and} \quad \int_{\mathbb{R}^d} \varphi_{\varepsilon}(x)dx = 1$$

are also called **mollifiers**. Such mollifiers can be constructed from a given mollifer by defining

$$\varphi_\varepsilon(x) := \frac{1}{\varepsilon^d} \varphi\left(\frac{x}{\varepsilon}\right).$$

Clearly,

$$\varphi_\varepsilon \in C_c^\infty(\mathbb{R}^d), \quad \text{supp}(\varphi_\varepsilon) \subset \overline{B_\varepsilon(0)} \quad \text{and} \quad \int_{\mathbb{R}^d} \varphi_\varepsilon(x) dx = 1.$$

Also, for any $a \in \mathbb{R}^d$ and $\varepsilon > 0$, the function $\varphi_{\varepsilon,a}$ defined by

$$\varphi_{\varepsilon,a}(x) := \frac{1}{\varepsilon^d} \varphi\left(\frac{x-a}{\varepsilon}\right)$$

satisfies

$$\varphi_{\varepsilon,a} \in C_c^\infty(\mathbb{R}^d), \quad \text{supp}(\varphi_{\varepsilon,a}) \subset \overline{B_\varepsilon(a)} \quad \text{and} \quad \int_{\mathbb{R}^d} \varphi_{\varepsilon,a}(x) dx = 1.$$

Observe that

$$\varphi_{\varepsilon,a}(a) := \frac{\varphi(0)}{\varepsilon^d}.$$

In particular,

$$\varphi_{\varepsilon,a}(a) \rightarrow \infty \quad \text{as} \quad \varepsilon \rightarrow 0.$$

Definition 1.20. A non-negative function φ defined on \mathbb{R}^d is called a **mollifier** if

$$\varphi \in C_c^\infty(\mathbb{R}^d), \quad \text{supp}(\varphi) \subseteq \overline{B_1(0)} \quad \text{and} \quad \int_{\mathbb{R}^d} \varphi(x) dx = 1.$$

Example 1.21. Let

$$\varphi_0(x) = \begin{cases} e^{-\frac{1}{1-|x|^2}} & \text{if } |x| < 1, \\ 0 & \text{if } |x| \geq 1 \end{cases}$$

and

$$\varphi(x) = C_0 \varphi_0(x) \quad \text{with} \quad C_0 := 1 / \int_{\mathbb{R}^d} \varphi_0(x) dx.$$

Then φ is a mollifier on \mathbb{R}^d .

Suppose φ is a mollifier and $\varepsilon > 0$. Let

$$\varphi_\varepsilon(x) := \frac{1}{\varepsilon^d} \varphi\left(\frac{x}{\varepsilon}\right).$$

Then

$$\varphi_\varepsilon \in C_c^\infty(\mathbb{R}^d) \quad \text{and} \quad \text{supp}(\varphi_\varepsilon) \subset \overline{B_\varepsilon(0)}.$$

Also, for any $a \in \mathbb{R}^d$ and $\varepsilon > 0$, the function $\varphi_{\varepsilon,a}$ defined by

$$\varphi_{\varepsilon,a}(x) := \frac{1}{\varepsilon^d} \varphi\left(\frac{x-a}{\varepsilon}\right)$$

satisfies

$$\varphi_{\varepsilon,a} \in C_c^\infty(\mathbb{R}^d) \quad \text{and} \quad \text{supp}(\varphi_\varepsilon) \subset \overline{B_\varepsilon(a)}.$$

2. CONVOLUTION REVISITED

Proof of the following theorem is easy and hence we omit the proof.

Theorem 2.1. *If $f, g \in L^1(\mathbb{R}^d)$, then $\text{supp}(f * g) \subseteq \text{supp}(f) + \text{supp}(g)$.*

*In particular, if $1 \leq p < \infty$ and $f, g \in L^p(\mathbb{R}^d)$ are with compact support, then $\text{supp}(f * g) \subseteq \text{supp}(f) + \text{supp}(g)$.*

Proposition 2.2. *Suppose $f \in L^p(\mathbb{R}^d)$ with $1 \leq p < \infty$ and $g \in C^k(\mathbb{R}^d)$ with $\partial^\alpha g \in L^q(\Omega)$ for $|\alpha| \leq k$. Then $f * g \in C^k(\mathbb{R}^d)$ and $\partial^\alpha(f * g) = f * \partial^\alpha g$ for $|\alpha| \leq k$.*

*In particular, for $1 \leq p < \infty$, if $f \in L^p(\mathbb{R}^d)$ is with compact support and $g \in C_c^\infty(\mathbb{R}^d)$, then $f * g \in C_c^\infty(\mathbb{R}^d)$ and $\partial^\alpha(f * g) = f * \partial^\alpha g$ for all $\alpha \in \mathbb{N}_0^d$.*

Proof. We prove the case for $p = 1$ and $k = 1$, i.e., $|\alpha| = 1$. Proof of the case of $k > 1$ will follow similarly. The case of $p > 1$ involves more calculations.

Let $\alpha = (\alpha_1, \dots, \alpha_d)$ and let j be such that $\alpha_j = 1$ and $\alpha_i = 0$ for $i \neq j$. We have to show that

$$\lim_{h \rightarrow 0} \frac{(f * g)(x + he_j) - (f * g)(x)}{h} \quad \text{exists}$$

and it is equal to $(f * \partial_j g)(x)$. Note that

$$\frac{(f * g)(x + he_j) - (f * g)(x)}{h} = \int_{\mathbb{R}^d} f(x - y) \frac{g(y + he_j) - g(y)}{h} dy.$$

Since

$$\frac{g(y + he_j) - g(y)}{h} \rightarrow \partial_j g(y) \quad \text{as } h \rightarrow 0 \quad \text{and} \quad \partial_j g \in L^\infty(\Omega),$$

there exists $\alpha > 0$ such that for all h with $|h| \leq \alpha$,

$$|f(x - y)| \left| \frac{g(y + he_j) - g(y)}{h} \right| \leq |f(x - y)| (|\partial_j g(y)| + 1).$$

Since $y \mapsto |f(x - y)| (|\partial_j g(y)| + 1)$ belongs to $L^1(\Omega)$, by DCT, we have

$$\int_{\mathbb{R}^d} f(x - y) \frac{g(y + he_j) - g(y)}{h} dy \rightarrow \int_{\mathbb{R}^d} f(x - y) \partial_j g(y) dy.$$

Thus, $\partial_j(f * g)$ exists and $\partial_j(f * g) = f * \partial_j g$. \square

Proposition 2.3. *If K is a compact subset of Ω , then there exists $\psi \in \mathcal{D}(\Omega)$ such that $0 \leq \psi \leq 1$ and $\psi = 1$ on K .*

Proof. Let K be a compact subset of Ω and let $\delta := \text{dist}(K, \Omega^c)$. Let $\alpha := \delta/3$ and G_α be the α -neighbourhood of K , i.e.,

$$G_\alpha := \{x \in \Omega : \text{dist}(x, \Omega) < \alpha\}.$$

Let φ be a mollifier and for $\varepsilon > 0$, let $\psi_\varepsilon := \varphi_\varepsilon * \chi_\alpha$, where $\chi_\alpha := \chi_{G_\alpha}$ and $\varphi_\varepsilon := (1/\varepsilon^d)\varphi(x/\varepsilon)$. Since $\chi_\alpha \in L^1(\mathbb{R}^d)$, by Proposition 2.2, $\psi_\varepsilon \in C^\infty(\mathbb{R}^d)$. Note that

$$\psi_\varepsilon(x) = \int_{\mathbb{R}^d} \varphi_\varepsilon(x-y)\chi_\alpha(y)dy \leq \int_{\mathbb{R}^d} \varphi_\varepsilon(x-y)dy = 1.$$

Further, if $x \in K$ and $\varepsilon \leq \alpha$, then

$$\psi_\varepsilon(x) = \int_{\mathbb{R}^d} \varphi_\varepsilon(y)\chi_\alpha(x-y)dy = \int_{B_\varepsilon(0)} \varphi_\varepsilon(y)\chi_\alpha(x-y)dy = 1,$$

since

$$x \in K, \quad y \in B_\varepsilon(0) \quad \text{implies} \quad x-y \in G_\alpha.$$

Thus, $0 \leq \psi_\alpha \leq 1$ and $\psi_\alpha = 1$ on K .

Also,

$$\psi_\varepsilon(x) = \int_{\mathbb{R}^d} \varphi_\varepsilon(x-y)\chi_\alpha(y)dy = 0$$

whenever x is not in the ε -neighbourhood of G_α . Since α -neighbourhood of G_α is contained in the 2α -neighbourhood of K , taking $\varepsilon < \alpha$, we have $\text{supp}(\psi_\varepsilon) \subseteq G_{2\alpha}$. \square

Theorem 2.4. *Let $1 \leq p < \infty$. If $f \in L^p(\mathbb{R}^d)$ for and $g \in L^1(\mathbb{R}^d)$, then*

$$f * g \in L^p(\mathbb{R}^d) \quad \text{and} \quad \|f * g\|_p \leq \|f\|_p \|g\|_1.$$

In particular,

$$f \in L^p(\mathbb{R}^d) \implies f * \varphi_\varepsilon \in L^p(\mathbb{R}^d) \quad \text{and} \quad \|f * \varphi_\varepsilon\|_p \leq \|f\|_p.$$

Proof. Let $f \in L^p(\mathbb{R}^d)$ for and $g \in L^1(\mathbb{R}^d)$. First let $p = 1$. Then,

$$\begin{aligned} \int |f * g)(x)| &\leq \int \left(\int |f(x-y)g(y)|dy \right) dx \\ &\leq \int \left(\int |f(x-y)|dx \right) |g(y)|dy \\ &= \|f\|_1 \|g\|_1. \end{aligned}$$

Next, let $1 < p < \infty$ and let q such that $(1/p) + (1/q) = 1$. Then

$$\begin{aligned} |f * g)(x)| &\leq \int |f(x-y)g(y)|dy \\ &\leq \int |f(x-y)| |g(y)|^{1/p} |g(y)|^{1/q} dy \\ &\leq \left(\int |f(x-y)|^p |g(y)| dy \right)^{1/p} \left(\int |g(y)| dy \right)^{1/q} \\ &= \left(\int |f(x-y)|^p |g(y)| dy \right)^{1/p} \|g\|_1^{1/q}. \end{aligned}$$

Hence,

$$\begin{aligned}
\int |(f * g)(x)|^p dx &= \|g\|_1^{p/q} \int \left(\int |f(x-y)|^p |g(y)| dy \right) dx \\
&= \|g\|_1^{p/q} \int \left(\int |f(x-y)|^p dx \right) |g(y)| dy \\
&= \|g\|_1^{1+\frac{p}{q}} \|f\|_p^p
\end{aligned}$$

so that

$$\left(\int |(f * g)(x)|^p dx \right)^{1/p} = \|g\|_1^{\frac{1}{p}} \|f\|_p = \|g\|_1 \|f\|_p.$$

