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1. Test functions and distributions

Let Ω be an open subset of Rd. We shall denote the vector space C∞c (Ω) by D(Ω),

and call this space as space of test functions.

Definition 1.1. A sequence (ϕn) in D(Ω) is said to converge to ϕ ∈ D(Ω) if

(1) there exists a compact set K ⊂ Ω such that supp(ϕn) ⊆ K for all n ∈ N and

(2) ∂αϕn → ∂αϕ uniformly on Ω for every α ∈ Nd
0.

Notation 1.2. For x0 ∈ Rd and r > 0, we denote:

Br(x0) := {x ∈ Rd : |x| < r}

and its closure by Br(x0), i.e., Br(x0) := {x ∈ Rd : |x| ≤ r}.

Let us give an example of a function in D(Rd):

Example 1.3. Let

ψ(x) =

{
e
− 1

1−|x|2 if |x| < 1,

0 if |x| ≥ 1.

Then ψ ∈ D(Rd) with supp(ψ) ⊂ B1(0). For ε > 0, let

ψε(x) :=
1

εd
ψ
(x
ε

)
.

Then ψε ∈ D(Rd) with supp(ψε) ⊂ Be(0). �

Definition 1.4. A distribution on Ω is a linear functional u on D(Ω) such that for

every (ϕn) in D(Ω) , ϕn → ϕ in D(Ω) implies u(ϕn)→ u(ϕ).

The set of all distributions on Ω is denoted by D′(Ω).

Definition 1.5. A sequence (un) of distributions on Ω is said to converge to a dis-

tribution u on Ω if

un(ϕ)→ u(ϕ) for every ϕ ∈ D(Ω).

Notation 1.6. For 1 ≤ p < ∞, L1
loc(Ω) denotes the the space of all complex valued

measurable functions f on Ω such that∫
K

|f(x)|dx <∞ for all compact K ⊆ Ω.

Recall that K is compact if and only if K contains all its boundary points, i.e., points

x such that Br(x) ∩K and Br(x) ∩Kc are nonempty for every r > 0.

Observe that Lp(Ω) ⊆ L1
loc(Ω) for every p with 1 ≤ p <∞.
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Example 1.7. Corresponding to f ∈ L1
loc(Ω), let

uf (ϕ) :=

∫
Ω

f(x)ϕ(x)dx, ϕ ∈ D(Ω), x ∈ Ω.

Then uf is a distribution: Clearly, uf is a linear functional on D(Ω). Now, let (ϕn) in

D(Ω) be such that ϕn → ϕ for some ϕ ∈ D(Ω). Then we have

|uf (ϕn)− uf (ϕ)| = |uf (ϕnϕ)|

≤
∫
Rd
|f(x)| |(ϕnϕ)(x)|dx

≤ ‖ϕn − ϕ‖∞
∫

Ω

|f(x)|dx.

Hence, u(ϕn)→ u(ϕ).

Definition 1.8. A distribution u on Ω is called a regular distributions if u = uf for

some f ∈ L1
loc(Ω), and in that case uf is said to be the distribution1 generated by f .

There are distributions that are not regular.

Example 1.9. Let ϕ be as in Example 1.21. For a ∈ Ω, let

δa(ϕ) := ϕ(a), ϕ ∈ D(Ω).

It is easily seen that δa is a distribution on Ω. But it is not a regular distribution: To

see this, suppose there exists f ∈ L1
loc(Ω) such that δa = uf , i.e.,

ϕ(a) =

∫
Ω

f(x)ϕ(x)dx for all ϕ ∈ D(Ω).

Let ϕ be as in Example 1.21 and let ε > 0 be small enough such Bε(a) ⊆ Ω. Let

ϕ̃ε(x) := ϕ(
x− a
ε

).

Then ϕ̃ε ∈ D(Ω) and supp(ϕ̃ε) ⊂ {x ∈ Rd : |x− a| < ε} and we have

ϕ̃ε(a) =

∫
Ω

f(x)ϕ̃ε(x)dx =

∫
|x−a|<ε

f(x)ϕ̃ε(x)dx

Note that ∣∣∣∣∫
|x−a|<ε

f(x)ϕ̃ε(x)dx

∣∣∣∣ ≤ ∫
|x−a|<ε

|f(x)|dx→ 0 as ε→ 0.