Thus, $f * g \in L^p(\mathbb{R}^d)$ and $\|f * g\|_p \leq \|f\|_p \|g\|_1$. \square

Corollary 2.5. *If $f \in L^p(\mathbb{R}^d)$ with $1 \leq p < \infty$, then*

$$f * \varphi_\varepsilon \in L^p(\mathbb{R}^d) \quad \text{and} \quad \|f * \varphi_\varepsilon\|_p \leq \|f\|_p.$$

Theorem 2.6. *Let $L^p(\Omega)$ for $1 \leq p < \infty$. Then $f * \varphi_\varepsilon \in C^\infty(\Omega) \cap L^p(\mathbb{R}^d)$ and*

$$\|f * \varphi_\varepsilon - f\|_p \rightarrow 0 \quad \text{as} \quad \varepsilon \rightarrow 0.$$

Proof. By Proposition 2.2, $f * \varphi_\varepsilon \in C^\infty(\Omega)$. If $\Omega \neq \mathbb{R}^d$, then we extend f to all of \mathbb{R}^d by defining it to be zero on Ω^c . First let $p = 1$. Then we have

$$\begin{aligned}
\int |(f * \varphi_\varepsilon)(x)| dx &\leq \int \left| \int [f(x) - f(x-y)] \varphi_\varepsilon(y) dy \right| dx \\
&= \int \int |f(x) - f(x-y)| \varphi_\varepsilon(y) dy dx \\
&\leq \int \left(\int |f(x) - f(x-y)| dx \right) \varphi_\varepsilon(y) dy \\
&= \int \|f - \tau_y f\|_1 \varphi_\varepsilon(y) dy.
\end{aligned}$$

Next let $1 < p < \infty$. Then we have

$$\begin{aligned}
|f(x) - (f * \varphi_\varepsilon)(x)| &\leq \int |f(x) - f(x-y)| \varphi_\varepsilon(y) dy \\
&\leq \int |f(x) - f(x-y)| [\varphi_\varepsilon(y)]^{1/p} [\varphi_\varepsilon(y)]^q dy \\
&\leq \left(\int |f(x) - f(x-y)|^p \varphi_\varepsilon(y) dy \right)^{1/p} \left(\int \varphi_\varepsilon(y) dy \right)^{1/q} \\
&= \left(\int |f(x) - f(x-y)|^p \varphi_\varepsilon(y) dy \right)^{1/p}.
\end{aligned}$$

Hence,

$$\begin{aligned}
\int |f(x) - (f * \varphi_\varepsilon)(x)|^p dx &\leq \int \left(\int |f(x) - f(x-y)|^p \varphi_\varepsilon(y) dy \right) dx \\
&= \int \left(\int |f(x) - f(x-y)|^p dx \right) \varphi_\varepsilon(y) dy \\
&= \int \|f - \tau_y f\|_p^p \varphi_\varepsilon(y) dy.
\end{aligned}$$

Thus, for $1 \leq p < \infty$, we have

$$\int |f(x) - (f * \varphi_\varepsilon)(x)|^p dx \leq \int \|f - \tau_y f\|_p^p \varphi_\varepsilon(y) dy.$$

Now, recall that $\|f - \tau_y f\|_p^p \rightarrow 0$ as $y \rightarrow x$. Therefore, for any given $\eta > 0$, there exists $\delta > 0$ such that

$$\|f - \tau_y f\|_p^p < \eta \quad \text{whenever } |y| < \delta.$$

Also, we know that $\|\tau_y f\|_p = \|f\|_p$ and for any $r > 0$,

$$\int_{|y| \geq r} \varphi_\varepsilon(y) dy \rightarrow 0 \quad \text{as } \varepsilon \rightarrow 0.$$

Hence, there exists $\varepsilon_0 > 0$ such that

$$\int_{|y| \geq \delta} \varphi_\varepsilon(y) dy < \eta \quad \text{whenever } 0 < \varepsilon < \varepsilon_0.$$

Thus, we obtain

$$\begin{aligned}
\int |f(x) - (f * \varphi_\varepsilon)(x)|^p dx &\leq \int \|f - \tau_y f\|_p^p \varphi_\varepsilon(y) dy \\
&= \int_{|y| < \delta} \|f - \tau_y f\|_p^p \varphi_\varepsilon(y) dy + \int_{|y| \geq \delta} \|f - \tau_y f\|_p^p \varphi_\varepsilon(y) dy \\
&\leq \eta \int_{|y| < \delta} \varphi_\varepsilon(y) dy + (2\|f\|_p)^p \int_{|y| \geq \delta} \varphi_\varepsilon(y) dy \\
&\leq (1 + (2\|f\|_p)^p) \eta
\end{aligned}$$

whenever $\varepsilon < \varepsilon_0$. Thus, we have proved that $f * \varphi_\varepsilon \in L^p(\mathbb{R}^d)$ and $\|f * \varphi_\varepsilon - f\|_p \rightarrow 0$ as $\varepsilon \rightarrow 0$. \square

Theorem 2.7. $C_c^\infty(\Omega)$ is dense in $L^p(\Omega)$.

Proof. The proof involves the following two steps:

- (1) For every $f \in L^p(\Omega)$ and $\varepsilon > 0$, there exists $g \in L^p(\Omega)$ with compact support such that $\|f - g\| < \varepsilon$.

- (2) For every $g \in L^p(\Omega)$ with compact support, $g * \varphi_\varepsilon \in C_c^\infty(\Omega)$ and $\|g - g * \varphi_\varepsilon\| \rightarrow 0$ as $\varepsilon \rightarrow 0$.

Proof of Step (1): Let $f \in L^p(\Omega)$. For $n \in \mathbb{N}$, let

$$K_n = \{x \in \Omega : |x| \leq n, \text{dist}(x, \Omega^c) \geq 1/n\}.$$

Then each K_n is a compact subset of Ω . Taking $f_n := f\chi_{K_n}$, we see that $f_n \in L^p(\Omega)$ with $\text{supp}(f_n) \subseteq K_n$ and

$$\|f - f_n\|_p \rightarrow 0 \quad \text{as } n \rightarrow \infty.$$

Thus, given $\varepsilon > 0$, there exists $g := f_N$ such that $\|f - g\|_p < \varepsilon$.

Proof of Step (2): Let $g \in L^p(\Omega)$ with compact support. Let φ be a mollifier and $\varepsilon > 0$ be given. By Proposition 2.2, $g * \varphi_\varepsilon \in C_c^\infty(\mathbb{R}^d)$, where $\varphi_\varepsilon(x) := (1/\varepsilon^d)\varphi(x/\varepsilon)$. We may take ε small enough such that $\text{supp}(g * \varphi_\varepsilon) \subseteq \Omega$. Also, by Theorem 2.6,

$$\|g - (g * \varphi_\varepsilon)\|_p \rightarrow 0 \quad \text{as } \varepsilon \rightarrow 0.$$

Now, let $f \in L^p(\Omega)$ and $\varepsilon > 0$. Then by Step (1), there exists $g \in L^p(\Omega)$ with compact support such that $\|f - g\|_p < \varepsilon$ and by Step (2), $g * \varphi_\varepsilon \in C_c^\infty(\Omega)$ and $\|g - g * \varphi_\varepsilon\| \rightarrow 0$ as $\varepsilon \rightarrow 0$. Thus,

$$\|f - g * \varphi_\varepsilon\|_p \leq \|f - g\|_p + \|g - g * \varphi_\varepsilon\|_p \rightarrow 0$$

as $\varepsilon \rightarrow 0$. This completes the proof. \square

We have proved in Theorem 2.6 that $\|f - f * \varphi_\varepsilon\|_p \rightarrow 0$ as $\varepsilon \rightarrow 0$ for every $f \in L^p(\Omega)$ with $1 \leq p < \infty$. The next theorem shows that the convergence can be stronger if $f \in C_c(\Omega)$.

Theorem 2.8. *Suppose $f \in C_c(\Omega)$. Then $f * \varphi_\varepsilon \rightarrow f$ uniformly on Ω .*

Proof. For $x \in \Omega$, we have

$$|f(x) - (f * \varphi_\varepsilon)(x)| \leq \int |f(x) - f(x-y)|\varphi_\varepsilon(y)dy.$$

Since f is uniformly on $\text{supp}(f)$,

$$\begin{aligned} \int |f(x) - f(x-y)|\varphi_\varepsilon(y)dy &\leq \int_{|y|<\varepsilon} |f(x) - f(x-y)|\varphi_\varepsilon(y)dy \\ &\leq \sup\{|f(x) - f(x-y)| : x \in \text{supp}(f), |y| < \varepsilon\} \\ &\rightarrow 0 \quad \text{as } \varepsilon \rightarrow 0. \end{aligned}$$

\square

3. PROOF OF UNIQUENESS THEOREM

Proof of Theorem 1.17. It is enough to proof that

$$f \in L^1_{\text{loc}}(\Omega), \quad u_f = 0 \quad \implies \quad f = 0 \quad \text{a.e.}$$

So, let $f \in L^1_{\text{loc}}(\Omega)$ such that $u_f = 0$, i.e., $\int_{\Omega} f(x)\varphi(x)dx = 0$ for all $\varphi \in \mathcal{D}(\Omega)$. Let K be a compact subset of Ω and ψ be as in Proposition 2.3. Then $f\psi \in L^1(\mathbb{R}^d)$. This is seen as follows: Let $K_{\psi} := \text{supp}(\psi)$. Then

$$\int_{\mathbb{R}^d} |f\psi| = \int_{K_{\psi}} |f\psi| \leq \|\psi\|_{\infty} \int_{K_{\psi}} |f| < \infty.$$

Let φ be a mollifier on \mathbb{R}^d and $\varphi_{\varepsilon}(x) := \frac{1}{\varepsilon^d} \varphi(\frac{x}{\varepsilon})$. Then we have

$$(\varphi_{\varepsilon} * f\psi)(x) = \int_{\mathbb{R}^d} \varphi_{\varepsilon}(x-y) f(y) \psi(y) dy = 0$$

for every $x \in \mathbb{R}^d$ since $y \mapsto \varphi_{\varepsilon}(x-y)\psi(y)$ belongs to $\mathcal{D}(\Omega)$. Also, by Theorem 2.6, we have

$$\|\varphi_{\varepsilon} * f\psi - f\psi\|_1 \rightarrow 0 \quad \text{as } \varepsilon \rightarrow 0.$$

Hence, $f\psi = 0$ in $L^1(\mathbb{R}^d)$ so that $f = 0$ a.e. on K . Since Ω can be written as a countable union of compact subsets it follows that $f = 0$ a.e. on Ω . \square

Example 3.1. For each $k \in \mathbb{N}$, let

$$f_k(x) := \sum_{n=-k}^k e^{inx}, \quad x \in \mathbb{R}.$$

Then, we have

$$u_{f_k}(\varphi) = \int_{\mathbb{R}} f_k(x) \varphi(x) dx = \sum_{n=-k}^k \int_{\mathbb{R}} \varphi(x) e^{inx} dx = 2\pi \sum_{n=-k}^k \hat{\varphi}(-n).$$

Hence, for every $\varphi \in \mathcal{D}(\mathbb{R})$,

$$u_{f_k}(\varphi) \rightarrow 2\pi \sum_{n \in \mathbb{N}} \hat{\varphi}(n) = 2\pi\varphi(0) = 2\pi\delta_0(\varphi).$$

Thus, $u_{f_k} \rightarrow 2\pi\delta_0$ as $k \rightarrow \infty$. Identifying u_{f_k} with f_k , we may write the above fact as

$$\sum_{n \in \mathbb{Z}} e_n = 2\pi\delta_0,$$

where $e_n(x) := e^{inx}$.

4. A CHARACTERIZATION OF DISTRIBUTIONS

First a characterization theorem.

Theorem 4.1. *Let u be a linear functional on $\mathcal{D}(\Omega)$. Then u is a distribution if and only if for each compact $K \subseteq \Omega$, there exists a constant $C > 0$ and an $N \in \mathbb{N}_0$ such that*

$$|u(\varphi)| \leq C \sum_{|\alpha| \leq N} \|\partial^\alpha \varphi\|_\infty \quad (1)$$

for all $\varphi \in \mathcal{D}(\Omega)$ with $\text{supp}(\varphi) \subseteq K$.

Proof. Suppose u is a distribution. Assume for a moment that there exists a compact $K \subseteq \Omega$ such that (1) is not satisfied for any $C > 0$ and $N \in \mathbb{N}$. Then for every $N \in \mathbb{N}$ and $C > 0$, there exists φ , depending on (N, C) , such that $\text{supp}(\varphi) \subseteq K$ and

$$|u(\varphi)| > C \sum_{|\alpha| \leq N} \|\partial^\alpha \varphi\|_\infty.$$

In particular, for every $N \in \mathbb{N}$, there exists φ_N such that $\text{supp}(\varphi_N) \subseteq K$ and

$$|u(\varphi_N)| > N \sum_{|\alpha| \leq N} \|\partial^\alpha \varphi_N\|_\infty.$$

Let $\tilde{\varphi}_N := \varphi_N / |u(\varphi_N)|$, $N \in \mathbb{N}$. Then we have

$$1 = |u(\tilde{\varphi}_N)| > N \sum_{|\alpha| \leq N} \|\partial^\alpha \tilde{\varphi}_N\|_\infty \geq N \|\partial^\alpha \tilde{\varphi}_N\|_\infty$$

for all $N \in \mathbb{N}$. Hence, $\tilde{\varphi}_N \rightarrow 0$ in $\mathcal{D}(\Omega)$ as $N \rightarrow \infty$. But, $u(\tilde{\varphi}_N) = 1$ for all $N \in \mathbb{N}$. Thus, we arrived at a contradiction to the fact that u is a distribution.

Conversely, let (φ_n) in $\mathcal{D}(\Omega)$ such that $\varphi_n \rightarrow 0$ in $\mathcal{D}(\Omega)$. Let $K \subseteq \Omega$ be a compact set with $\text{supp}(\varphi_n) \subseteq K$ for all $n \in \mathbb{N}$. Suppose that there exists a constant $C > 0$ and $N \in \mathbb{N}_0$ such that

$$|u(\varphi)| \leq C \sum_{|\alpha| \leq N} \|\partial^\alpha \varphi\|_\infty$$

for all $\varphi \in \mathcal{D}(\Omega)$ with $\text{supp}(\varphi) \subseteq K$. Then we have

$$|u(\varphi_n)| \leq C \sum_{|\alpha| \leq N} \|\partial^\alpha \varphi_n\|_\infty.$$

By the assumption on (φ_n) , $u(\varphi_n) \rightarrow 0$. □

5. DISTRIBUTIONS OF FINITE AND INFINITE ORDERS

Definition 5.1. Let u be a distribution on Ω . Then u is said to be of **finite order**, if there exists $N \in \mathbb{N}_0$ satisfying the condition in Theorem 4.1 which is valid for all compact set $K \subseteq \Omega$, and in that case, the infimum of all such N is called the order of u . If u is not of finite order, then it is said to be of **infinite order**.

Example 5.2. Every regular distribution is of finite order: To see this, let $f \in L^1_{\text{loc}}(\Omega)$. Then for every $\varphi \in \mathcal{D}(\Omega)$, we have

$$|u_f(\varphi)| \leq \int_{\Omega} |f(x)| |\varphi(x)| dx \leq \|\varphi\|_{\infty} \int_{\Omega} |f(x)| dx.$$

Thus, (1) in Theorem 4.1 is satisfied with $N = 0$ and $C = \int_{\Omega} |f(x)| dx$.

Example 5.3. Define

$$u(\varphi) := \sum_{j=0}^{\infty} \varphi^{(j)}(j), \quad \varphi \in \mathcal{D}(\mathbb{R}).$$

Note that, since φ is with compact support, the above is a finite sum for each φ . More precisely, if $\text{supp}(\varphi) \subseteq [-k, k]$ for some $k \in \mathbb{N}$, then

$$u(\varphi) = \sum_{j=0}^{k-1} \varphi^{(j)}(j).$$

Further, if K is a compact set and if $K \subseteq [-k, k]$ for some $k \in \mathbb{N}$, then we have

$$|u(\varphi)| \leq \sum_{j=0}^{k-1} \|\varphi^{(j)}\|_{\infty}$$

for every $\varphi \in \mathcal{D}(\mathbb{R})$ with $\text{supp}(\varphi) \subseteq K$. Hence, by Theorem 4.1, $u \in \mathcal{D}'(\mathbb{R})$. This distribution is of infinite order (Why?).

Exercise 5.4. Show that the delta-distribution is of 0 order.

Exercise 5.5. Show that the distribution in Example 5.3 is of infinite order.

6. RESTRICTIONS AND SUPPORT OF DISTRIBUTIONS

Definition 6.1. Let u be a distribution on Ω and Ω_0 be an open subset of Ω . Then **restriction** of u to Ω_0 , denoted by u_{Ω_0} is a distribution on Ω_0 defined by

$$u_{\Omega_0}(\varphi) := u(\varphi) \quad \text{for every } \varphi \in \mathcal{D}(\Omega_0).$$

Definition 6.2. Let u be a distribution on Ω . Then the support of u is the set

$$\text{supp}(u) := \{x \in \Omega : u_G \neq 0 \text{ for every open set } G \subset \Omega \text{ with } x \in G\}.$$

Note that, for $u \in \mathcal{D}'(\Omega)$ and $x \in \Omega$,

$$x \notin \text{supp}(u) \iff \exists \text{ open set } G \subset \Omega \text{ with } x \in G \text{ such that } u_G = 0.$$

Hence,

$$\text{supp}(u) = \Omega \setminus \bigcup \{G : u_G = 0\}.$$

Thus, $\text{supp}(u)$ is a closed subset of Ω .

Exercise 6.3. $\text{supp}(\delta_a) = \{a\}$.

Exercise 6.4. For $f \in L^1_{\text{loc}}(\Omega)$, $\text{supp}(u_f) = \text{supp}(f)$.

Exercise 6.5. For $u \in \mathcal{D}'(\Omega)$ and $\varphi \in \mathcal{D}(\Omega)$, $\text{supp}(u) \cap \text{supp}(\varphi) = \emptyset \implies u(\varphi) = 0$.

7. MULTIPLICATION BY C^∞ FUNCTIONS

Theorem 7.1. If $f \in C^\infty(\Omega)$, then $f\varphi \in \mathcal{D}(\Omega)$ for every $\varphi \in \mathcal{D}(\Omega)$.

Proof. Exercise. □

Theorem 7.2. For $f \in C^\infty(\Omega)$ and $u \in \mathcal{D}'(\Omega)$, then the map

$$\varphi \mapsto u(f\varphi), \quad \varphi \in \mathcal{D}(\Omega),$$

is a distribution.

Proof. Suppose $\varphi_n \rightarrow \varphi$ in $\mathcal{D}(\Omega)$. Then it can be seen that $f\varphi_n \rightarrow f\varphi$ in $\mathcal{D}(\Omega)$. Hence, $u(f\varphi_n) \rightarrow u(f\varphi)$. □

Notation 7.3. For $f \in C^\infty(\Omega)$ and $u \in \mathcal{D}'(\Omega)$, the distribution $f \mapsto f\varphi$ as in Theorem 7.2 is denoted by fu .

Example 7.4. $f \in C^\infty(\Omega)$ and $a \in \Omega$, we have

$$(f\delta_a)(\varphi) = \delta_a(f\varphi) = f(a)\varphi(a) = f(a)\delta_a(\varphi) \quad \forall \varphi \in \mathcal{D}(\Omega).$$

Hence, $f\delta_a = f(a)\delta$.

Example 7.5. $f, g \in L^1_{\text{loc}}(\Omega)$, we have

$$(fu_g)(\varphi) = u_g(f\varphi) = \int g(x)f(x)\varphi(x)dx = u_{fg}(\varphi) \quad \forall \varphi \in \mathcal{D}(\Omega).$$

Hence, $fu_g = u_{fg}$.

Theorem 7.6. Let $f \in C^\infty(\Omega)$. Then the map $u \mapsto fu$ is continuous in the sense that

$$u_n \rightarrow u \text{ in } \mathcal{D}'(\Omega) \implies fu_n \rightarrow fu \text{ in } \mathcal{D}'(\Omega).$$

8. TRANSLATION OF DISTRIBUTIONS

We observe that if $f \in L^1_{\text{loc}}(\mathbb{R}^d)$ and $h \in \mathbb{R}^d$,

$$u_{\tau_h f}(\varphi) = \int (\tau_h f)(x) \varphi(x) dx = \int f(x-h) \varphi(x) dx = \int f(x) \varphi(x+h) dx = u_f(\tau_{-h} \varphi).$$

Identifying L^1_{loc} -functions with the corresponding distributions, we may write the above as

$$(\tau_h f)(\varphi) = f(\tau_{-h} \varphi) \quad \forall \varphi \in \mathcal{D}(\mathbb{R}^d).$$

Motivated by this, for $u \in \mathcal{D}'(\mathbb{R}^d)$ and $h \in \mathbb{R}^d$, we may define

$$(\tau_h u)(\varphi) := u(\tau_{-h} \varphi), \quad \varphi \in \mathcal{D}(\mathbb{R}^d).$$

Theorem 8.1. *If $u \in \mathcal{D}'(\mathbb{R}^d)$ and $h \in \mathbb{R}^d$, then $\tau_h u$ defined by*

$$(\tau_h u)(\varphi) := u(\tau_{-h} \varphi), \quad \varphi \in \mathcal{D}(\mathbb{R}^d),$$

is a distribution.