Thus,

|ϕ̃ε(a)| ≤
∫
|x−a|<ε

|f(x)|dx→ 0 as ε→ 0.

This is a contradiction, since ϕ̃ε(0) 6= 0. �

1We shall prove that a regular distribution can be generated by only one function in L1
loc(Rd).
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Definition 1.10. The distribution δa in Example 1.9 is called a delta distribution.

In view of Example 1.9, a delta-distribution is not a regular distribution. However,

we have the following:

Theorem 1.11. There exists a sequence un of regular distributions which converge to

a delta distribution. In fact, taking fn :=
n

2
χ
En

, where En := {x ∈ Ω : |x− a| < 1/n},

ufn → δa as n→∞.

Proof. Let fn := n
2
χ
En

, where En := {x ∈ Ω : |x − a| < 1/n}, and let un := ufn . Let

ϕ ∈ D(Ω). Then

un(ϕ) =
n

2

∫
|x−a|<1/n

ϕ(x)dx.

Note that

un(ϕ) =
n

2

∫
|x−a|<1/n

ϕ(x)dx =
n

2

∫
|x−a|<1/n

[ϕ(x)− ϕ(a)]dx+ ϕ(a)

and
n

2

∫
|x−a|<1/n

|ϕ(x)− ϕ(a)|dx ≤ max
|x−a|<1/n

|ϕ(x)− ϕ(a)| → 0 as n→∞.

Thus, un(ϕ)→ ϕ(a) as n→∞. �

Example 1.12. For n ∈ N, let

un(ϕ) :=

∫
R
ϕ(x)einxdx, ϕ ∈ D(R).

Note that, defining fn(x) := einx, x ∈ R, we see that un = ufn . Thus un is a regular

distribution for every n ∈ N. Further, by Riemann-Lebesgue lemma,

un(ϕ) =

∫
R
ϕ(x)einxdx→ 0 as n→∞

for every ϕ ∈ D(R). Thus, (un) converges t the zero distribution.

Remark 1.13. In the books on signals and systems one comes across a function called

implulse function.

It is defined as a function δ : R→ [0,∞] such that

(1)

∫ ∞
−∞

δ(x)dx = 1,

(2) δ(x) = 0 for x 6= 0, and

(3) δ(0) =∞.

Unfortunately, there is no function having the above two properties!
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Even though we can define a function δ : R→ [0,∞] satisfying

(1) δ(x) = 0 for x 6= 0, and

(2) δ(0) =∞,

such a function cannot satisfy the requirement

∫ ∞
−∞

δ(x)dx = 1.

Then what does one have?

We can only have an ε-impulse function which can be defined as follows:

Definition 1.14. For ε > 0, an ε-impulse function is a non-negative function δε(x)

defined for −∞ < x <∞ such that

(1)

∫ ∞
−∞

δε(x)dx = 1,

(2) δε(x) = 0 for |x| > ε.

(3) δε(0)→∞ as ε→ 0.

Example 1.15. (i) Define δε(x) to be a function whose graph is an isosceles triangle

with base [−ε, ε] and hight 1/ε. Then δε is an ε-impulse function.

(ii) Define δε(x) to be 1/2ε in the interval [−ε, ε] and 0 elsewhere. Then δε is an

ε-impulse function.

Theorem 1.16. For ε > 0, if δε is an ε-impulse function, then uδε → δ0 as ε → 0,

where δ0 is the delta-distribution at 0.

Proof. The proof is along the same line as that of Theorem 1.11:

Let ϕ be a continuous function defined on R and δε(x) is an ε-impulse function.

Then we have ∫ ∞
−∞

ϕ(x)δε(x)dx =

∫ ε

−ε
ϕ(x)δε(x)dx.

Hence, ∣∣∣∣∫ ∞
−∞

ϕ(x)δε(x)dx− ϕ(0)

∣∣∣∣ =

∣∣∣∣∫ ε

−ε
ϕ(x)δε(x)dx−

∫ ε

ε

ϕ(0)δε(x)dx

∣∣∣∣ .
Thus we have ∣∣∣∣∫ ∞

−∞
ϕ(x)δε(x)dx− ϕ(0)

∣∣∣∣ ≤ ∫ ε

−ε
|ϕ(x)− ϕ(0)|δε(x)dx.