Definition 8.2. For $u \in \mathcal{D}'(\mathbb{R}^d)$ and $h \in \mathbb{R}^d$, the distribution $\tau_h u$ defined by

$$(\tau_h u)(\varphi) := u(\tau_{-h} \varphi), \quad \varphi \in \mathcal{D}(\mathbb{R}^d),$$

is called the **translation** of u by h .

Example 8.3. Observe that

$$(\tau_h \delta_a)(\varphi) = \delta_a(\tau_{-h} \varphi) = (\tau_{-h} \varphi)(a) = \varphi(a+h) = \delta_{a+h}(\varphi).$$

Hence, $\tau_h \delta_a = \delta_{a+h}$.

Theorem 8.4. *For each $h \in \mathbb{R}^d$, the map $u \mapsto \tau_h u$ is continuous on $\mathcal{D}'(\mathbb{R}^d)$ in the sense that $u_n \rightarrow u$ in $\mathcal{D}'(\mathbb{R}^d)$ implies $\tau_h u_n \rightarrow \tau_h u$ in $\mathcal{D}'(\mathbb{R}^d)$.*

9. THE SPACES $\mathcal{E}(\Omega)$ AND $\mathcal{E}'(\Omega)$

Definition 9.1. The space $C^\infty(\Omega)$ with the notion of convergence defined by

$$f_n \rightarrow f \iff \partial^\alpha f_n \rightarrow \partial^\alpha f \quad \text{uniformly on every compact } K \subseteq \Omega \quad \forall \alpha \in \mathbb{N}_0^d$$

is denoted by $\mathcal{E}(\Omega)$.

Clearly,

$$\mathcal{D}(\Omega) \subseteq \mathcal{E}(\Omega).$$

Theorem 9.2. *Let u be a distribution. Then the map $f \mapsto fu$ from $\mathcal{E}(\Omega)$ to $\mathcal{D}'(\Omega)$ is continuous in the sense that*

$$f_n \rightarrow f \text{ in } \mathcal{E}(\Omega) \implies f_n u \rightarrow fu \text{ in } \mathcal{D}'(\Omega).$$

Recall that $f \in \mathcal{E}(\Omega)$ and $u \in \mathcal{D}'(\Omega)$, fu defined by

$$(fu)(\varphi) := u(f\varphi), \quad \varphi \in \mathcal{D}(\Omega),$$

is a distribution.

Theorem 9.3. *Let $f \in \mathcal{E}(\Omega)$ and $u \in \mathcal{D}'(\Omega)$. Then*

$$\text{supp}(fu) \subseteq \text{supp}(f) \cap \text{supp}(u).$$

Proof. Suppose $x_0 \notin \text{supp}(f)$. Then there exists an open nbd $\Omega_0 \subseteq \Omega$ of x_0 such that $f = 0$ on Ω_0 . Hence,

$$(fu)(\varphi) = 0 \quad \forall \varphi \in \mathcal{D}(\Omega_0)$$

so that $fu = 0$ on Ω_0 . Therefore, $x_0 \notin \text{supp}(fu)$. Also, $x_0 \notin \text{supp}(f)$ implies there exists an open nbd $\Omega_0 \subseteq \Omega$ of x_0 such that $u = 0$ on Ω_0 so that $fu = 0$ on Ω_0 and hence, $x_0 \notin \text{supp}(fu)$ \square

Corollary 9.4. *If u is a distribution with compact support, then for any $f \in \mathcal{E}(\Omega)$, fu is also of compact support.*

Definition 9.5. The set of all linear functionals u on $\mathcal{E}(\Omega)$ such that

$$\varphi_n \rightarrow \varphi \text{ in } \mathcal{E}(\Omega) \implies u(\varphi_n) \rightarrow u(\varphi)$$

is denoted by $\mathcal{E}'(\Omega)$. A sequence (u_n) in $\mathcal{E}'(\Omega)$ is said to converge to $u \in \mathcal{E}'(\Omega)$, written $u_n \rightarrow u$ if

$$u_n(f) \rightarrow u(f) \quad \forall f \in \mathcal{E}(\Omega).$$

Theorem 9.6. *If $u \in \mathcal{E}'(\Omega)$, then $u_0 := u|_{\mathcal{D}(\Omega)} \in \mathcal{D}'(\Omega)$. Further, the map $u \mapsto u_0$ is continuous from $\mathcal{E}'(\Omega)$ to $\mathcal{D}'(\Omega)$, in the sense that,*

$$u_n \rightarrow u \quad \text{in } \mathcal{E}'(\Omega) \implies u_{0,n} \rightarrow u_0 \quad \text{in } \mathcal{D}'(\Omega).$$

Proof. Let $u \in \mathcal{E}'(\Omega)$, Let $\varphi_n \rightarrow \varphi$ in $\mathcal{D}(\Omega)$. Then there exists a compact set $K_0 \subseteq \Omega$ such that $\text{supp}, \varphi_n, \varphi \subseteq K_0$ and $\partial^\alpha \varphi_n \rightarrow \partial^\alpha \varphi$ uniformly on Ω . Hence, $\partial^\alpha \varphi_n \rightarrow \partial^\alpha \varphi$ uniformly on every compact subset of Ω . Thus, $\varphi_n \rightarrow \varphi$ in $\mathcal{E}(\Omega)$ so that by hypothesis, $u(\varphi_n) \rightarrow u(\varphi)$, i.e., $u_0(\varphi_n) \rightarrow u_0(\varphi)$. The last part is obvious. \square

In view of the above theorem, we may say that

$\mathcal{E}'(\Omega)$ is embedded in $\mathcal{D}'(\Omega)$.

We shall show that the distribution u_0 in the above theorem is with compact support.

Theorem 9.7. *If $u \in \mathcal{D}'(\Omega)$ is with compact support, then $u \in \mathcal{E}'(\Omega)$ in the sense that there exists a unique $\tilde{u} \in \mathcal{E}'(\Omega)$ such that*

- (1) $\tilde{u}|_{\mathcal{D}(\Omega)} = u$ and
- (2) $f \in \mathcal{E}(\Omega)$ with $\text{supp}(u) \cap \text{supp}(f) = \emptyset$ implies $\tilde{u}(f) = 0$.

For proving the above theorem we shall make use of the following lemma.

Lemma 9.8. *If $u \in \mathcal{D}'(\Omega)$ and $\varphi \in \mathcal{D}(\Omega)$ are such that $\text{supp}(u) \cap \text{supp}(\varphi) = \emptyset$, then $u(\varphi) = 0$.*

Proof of Theorem 9.7. Suppose $u \in \mathcal{D}'(\Omega)$ is with compact support, say $K := \text{supp}(u)$. Let $\psi \in \mathcal{D}(\Omega)$ be such that $\psi = 1$ on K . Then, for every $\varphi \in \mathcal{D}(\Omega)$, we have

$$u(\varphi) = u(\psi\varphi + (1 - \psi)\varphi) = u(\psi\varphi) + u((1 - \psi)\varphi).$$

Note that $\text{supp}(u) \cap \text{supp}((1 - \psi)\varphi) = \emptyset$. Hence by the last lemma, $u((1 - \psi)\varphi) = 0$. Thus,

$$u(\varphi) = u(\psi\varphi) \quad \forall \varphi \in \mathcal{D}(\Omega).$$

Now, define

$$\tilde{u}(f) = u(\psi f), \quad f \in \mathcal{E}(\Omega).$$

Then we have $\tilde{u} \in \mathcal{E}'(\Omega)$ and $\tilde{u}|_{\mathcal{D}(\Omega)} = u$. [To see that $\tilde{u} \in \mathcal{E}'(\Omega)$, we may observe that $f_n \rightarrow f$ in $\mathcal{E}(\Omega)$ implies $\psi f_n \rightarrow \psi f$ in $\mathcal{D}(\Omega)$.]

To see the uniqueness, suppose $v \in \mathcal{E}'(\Omega)$ is such that

- (1) $v|_{\mathcal{D}(\Omega)} = u$ and
- (2) $f \in \mathcal{E}(\Omega)$ with $\text{supp}(u) \cap \text{supp}(f) = \emptyset$ implies $v(f) = 0$.

Then, for $f \in \mathcal{E}(\Omega)$, we have

$$v(f) = v(\psi f + (1 - \psi)f) = v(\psi f) + v((1 - \psi)f) = u(\psi f) + v((1 - \psi)f).$$

Since $(1 - \psi)f = 0$ on $K := \text{supp}(u)$, assumption (2) on v implies $v((1 - \psi)f) = 0$. Thus, $v(f) = u(\psi f) = \tilde{u}(f)$. \square

For the proof of Lemma 9.8, we make use of *partition of unity*:

Proposition 9.9. (Partition of unity) *Let K be a compact set and $\Omega_1, \dots, \Omega_n$ be open subsets of \mathbb{R}^d such that $K \subseteq \bigcup_{j=1}^n \Omega_j$. Then there exists ψ_1, \dots, ψ_n in $\mathcal{D}(\Omega_0)$ with $\Omega_0 := \bigcup_{j=1}^n \Omega_j$ such that $\text{supp}(\psi_j) \subseteq \Omega_j$ and $\sum_{j=1}^n \psi_j = 1$ on K .*

Proof. Let $x \in K$. Then $x \in \Omega_i$ for some $i \in \{1, \dots, n\}$. Let G_x be an open nbd of x such that \overline{G}_x is compact and $\overline{G}_x \subseteq \Omega_i$. Since K is compact, there exist $x_1, \dots, x_k \in K$ such that $K \subseteq \bigcup_{j=1}^k G_{x_j}$. For each $i \in \{1, \dots, n\}$, let H_i be the union of those \overline{G}_{x_j}

such that $\overline{G}_{x_j} \subseteq \Omega_i$. Then each $H - i$ is compact and $H_i \subseteq \Omega_i$. Hence, there exists $g_i \in \mathcal{D}(\Omega_i)$ such that $g_i = 1$ on H_i . Note that $K \subseteq \bigcup_{i=1}^n H_i$. Now, define

$$\psi_1 = g_1, \quad \psi_2 = (1 - g_1)g_2, \quad \dots, \quad \psi_n = (1 - g_1)(1 - g_2) \cdots (1 - g_{n-1})g_n.$$