Since ϕ is continuous, for any given α > 0, there is an ε > 0 such that

|ϕ(x)− ϕ(0)| < α whenever |x| < ε.
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Hence, for such an ε > 0, we have∣∣∣∣∫ ∞
−∞

ϕ(x)δε(x)dx− ϕ(0)

∣∣∣∣ ≤ ∫ ε

−ε
|ϕ(x)− ϕ(0)|δε(x)dx ≤ α

∫ ε

−ε
δε(x)dx = α.

That is, for every α > 0, there is an ε > 0 such that∣∣∣∣∫ ∞
−∞

ϕ(x)δε(x)dx− ϕ(0)

∣∣∣∣ < α.

Thus, ∫ ∞
−∞

ϕ(x)δε(x)dx→ ϕ(0) as ε→ 0.

and hence, uδε(ϕ)→ δ0(ϕ) as ε→ 0. where δ0 is the delta distribution at 0. �

In view of the following theorem, regular distributions can be identified with the

functions that correspond to them. That is, regular distributions are uniquely defined

by functions in L1
loc(Ω).

Theorem 1.17. (Uniqueness theorem) For f, g ∈ L1
loc(Ω),

uf = ug =⇒ f = g a.e.

Before proving the above we shall introduce some definitions and consider some

results.

Throughout, we shall make use of a special type of function in C∞c (Ω), called a

mollifier. In the due course it wil be showed why such functions are called mollifiers.

Definition 1.18. A non-negative function ϕ defined on Rd is called a mollifier if

ϕ ∈ C∞c (Rd), supp(ϕ) ⊆ B1(0) and

∫
Rd
ϕ(x)dx = 1.

Here is an example of a mollifier.

Example 1.19. Let ψ be as in Example 1.21, and let

ϕ(x) = C0ψ(x) where C0 := 1
/∫

R
ψ(x)dx.

Then ϕ is a mollifier.

In fact functions ϕε ∈ C∞c (Rd), ε > 0, with

supp(ϕ) ⊆ Bε(0) and

∫
Rd
ϕε(x)dx = 1
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are also called mollifiers. Such mollifiers can be constructed from a given mollifer by

defining

ϕε(x) :=
1

εd
ϕ
(x
ε

)
.

Clearly,

ϕε ∈ C∞c (Rd), supp(ϕε) ⊂ Bε(0) and

∫
Rd
ϕε(x)dx = 1.

Also, for any a ∈ Rd and ε > 0, the function ϕε,a defined by

ϕε,a(x) :=
1

εd
ϕ
(x− a

ε

)
satisfies

ϕε,a ∈ C∞c (Rd), supp(ϕε,a) ⊂ Bε(a) and

∫
Rd
ϕε,a(x)dx = 1.

Observe that

ϕε,a(a) :=
ϕ(0)

εd
.

In particular,

ϕε,a(a)→∞ as ε→ 0.

Definition 1.20. A non-negative function ϕ defined on Rd is called a mollifier if

ϕ ∈ C∞c (Rd), supp(ϕ) ⊆ B1(0) and

∫
Rd
ϕ(x)dx = 1.

Example 1.21. Let

ϕ0(x) =

{
e
− 1

1−|x|2 if |x| < 1,

0 if |x| ≥ 1

and

ϕ(x) = C0ϕ0(x) with C0 := 1
/∫

R
ϕ0(x)dx.

Then ϕ is a mollifier on Rd.

Suppose ϕ is a mollifier and ε > 0. Let

ϕε(x) :=
1

εd
ϕ
(x
ε

)
.

Then

ϕε ∈ C∞c (Rd) and supp(ϕε) ⊂ Bε(0).

Also, for any a ∈ Rd and ε > 0, the function ϕε,a defined by

ϕε,a(x) :=
1

εd
ϕ
(x− a

ε

)
satisfies

ϕε,a ∈ C∞c (Rd) and supp(ϕε) ⊂ Bε(a).
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2. Convolution revisited

Proof of the following theorem is easy and hence we mot the proof.