It can be seen by induction that

$$\psi_1 + \cdots + \psi_n = 1 - (1 - g_1)(1 - g_2) \cdots (1 - g_n).$$

Since $K \subseteq \bigcup_{i=1}^n H_i$, and since $g_i = 1$ on H_i , we obtain $\psi_1 + \cdots + \psi_n = 1$ on K . \square

Proof of Lemma 9.8. Let $u \in \mathcal{D}'(\Omega)$ and $\varphi \in \mathcal{D}(\Omega)$ are such that $\text{supp}(u) \cap \text{supp}(\varphi) = \emptyset$. To prove that $u(\varphi) = 0$. For this, let $K = \text{supp}(\varphi)$. For each $x \in K$, since $x \notin \text{supp}(u)$, there exists open set $\Omega_x \subseteq \Omega$ such that $x \in \Omega_x$. Then $\{\Omega_x : x \in K\}$ is an open cover of K . Since K is compact, there exists x_1, \dots, x_n in K such that $K \subseteq \bigcup_{j=1}^n \Omega_{x_j}$. By partition of unity, there exists ψ_1, \dots, ψ_n in $\mathcal{D}(\Omega_0)$ with $\Omega_0 := \bigcup_{j=1}^n \Omega_{x_j}$ such that $\text{supp}(\psi_j) \subseteq \Omega_{x_j}$ and $\sum_{j=1}^n \psi_j = 1$ on K . Then we have $\varphi = \sum_{j=1}^n \psi_j \varphi$ so that $u(\varphi) = \sum_{j=1}^n u(\psi_j \varphi) = 0$, since $\psi_j \varphi \in \mathcal{D}(\Omega_{x_j})$ and $\Omega_{x_j} \cap \text{supp}(u) = \emptyset$. \square

Now the theorem that we had promised:

Theorem 9.10. *If $u \in \mathcal{E}'(\Omega)$, then $u|_{\mathcal{D}(\Omega)}$ is a distribution with compact support.*

For its proof we use the following characterization:

Theorem 9.11. *Let u be a linear functional on $\mathcal{E}(\Omega)$. Then $u \in \mathcal{E}'(\Omega)$ if and only if there exists a compact $K \subseteq \Omega$, constant $C > 0$ and $m \in \mathbb{N}_0$ such that*

$$|u(f)| \leq C \sum_{|\alpha| \leq m} \sup_{x \in K} |(\partial^\alpha f)(x)| \quad \forall f \in \mathcal{E}(\Omega).$$

Proof. (\Leftarrow): Obvious.

(\Leftarrow): Suppose the conclusion is not true. Then for any triple $\eta := (K, C, m)$ there exists $\varphi_\eta \in \mathcal{E}(\Omega)$ such that

$$|u(f_\eta)| > C \sum_{|\alpha| \leq m} \sup_{x \in K} |(\partial^\alpha f_\eta)(x)|.$$

So, for $m \in \mathbb{N}$, let $K_m := \overline{B_m(0)}$ and $f_m \in \mathcal{E}(\Omega)$ such that

$$|u(f_m)| > m \sum_{|\alpha| \leq m} \sup_{x \in K_m} |(\partial^\alpha f_m)(x)|.$$

Let $g_m = f_m/[m \sum_{|\alpha| \leq m} \sup_{x \in K_m} |(\partial^\alpha f_m)(x)|]$. Then for every $\beta \in \mathbb{N}_0^d$ with $|\beta| \leq m$ and $K \subseteq \Omega$ with $K \subseteq K_m$, we have

$$\sup_{x \in K} \|\partial^\beta g_m\| \leq \sum_{|\gamma| \leq m} \sup_{x \in K_m} |(\partial^\gamma g_m)(x)| = \frac{1}{m}.$$

Thus, $f_m \rightarrow 0$ in $\mathcal{E}(\Omega)$ but $|u(f_m)| > 1$ for all $m \in \mathbb{N}$. This is a contradiction. \square

Proof of Theorem 9.10. Let $u \in \mathcal{E}'(\Omega)$. We have already seen that $u|_{\mathcal{D}(\Omega)}$ is a distribution. Let K be as in Theorem 9.11. We claim that $\text{supp}(u) \subseteq K$. To prove this claim, suppose $x \notin K$. Then there exists an open neighbourhood $G_x \subseteq \Omega$ of x such that $G_x \cap K = \emptyset$. Hence, $\varphi \in \mathcal{D}(G_x)$ implies $\text{supp}(\varphi) \cap K = \emptyset$. Hence, from the relation

$$|u(f)| \leq C \sum_{|\alpha| \leq m} \sup_{x \in K} |(\partial^\alpha f)(x)| \quad \forall f \in \mathcal{E}(\Omega)$$

in Theorem 9.11, we have $u(\varphi) = 0$. Therefore, $x \notin \text{supp}(u)$. Thus we have proved that $x \notin K$ implies $x \notin \text{supp}(u)$. Equivalently, $\text{supp}(u) \subseteq K$. \square

In view of Theorems 9.7 and 9.10, there is a one-one correspondence between $\mathcal{E}'(\Omega)$ and distributions with compact support. Therefore, distributions with compact support is also denoted by $\mathcal{E}'(\Omega)$.

10. DIFFERENTIATION OF DISTRIBUTIONS

Let $f \in C^1(0, 1) \cap C[0, 1]$. Then for every $\varphi \in C_c^\infty(0, 1)$, we have

$$\int_0^1 f'(x)\varphi(x)dx = [\varphi(x)f(x)]_0^1 - \int_0^1 \varphi'(x)f(x)dx = - \int_0^1 \varphi'(x)f(x)dx.$$

Thus,

$$u_{f'}(\varphi) = -u_f(\varphi').$$

More generally, it can be seen that:

If $f \in C^1(\Omega) \cap C(\overline{\Omega})$, then for every $\varphi \in C_c^\infty(\Omega)$ and for every $\alpha \in \mathbb{N}_0^d$,

$$\int_\Omega (\partial^\alpha f)(x)\varphi(x)dx = (-1)^{|\alpha|} \int_0^1 f(x)(\partial^\alpha \varphi)(x)dx$$

so that

$$u_{\partial^\alpha f}(\varphi) = (-1)^{|\alpha|} u_f(\partial^\alpha \varphi).$$

Identifying L^1_{loc} -functions with the corresponding distributions, we may write the above as

$$(\partial^\alpha f)(\varphi) = (-1)^{|\alpha|} f(\partial^\alpha \varphi) \quad \forall \varphi \in \mathcal{D}(\Omega).$$

Theorem 10.1. For $u \in \mathcal{D}'(\Omega)$ and $\alpha \in \mathbb{N}_0^d$, the map $\partial^\alpha u : \mathcal{D}(\Omega) \rightarrow \mathbb{C}$ defined by

$$(\partial^\alpha u)(\varphi) := (-1)^{|\alpha|} u(\partial^\alpha \varphi), \quad \varphi \in \mathcal{D}(O),$$

is a distribution.

Definition 10.2. For $u \in \mathcal{D}'(\Omega)$ and $\alpha \in \mathbb{N}_0^d$, the distribution $\partial^\alpha u$ defined by

$$(\partial^\alpha u)(\varphi) := (-1)^{|\alpha|} u(\partial^\alpha \varphi), \quad \varphi \in \mathcal{D}(O),$$

is called the **α -th derivative** of u .

Notation 10.3. If $f \in L^1_{\text{loc}}(\Omega)$, then $\partial^\alpha u_f$ is usually denoted by $\partial^\alpha f$.

Example 10.4. Consider the *Heaveside function*:

$$H(x) = \begin{cases} 0, & x < 0, \\ 1, & x \geq 0. \end{cases}$$

Then

$$\int_{\mathbb{R}} H(x) \varphi'(x) dx = \int_0^\infty \varphi'(x) dx = -\varphi(0) = -\delta_0(\varphi).$$

Thus, $H' = \delta_0$.

Suppose $u \in \mathcal{D}'(\Omega)$ and $\alpha \in \mathbb{N}_0^d$.

(1) We say that $\partial^\alpha u$ belongs to $L^1_{\text{loc}}(\Omega)$, and write as $\partial^\alpha u \in L^1_{\text{loc}}(\Omega)$ if there exists a function $f \in L^1_{\text{loc}}(\Omega)$ such that

$$(\partial^\alpha u)(\varphi) = u_f(\varphi) \quad \forall \varphi \in \mathcal{D}(O).$$

(2) We say that $\partial^\alpha u \in L^p(\Omega)$ iff there exists a function $f \in L^p(\Omega)$ such that

$$(\partial^\alpha u)(\varphi) = u_f(\varphi) \quad \forall \varphi \in \mathcal{D}(\Omega).$$

Suppose $f \in L^1_{\text{loc}}(\Omega)$.

(1) We say that $\partial^\alpha f \in L^1_{\text{loc}}(\Omega)$ iff there exists a function $g \in L^1_{\text{loc}}(\Omega)$ such that

$$(\partial^\alpha u_f)(\varphi) = u_g(\varphi) \quad \forall \varphi \in \mathcal{D}(\Omega),$$

i.e., iff

$$(-1)^{|\alpha|} \int_{\Omega} f(x) (\partial^\alpha \varphi)(x) dx = \int_{\Omega} g(x) \varphi(x) dx \quad \forall \varphi \in \mathcal{D}(\Omega),$$

and this fact is also written as

$$\int_{\Omega} (\partial^\alpha f)(x) \varphi(x) dx = (-1)^{|\alpha|} \int_{\Omega} f(x) (\partial^\alpha \varphi)(x) dx \quad \forall \varphi \in \mathcal{D}(\Omega).$$

(2) We say that $\partial^\alpha f \in L^p(\Omega)$ iff there exists a function $g \in L^p(\Omega)$ such that

$$(\partial^\alpha u_f)(\varphi) = u_g(\varphi) \quad \forall \varphi \in \mathcal{D}(\Omega),$$

i.e., iff

$$(-1)^{|\alpha|} \int_{\Omega} f(x)(\partial^\alpha \varphi)(x) dx = \int_{\Omega} g(x)\varphi(x) dx \quad \forall \varphi \in \mathcal{D}(\Omega),$$

and this fact is also written as

$$\int_{\Omega} (\partial^\alpha f)(x)\varphi(x) dx = (-1)^{|\alpha|} \int_{\Omega} f(x)(\partial^\alpha \varphi)(x) dx \quad \forall \varphi \in \mathcal{D}(\Omega).$$

Definition 10.5. (Sobolev spaces) For $r \in \mathbb{N}_0$ and $1 \leq p \leq \infty$, the **Sobolev space** $W^{r,p}(\Omega)$ is defined as the vector space

$$W^{r,p}(\Omega) := \{f \in L^p(\Omega) : \partial^\alpha f \in L^p(\Omega) \ \forall |\alpha| \leq r\}.$$

Thus, if $f \in L^p(\Omega)$, then $f \in W^{r,p}(\Omega)$ iff there exists $g \in L^p(\Omega)$ such that

$$(-1)^{|\alpha|} \int_{\Omega} f(x)(\partial^\alpha \varphi)(x) dx = \int_{\Omega} g(x)\varphi(x) dx \quad \forall \varphi \in \mathcal{D}(\Omega).$$

Theorem 10.6. For every multi-index α , $u \mapsto \partial^\alpha u$ is continuous on $\mathcal{D}'(\Omega)$, i.e.,

$$u_n \rightarrow u \text{ in } \mathcal{D}'(\Omega) \implies \partial^\alpha u_n \rightarrow \partial^\alpha u \text{ in } \mathcal{D}'(\Omega).$$

Proof. Follows from the definitions. □

11. CONVOLUTION INVOLVING DISTRIBUTIONS

Suppose $f \in L^1_{\text{loc}}(\mathbb{R}^d)$ and $\varphi \in \mathcal{D}(\mathbb{R}^d)$. Then we have

$$(f * \varphi)(x) = \int_{\mathbb{R}^d} f(y)\varphi(x - y), \quad x \in \mathbb{R}^d.$$

Let us introduce the notation:

$$\tilde{\varphi}(x) = \varphi(-x), \quad \varphi \in C(\mathbb{R}^d), x \in \mathbb{R}^d.$$

Then

$$\varphi(x - y) = \tilde{\varphi}(y - x) = (\tau_x \tilde{\varphi})(y).$$

Thus, we have

$$(f * \varphi)(x) = u_f(\tau_x \tilde{\varphi}), \quad \varphi \in \mathcal{D}(\mathbb{R}^d), x \in \mathbb{R}^d.$$

Motivated by this, we have the following definition.

Definition 11.1. The convolution of $u \in \mathcal{D}'(\mathbb{R}^d)$ and $\varphi \in \mathcal{D}(\Omega)$ is defined by

$$(u * \varphi)(x) = u(\tau_x \tilde{\varphi}), \quad x \in \mathbb{R}^d,$$

where $\tilde{\varphi}(s) = \varphi(-s)$.

Theorem 11.2. Let $u \in \mathcal{D}'(\mathbb{R}^d)$ and $\varphi, \psi \in \mathcal{D}(\Omega)$. Then

- (1) $u * \varphi \in C^\infty(\mathbb{R}^d)$,
- (2) $\text{supp}(u * \varphi) \subseteq \text{supp}(u) + \text{supp}(\varphi)$,
- (3) $\partial^\alpha(u * \varphi) = u * \partial^\alpha \varphi = (\partial^\alpha u) * \varphi$.
- (4) $u * (\varphi * \psi) = (u * \varphi) * \psi$.

Recall that, if $\varphi \in \mathcal{D}$ is such that $\varphi \geq 0$ and $\int \varphi = 1$ and for $\varepsilon > 0$ if $\varphi_\varepsilon(x) = \frac{1}{\varepsilon^d} \varphi(x/\varepsilon)$, then $\varphi_\varepsilon \in \mathcal{D}$ and $\{\varphi_\varepsilon : \varepsilon > 0\}$ is called an **approximate identity**. It is known that

- (1) $f \in L^1_{\text{loc}}(\mathbb{R}^d)$ implies $f * \varphi_\varepsilon \in C^\infty(\mathbb{R}^d)$.
- (2) $f \in C_c(\mathbb{R}^d)$ implies $f * \varphi_\varepsilon \rightarrow f$ uniformly as $\varepsilon \rightarrow 0$.
- (3) f continuous at x implies $(f * \varphi_\varepsilon)(x) \rightarrow f(x)$ as $\varepsilon \rightarrow 0$.
- (4) $f \in L^p(\mathbb{R}^d)$ for $1 \leq p < \infty$ implies $f * \varphi_\varepsilon \rightarrow f$ in $L^p(\mathbb{R}^d)$ as $\varepsilon \rightarrow 0$.

In the following we use the notation φ_ε for an approximate identity.

Theorem 11.3. (Regularization of distributions) Let $u \in \mathcal{D}'(\mathbb{R}^d)$ and $\{\varphi_\varepsilon : \varepsilon > 0\}$ be an approximate identity. Then

$$u * \varphi_\varepsilon \rightarrow u \quad \text{in} \quad \mathcal{D}'(\mathbb{R}^d).$$

Proof. For $\psi \in \mathcal{D}(\mathbb{R}^d)$, we have

$$\begin{aligned} (u * \varphi_\varepsilon)(\psi) &= \int (u * \varphi_\varepsilon)(y) \psi(y) dy = \int (u * \varphi_\varepsilon)(y) \tilde{\psi}(0 - y) dy = [(u * \varphi_\varepsilon) * \tilde{\psi}](0) \\ &= [u * (\varphi_\varepsilon * \tilde{\psi})](0) \rightarrow (u * \tilde{\psi})(0) \quad \text{as} \quad \varepsilon \rightarrow 0. \end{aligned}$$

But,

$$(u * \tilde{\psi})(0) = u(\tau_0 \psi) = u(\psi).$$

Thus, $u * \varphi_\varepsilon \rightarrow u$ in $\mathcal{D}'(\mathbb{R}^d)$ as $\varepsilon \rightarrow 0$. \square

Corollary 11.4. Let $u \in \mathcal{D}'(\mathbb{R})$ such that $u' = 0$. Then u is a constant.

Proof. Let $u_\varepsilon := u * \varphi_\varepsilon$. Then $u'_\varepsilon = u' * \varphi_\varepsilon = 0$. Hence, $u_\varepsilon = C_\varepsilon$, constants. But, $u_\varepsilon \rightarrow u$. Therefore, there exists a constant C such that $u_\varepsilon \rightarrow C$ and hence $u = C$. \square

Now, suppose $f, g \in L^1(\mathbb{R}^d)$. Then for $\varphi \in \mathcal{D}(\mathbb{R}^d)$, we have

$$\begin{aligned} (f * g)(\varphi) &= \int (f * g)(x)\varphi(x)dx = \int \left(\int f(y)g(x-y)dy \right) \varphi(x)dx \\ &= \int f(y) \left(\int g(x-y)\varphi(x)dx \right) dy = \int f(y) \left(\int g(s)\varphi(s+y)ds \right) dy \\ &= \int f(y) \left(\int g(s)(\tau_{-y}\varphi)(s)ds \right) dy \\ &= f(\varphi_g) \end{aligned}$$

where

$$\varphi_g(y) := g(\tau_{-y}\varphi).$$

Definition 11.5. For $u, v \in \mathcal{D}'(\mathbb{R}^d)$,

$$(u * v)(\varphi) := u(\varphi_v)$$

where

$$\varphi_v(y) := v(\tau_{-y}\varphi).$$

Exercise 11.6. Show that

$$(u * v)(\varphi) = u * \widetilde{(v * \varphi)}.$$

12. SCHWARZ SPACE AND TEMPERED DISTRIBUTIONS

Definition 12.1. The **Schwarz space** $\mathcal{S}(\mathbb{R}^d)$ is the space of all functions in $C_b^\infty(\mathbb{R}^d)$ such that for every $\alpha, \beta \in \mathbb{N}_0^d$, $x^\alpha \partial^\beta f \in C_b(\mathbb{R}^d)$. The elements of $\mathcal{S}(\mathbb{R}^d)$ are called the **rapidly decreasing functions**.

Thus, if $f \in C_b^\infty(\mathbb{R}^d)$, then

$$f \in \mathcal{S}(\mathbb{R}^d) \iff \sup_{x \in \mathbb{R}^d} |x^\alpha \partial^\beta f(x)| < \infty$$

for every $\alpha, \beta \in \mathbb{N}_0^d$.

We observe that for each $\alpha, \beta \in \mathbb{N}_0^d$,

$$f \mapsto \|f\|_{\alpha, \beta} := \sup_{x \in \mathbb{R}^d} |x^\alpha \partial^\beta f(x)|$$

defines a semi norm on $\mathcal{S}(\mathbb{R}^d)$.

Note that if $f \in C_b^\infty(\mathbb{R}^d)$, $f \in \mathcal{S}(\mathbb{R}^d)$ if and only if for every $\alpha, \beta \in \mathbb{N}_0^d$, there exists $C_{\alpha, \beta} > 0$ such that

$$|\partial^\beta f(x)| \leq \frac{C_{\alpha, \beta}}{|x^\alpha|} \quad \forall x \in \mathbb{R}^d.$$

In fact,

$$|\partial^\beta f(x)| \leq \frac{\|f\|_{\alpha,\beta}}{|x^\alpha|} \quad \forall z \in \mathbb{R}^d,$$

where

$$\|f\|_{\alpha,\beta} := \sup_{x \in \mathbb{R}^d} |x^\alpha \partial^\beta f(x)|.$$

It can be seen that, for each $\alpha, \beta \in \mathbb{N}_0^d$,

$$f \mapsto \|f\|_{\alpha,\beta} := \sup_{x \in \mathbb{R}^d} |x^\alpha \partial^\beta f(x)|$$

defines a norm on $\mathcal{S}(\mathbb{R}^d)$. In view of the above observation, elements of $\mathcal{S}(\mathbb{R}^d)$ are also called **rapidly decreasing functions**.

Theorem 12.2. *For $1 \leq p \leq \infty$, $\mathcal{S}(\mathbb{R}^d) \subseteq L^p(\mathbb{R}^d)$. In fact, for $f \in \mathcal{S}(\mathbb{R}^d)$,*

$$\|f\|_p \leq C_p \sum_{|\alpha| \leq 2d} \|f\|_{\alpha,0},$$

where $C_p := \left(\int \frac{dx}{(1+|x|^2)^p} \right)^{1/p}$ for $1 \leq p < \infty$ and $C_\infty = 1$. Further, $\mathcal{S}(\mathbb{R}^d)$ is dense in $L^p(\mathbb{R}^d)$ for $1 \leq p < \infty$.

Proof. Let $f \in \mathcal{S}(\mathbb{R}^d)$. The result is trivially true if $p = \infty$. So, let $1 \leq p < \infty$. Then

$$\int |f|^p = \int \frac{(1+|x|^2)^p |f|^p}{(1+|x|^2)^p} \leq C \sup_{x \in \mathbb{R}^d} (1+|x|^2)^p |f|^p,$$

where $C := \int \frac{dx}{(1+|x|^2)^p}$. But,

$$(1+|x|^2)|f| = \left(1 + \sum_{j=1}^d x_j^2 \right) |f| = |f| + \sum_{j=1}^d |x_j^2 f| \leq \sum_{|\alpha| \leq 2d} \|f\|_{\alpha,0}.$$

Thus, we obtain $f \in L^p(\mathbb{R}^d)$, and

$$\|f\|_p \leq C^{1/p} \sum_{|\alpha| \leq 2d} \|f\|_{\alpha,0}.$$

The last part follows, because, $\mathcal{D}(\mathbb{R}^d)$ is dense in $L^p(\mathbb{R}^d)$. \square

Definition 12.3. A sequence (f_n) in $\mathcal{S}(\mathbb{R}^d)$ is said to **converge** to $f \in \mathcal{S}(\mathbb{R}^d)$ if

$$\|f_n - f\|_{\alpha,\beta} \rightarrow 0 \quad \text{as } n \rightarrow \infty$$

for each $\alpha, \beta \in \mathbb{N}_0^d$, and in that case we write $f_n \rightarrow f$ in $\mathcal{S}(\mathbb{R}^d)$.

Theorem 12.4. *The space $\mathcal{S}(\mathbb{R}^d)$ is complete, in the sense that, if (f_n) in $\mathcal{S}(\mathbb{R}^d)$ is a Cauchy sequence with respect to $\|\cdot\|_{\alpha,\beta}$ for every $\alpha, \beta \in \mathbb{N}_0^d$, then it converges to a function in $\mathcal{S}(\mathbb{R}^d)$.*

Theorem 12.5. *The space $\mathcal{D}(\mathbb{R}^d)$ is a subspace of $\mathcal{S}(\mathbb{R}^d)$ and for $\varphi_n, \varphi \in \mathcal{D}(\mathbb{R}^d)$, $\varphi_n \rightarrow \varphi$ in $\mathcal{D}(\mathbb{R}^d)$ implies $\varphi_n \rightarrow \varphi$ in $\mathcal{S}(\mathbb{R}^d)$.*

Proof. Clearly, $\mathcal{D}(\mathbb{R}^d) \subseteq \mathcal{S}(\mathbb{R}^d)$. Let $\varphi_n \in \mathcal{D}$ such that $\varphi_n \rightarrow \varphi$ in $\mathcal{D}(\mathbb{R}^d)$. Let K be a compact set in \mathbb{R}^d such that $\text{supp}(\varphi_n) \cup \text{supp}(\varphi) \subseteq K$ for all $n \in \mathbb{N}$. Then for every $\alpha, \beta \in \mathbb{N}_0^d$,

$$\|\varphi_n - \varphi\|_{\alpha, \beta} = \sup_{x \in K} |x^\alpha \partial^\beta(\varphi_n - \varphi)(x)| \leq C_\alpha \sup_{x \in K} |\partial^\beta(\varphi_n - \varphi)(x)|$$

for some $C_\alpha > 0$. Since $\varphi_n \rightarrow \varphi$ in $\mathcal{D}(\mathbb{R}^d)$, $\sup_{x \in K} |\partial^\beta(\varphi_n - \varphi)(x)| \rightarrow 0$ so that $\varphi_n \rightarrow \varphi$ in the space $\mathcal{S}(\mathbb{R}^d)$. \square

In fact,

Theorem 12.6. *The space $\mathcal{D}(\mathbb{R}^d)$ is a dense subspace of $\mathcal{S}(\mathbb{R}^d)$.*

Definition 12.7. A linear functional u on $\mathcal{S}(\mathbb{R}^d)$ is called a **tempered distribution** if for every sequence (f_n) in $\mathcal{S}(\mathbb{R}^d)$ and $f \in \mathcal{S}(\mathbb{R}^d)$, $f_n \rightarrow f$ in $\mathcal{S}(\mathbb{R}^d)$ implies $u(f_n) \rightarrow u(f)$. The space of all tempered distributions is denoted by $\mathcal{S}'(\mathbb{R}^d)$.

Definition 12.8. A sequence (u_n) in $\mathcal{S}'(\mathbb{R}^d)$ is said to converge to $u \in \mathcal{S}'(\mathbb{R}^d)$ if

$$u_n(f) \rightarrow u(f)$$

for every $f \in \mathcal{S}(\mathbb{R}^d)$.

Notation 12.9.

$$\mathcal{S} := \mathcal{S}(\mathbb{R}^d), \quad \mathcal{S}' := \mathcal{S}'(\mathbb{R}^d).$$

$$\mathcal{D} := \mathcal{D}(\mathbb{R}^d), \quad \mathcal{D}' := \mathcal{D}'(\mathbb{R}^d).$$

Theorem 12.10. *The restrictions of tempered distributions to \mathcal{D} are in \mathcal{D}' . Further, the map $u \mapsto u|_{\mathcal{D}}$ is a continuous embedding of $\mathcal{S}'(\mathbb{R}^d)$ into $\mathcal{D}'(\mathbb{R}^d)$.*

Proof. Let $u \in \mathcal{S}'$. Let $\varphi_n \in \mathcal{D}$ be such that $\varphi_n \rightarrow \varphi$ in \mathcal{D} . Then by Theorem 12.5, $\varphi_n \rightarrow \varphi$ in \mathcal{S} . Hence, $u(\varphi_n) \rightarrow u(\varphi)$. Thus, $u|_{\mathcal{D}} \in \mathcal{D}'$. Since $\mathcal{D}(\mathbb{R}^d)$ is dense in $\mathcal{S}(\mathbb{R}^d)$, $u|_{\mathcal{D}} = 0$ implies $u = 0$. Clearly, for a sequence (u_n) in $\mathcal{S}'(\mathbb{R}^d)$, $u_n \rightarrow u$ in $\mathcal{S}'(\mathbb{R}^d)$ implies that $u_n|_{\mathcal{D}} \rightarrow u|_{\mathcal{D}}$ in $\mathcal{D}'(\mathbb{R}^d)$. \square

Theorem 12.11. *Let u be a linear functional on $\mathcal{S}(\mathbb{R}^d)$. Then $u \in \mathcal{S}'(\mathbb{R}^d)$ if and only if there is a constant $C > 0$ and $m \in \mathbb{N}_0$ such that*

$$|u(f)| \leq C \sum_{|\alpha|, |\beta| \leq m} \|f\|_{\alpha, \beta}$$

for all $f \in \mathcal{S}(\mathbb{R}^d)$.

Theorem 12.12. For $1 \leq p \leq \infty$, $L^p(\mathbb{R}^d) \subseteq \mathcal{S}'(\mathbb{R}^d)$, and $f_n \rightarrow f$ in $L^p(\mathbb{R}^d)$ implies $u_{f_n} \rightarrow u_f$ in $\mathcal{S}'(\mathbb{R}^d)$. In other words, the inclusion $L^p(\mathbb{R}^d) \subseteq \mathcal{S}'(\mathbb{R}^d)$ is a (sequentially continuous) imbedding.

Proof. Let $u \in \mathcal{S}'(\mathbb{R}^d)$ and $\varphi \in \mathcal{S}(\mathbb{R}^d)$. Then

$$|u_f(\varphi)| \leq \int |f| |\varphi| \leq \|f\|_p \|f\|_q.$$

By Theorem 12.2, $\|f\|_q \leq C \sum_{|\alpha| \leq 2d} \|f\|_{\alpha,0}$ for some $C > 0$. Hence,

$$|u_f(\varphi)| \leq C \sum_{|\alpha| \leq 2d} \|f\|_{\alpha,0}$$

for some $C > 0$. Hence, by Theorem 12.11, $u \in \mathcal{S}'(\mathbb{R}^d)$.

Next, suppose $f_n, f \in L^p(\mathbb{R}^d)$ be such that $f_n \rightarrow f$ in $L^p(\mathbb{R}^d)$. Then, for every $\varphi \in \mathcal{S}(\mathbb{R}^d)$,

$$|u_n(\varphi) - u(\varphi)| \leq \int |f_n(x) - f(x)| |\varphi(x)| dx \leq \|f_n - f\|_p \|\varphi\|_q \rightarrow 0.$$

Thus, $u_{f_n} \rightarrow u_f$ in $\mathcal{S}'(\mathbb{R}^d)$. □

We have

$$\mathcal{E}'(\mathbb{R}^d) \subseteq \mathcal{S}'(\mathbb{R}^d) \subseteq \mathcal{D}'(\mathbb{R}^d)$$

in the sense of (sequentially) continuous embedding.

Exercise 12.13. The space of polynomials on \mathbb{R}^d is a subspace of $\mathcal{S}'(\mathbb{R}^d)$.

13. FOURIER TRANSFORM OF DISTRIBUTIONS

Recall that for $f \in L^1(\mathbb{R}^d)$,

$$\hat{f}(\xi) := \int_{\mathbb{R}^d} f(x) e^{-ix \cdot \xi} dx, \quad \xi \in \mathbb{R}^d.$$

Hence, for $f \in L^1(\mathbb{R}^d)$ and $\varphi \in \mathcal{D}(\mathbb{R}^d)$,

$$\begin{aligned} \int_{\mathbb{R}^d} \hat{f}(\xi) \varphi(\xi) d\xi &= \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} f(x) e^{-ix \cdot \xi} dx \right) \varphi(\xi) d\xi \\ &= \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} \varphi(\xi) e^{-ix \cdot \xi} d\xi \right) f(x) dx \\ &= \int_{\mathbb{R}^d} \hat{\varphi}(x) f(x) dx. \end{aligned}$$

So, formally, we write

$$u_{\hat{f}}(\varphi) = u_f(\hat{\varphi}).$$

Formally, because,

$$\varphi \in \mathcal{D}(\mathbb{R}^d) \text{ does not imply } \hat{\varphi} \in \mathcal{D}(\mathbb{R}^d).$$

However,

$$\varphi \in \mathcal{S}(\mathbb{R}^d) \implies \hat{\varphi} \in \mathcal{S}(\mathbb{R}^d).$$

In fact, we have:

Theorem 13.1. *For every $\varphi \in \mathcal{S}(\mathbb{R}^d)$, $\hat{\varphi} \in \mathcal{S}(\mathbb{R}^d)$ and the map $\varphi \mapsto \hat{\varphi}$ is a (bijective) homeomorphism (with respect to sequential continuity), and*

$$\|\hat{\varphi}\|_2 = (2\pi)^{d/2} \|f\|_2 \quad \forall \varphi \in \mathcal{S}(\mathbb{R}^d).$$

Thus, for $f \in L^1(\mathbb{R}^d)$ and $\varphi \in \mathcal{S}(\mathbb{R}^d)$, $u_f(\hat{\varphi})$ makes sense and

$$\varphi \mapsto u_f(\hat{\varphi})$$

is a tempered distribution.

Theorem 13.2. *For $u \in \mathcal{S}'(\mathbb{R}^d)$, $\hat{u} : \mathcal{S}(\mathbb{R}^d) \rightarrow \mathbb{C}$ defined by*

$$\hat{u}(f) := u(\hat{f}), \quad f \in \mathcal{S}(\mathbb{R}^d),$$

belongs to $\mathcal{S}'(\mathbb{R}^d)$.

Proof. Exercise. □

The above theorem motivates the following definition.

Definition 13.3. The **Fourier transform** of $u \in \mathcal{S}'(\mathbb{R}^d)$ is defined by

$$\hat{u}(f) := u(\hat{f}) \quad \forall f \in \mathcal{S}(\mathbb{R}^d).$$

Exercise 13.4. *Prove the following. The following results hold:*

- (1) *For $u \in \mathcal{S}'(\mathbb{R}^d)$, $\hat{u}(f) := u(\hat{f})$, $f \in \mathcal{S}(\mathbb{R}^d)$, belongs to $\mathcal{S}'(\mathbb{R}^d)$.*
- (2) *$u \mapsto \hat{u}$ is continuous on $\mathcal{S}'(\mathbb{R}^d)$.*
- (3) *For $f \in L^1(\mathbb{R}^d)$, $\widehat{u_f}(\varphi) = u_{\hat{f}}(\varphi)$ for all $\varphi \in \mathcal{S}(\mathbb{R}^d)$.*
- (4) $\hat{\delta} = 1$.

14. PROBLEMS

Throughout, Ω denotes a nonempty open subset of \mathbb{R}^d , where $d \in \mathbb{N}$.

- (1) Let φ be a mollifier. For $a \in \Omega$ and $\varepsilon > 0$ be such that $\overline{B_\varepsilon(a)} \subset \Omega$, let $\psi_{\varepsilon,a}(x) := \frac{1}{\varepsilon^d} \varphi(\frac{x-a}{\varepsilon})$. Show that $\psi_{\varepsilon,a} \in \mathcal{D}(\Omega)$ such that $\text{supp}(\psi_{\varepsilon,a}) \subseteq B_\varepsilon(a)$ and $\int_{\Omega} \psi_{\varepsilon,a} dx = 1$.
- (2) Let $\psi_{\varepsilon,a}$ be as Problem 1, and let $\psi_\varepsilon := \psi_{\varepsilon,0}$. Prove that for $f \in C_c(\mathbb{R}^d)$, $f * \psi_\varepsilon \rightarrow f$ uniformly.
- (3) Show that $\mathcal{D}(\Omega)$ is sequentially complete. That is, if (φ_n) in $\mathcal{D}(\Omega)$ is such that for every $\varepsilon > 0$ and for every $\alpha \in \mathbb{N}_0^d$, there exists $N \in \mathbb{N}$ such that $\|\partial^\alpha(\varphi_n - \varphi_m)\|_\infty < \varepsilon$ for all $n \geq N$, then there exists $\varphi \in \mathcal{D}(\Omega)$ such that $\|\partial^\alpha(\varphi_n - \varphi)\|_\infty \rightarrow 0$ as $n \rightarrow \infty$ for each $\alpha \in \mathbb{N}_0^d$.
- (4) Corresponding to $f \in L^1_{\text{loc}}(\Omega)$, let

$$u_f(\varphi) := \int_{\Omega} f(x)\varphi(x)dx, \quad \varphi \in \mathcal{D}(\Omega), x \in \Omega.$$

Show that u_f is a distribution, and it is of order 0.

- (5) Show that the delta-distribution is not a regular distribution.
- (6) Show every delta-distribution is a limit of a sequence of regular distributions.
- (7) Let (f_n) in $L^1_{\text{loc}}(\Omega)$ and $f : \Omega \rightarrow \mathbb{C}$ be such that $f_n \rightarrow f$ a.e. on Ω and for every compact $K \subseteq \Omega$, there exists $g \in L^1(\Omega)$ such that $|f_n| \leq |g|$ a.e. on K . Prove that $f \in L^1_{\text{loc}}(\Omega)$ and $f_n \rightarrow f$ in the sense of distribution.
- (8) Let $f_n, f \in C(\Omega)$ such that $f_n \rightarrow f$ uniformly on compact subsets of Ω . Prove that $f_n \rightarrow f$ in the sense of distribution.
- (9) Let $f_n(x) := e^{inx}$, $x \in \mathbb{R}$. Show that (u_{f_n}) converges to the zero distribution.
- (10) Making use of necessary results, prove that for $f, g \in L^1_{\text{loc}}(\Omega)$, $u_f = u_g$ implies $f = g$ a.e.
- (11) Let u be a linear functional on $\mathcal{D}(\Omega)$. Prove that u is a distribution if and only if for each compact $K \subseteq \Omega$, there exists a constant $C > 0$ and an $N \in \mathbb{N}_0$ such that

$$|u(\varphi)| \leq C \sum_{|\alpha| \leq N} \|\partial^\alpha \varphi\|_\infty \quad (1)$$

for all $\varphi \in \mathcal{D}(\Omega)$ with $\text{supp}(\varphi) \subseteq K$.

- (12) Define $u(\varphi) := \sum_{j=0}^{\infty} \varphi^{(j)}(j)$, $\varphi \in \mathcal{D}(\mathbb{R})$. Show that $u \in \mathcal{D}'(\mathbb{R})$, and it is of infinite order.
- (13) Prove that
 - (a) $\text{supp}(\delta_a) = \{a\}$.
 - (b) For $f \in L^1_{\text{loc}}(\Omega)$, $\text{supp}(u_f) = \text{supp}(f)$.
 - (c) For $u \in \mathcal{D}'(\Omega)$ and $\varphi \in \mathcal{D}(\Omega)$, $\text{supp}(u) \cap \text{supp}(f) = \emptyset \implies u(\varphi) = 0$.

- (14) If $f \in C^\infty(\Omega)$, then prove that $f\varphi \in \mathcal{D}(\Omega)$ for every $\varphi \in \mathcal{D}(\Omega)$.
- (15) For $f \in C^\infty(\Omega)$ and $u \in \mathcal{D}'(\Omega)$, prove that the map $\varphi \mapsto u(f\varphi)$, $\varphi \in \mathcal{D}(\Omega)$, is a distribution.
- (16) If $f \in C^\infty(\Omega)$ and $a \in \Omega$, show that $f\delta_a = f(a)\delta$.
- (17) For $f, g \in L^1_{\text{loc}}(\Omega)$, show that $fu_g = u_{fg}$.
- (18) Let $f \in \mathcal{E}(\Omega)$ and $u \in \mathcal{D}'(\Omega)$. Prove that $\text{supp}(fu) \subseteq \text{supp}(f) \cap \text{supp}(u)$.
- (19) If u is a distribution with compact support, then prove that for any $f \in \mathcal{E}(\Omega)$, fu is also of compact support.
- (20) If $u \in \mathcal{D}'(\Omega)$ is with compact support, then prove that $u \in \mathcal{E}'(\Omega)$ in the sense that for every $u \in \mathcal{D}'(\Omega)$, there exists a unique $\tilde{u} \in \mathcal{D}'(\Omega)$ such that $u|_{\mathcal{D}(\Omega)} = \tilde{u}$.
- (21) If $u \in \mathcal{E}'(\Omega)$, then prove that $u|_{\mathcal{D}(\Omega)} \in \mathcal{D}'(\Omega)$ is with compact support.
- (22) Prove that $\tau_h\delta_a = \delta_{a+h}$. (Recall: For $u \in \mathcal{D}'(\mathbb{R}^d)$ and $h \in \mathbb{R}^d$, the distribution $\tau_h u$ is defined by $(\tau_h u)(\varphi) := u(\tau_{-h}\varphi)$, $\varphi \in \mathcal{D}(\mathbb{R}^d)$.)
- (23) For each $h \in \mathbb{R}^d$, show that the map $u \mapsto \tau_h u$ is continuous on $\mathcal{D}'(\mathbb{R}^d)$ in the sense that $u_n \rightarrow u$ in $\mathcal{D}'(\mathbb{R}^d)$ implies $\tau_h u_n \rightarrow \tau_h u$ in $\mathcal{D}'(\mathbb{R}^d)$.
- (24) For $u \in \mathcal{D}'(\Omega)$ and $\alpha \in \mathbb{N}_0^d$, show that the map $\partial^\alpha u : \mathcal{D}(\Omega) \rightarrow \mathbb{C}$ defined by $(\partial^\alpha u)(\varphi) := (-1)^{|\alpha|} u(\partial^\alpha \varphi)$, $\varphi \in \mathcal{D}(\Omega)$, is a distribution.
- (25) Let H be the *Heaviside function*, i.e., $H(x) = \begin{cases} 0, & x < 0, \\ 1, & x \geq 0. \end{cases}$ Show that $H' = \delta_0$.
- (26) For $\alpha \in \mathbb{N}_0^d$, $x_0 \in \Omega$, prove that u defined by $u(\varphi) = (\partial^\alpha \varphi)(x_0)$ defines a distribution of order α .
- (27) Let (x_n) be a sequence in Ω without a limit point in Ω and $(\alpha^{(n)})$ be a sequence in \mathbb{N}_0^d . Let $u(\varphi) := \sum_{n=1}^{\infty} \partial^{\alpha^{(n)}} \varphi(x_n)$. Prove that u is a distribution, and it has finite order if and only if $\sup |\alpha^{(n)}| < \infty$ and in that case the order is $\sup |\alpha^{(n)}|$.
- (28) If $u \in \mathcal{D}'(\Omega)$ and $\varphi \in \mathcal{D}(\Omega)$ such that $\text{supp}(u) \cap \text{supp}(\varphi) = \emptyset$, then prove that $u(\varphi) = 0$.
- (29) Suppose u is a linear functional on $\mathcal{E}(\Omega)$ such that there exists compact $K \subseteq \Omega$, $C > 0$ and $m \in \mathbb{N}_0$ satisfying

$$|u(\varphi)| \leq C \sum_{|\alpha| \leq m} \|\partial^\alpha \varphi\|_{\infty, K} \quad \forall \varphi \in \mathcal{E}'(\Omega).$$

Prove that $u \in \mathcal{E}'(\Omega)$.

- (30) Suppose $u \in \mathcal{E}'(\Omega)$ and there exists compact $K \subseteq \Omega$, $C > 0$ and $m \in \mathbb{N}_0$ satisfying

$$|u(\varphi)| \leq C \sum_{|\alpha| \leq m} \|\partial^\alpha \varphi\|_{\infty, K} \quad \forall \varphi \in \mathcal{E}'(\Omega).$$

Prove that $u|_{\mathcal{D}(\Omega)}$ is a distribution with compact support.

REFERENCES

- [1] R. Radha & S. Thangavelu, *Fourier Series*, Web-Course, NPTEL, IIT Madras, 2013.
- [2] W. Rudin, *Real and Complex Analysis*.
- [3] B. O. Turesson, *Fourier Analysis, Distribution Thoery, and Wavelets*, Lecture Notes, March, 2012.

DEPARTMENT OF MATHEMATICS, I.I.T. MADRAS, CHENNAI-600 036, INDIA

E-mail address: mtnair@iitm.ac.in