Theorem 2.1. If f, g ∈ L1(Rd), then sup(f ∗ g) ⊆ supp(f) + supp(g).

In particular, if 1 ≤ p < ∞ and f, g ∈ Lp(Rd) are with compact support, then

sup(f ∗ g) ⊆ supp(f) + supp(g).

Proposition 2.2. Suppose f ∈ Lp(Rd) with 1 ≤ p < ∞ and g ∈ Ck(Rd) with ∂αg ∈
Lq(Ω) for |α| ≤ k. Then f ∗ g ∈ Ck(Rd) and ∂α(f ∗ g) = f ∗ ∂αg for |α| ≤ k.

In particular, for 1 ≤ p <∞, if f ∈ Lp(Rd) is with compact support and g ∈ C∞c (Rd),

then f ∗ g ∈ C∞c (Rd) and and ∂α(f ∗ g) = f ∗ ∂αg for all α ∈ Nd
0.

Proof. We prove the case for p = 1 and k = 1, i.e., |α| = 1. Proof of the case of k > 1

will follow similarly. The case of p > 1 involves more calculations.

Let α = (α1, . . . , αd) and let j be such that αj = 1 and αi = 0 for i 6= j. We have to

show that

lim
h→0

(f ∗ g)(x+ hej)− (f ∗ g)(x)

h
exists

and it is equal to (f ∗ ∂jg)(x). Note that

(f ∗ g)(x+ hej)− (f ∗ g)(x)

h
=

∫
Rd
f(x− y)

g(y + hej)− g(y)

h
dy.

Since
g(y + hej)− g(y)

h
→ ∂jg(y) as h→ 0 and ∂jg ∈ L∞(Ω),

there exists α > 0 such that for all h with |h| ≤ α,

|f(x− y)|
∣∣∣∣g(y + hej)− g(y)

h

∣∣∣∣ ≤ |f(x− y)|(|∂jg(y)|+ 1).

Since y 7→ |f(x− y)|(|∂jg(y)|+ 1) belongs to L1(Ω), by DCT, we have∫
Rd
f(x− y)

g(y + hej)− g(y)

h
dy →

∫
Rd
f(x− y)∂jg(y)dy.

Thus, ∂j(f ∗ g) exists and ∂j(f ∗ g) = f ∗ ∂jg. �

Proposition 2.3. If K is a compact subset of Ω, then there exists ψ ∈ D(Ω) such that

0 ≤ ψ ≤ 1 and ψ = 1 on K.

Proof. Let K be a compact subset of Ω and let δ := dist(K,Ωc). Let α := δ/3 and Gα

be the α-neighbourhood of K, i.e.,

Gα := {x ∈ Ω : dist(x,Ω) < α}.



TOPICS IN FOURIER ANALYSIS 9

Let ϕ be a mollifier and for ε > 0, let ψε := ϕε ∗ χα, where χα := χGα and ϕε :=

(1/εd)ϕ(x/ε). Since χα ∈ L1(Rd), by Proposition 2.2, ψε ∈ C∞(Rd). Note that

ψε(x) =

∫
Rd
ϕε(x− y)χα(y)dy ≤

∫
Rd
ϕε(x− y)dy = 1.

Further, if x ∈ K and ε ≤ α, then

ψε(x) =

∫
Rd
ϕε(y)χα(x− y)dy =

∫
Bε(0)

ϕε(y)χα(x− y)dy = 1,

since

x ∈ K, y ∈ Bε(0) implies x− y ∈ Gα.

Thus, 0 ≤ ψα ≤ 1 and ψα = 1 on K.

Also,

ψε(x) =

∫
Rd
ϕε(x− y)χα(y)dy = 0

whenever x is not in the ε-neighbourhood of Gα. Since α-neighbourhood of Gα is

contained in the 2α-neighbourhood of K, taking ε < α, we have supp(ψε) ⊆ G2α. �

Theorem 2.4. Let 1 ≤ p <∞. If f ∈ Lp(Rd) for and g ∈ L1(Rd), then

f ∗ g ∈ Lp(Rd) and ‖f ∗ g‖p ≤ ‖f‖p‖g‖1.

In particular,

f ∈ Lp(Rd) =⇒ f ∗ ϕε ∈ Lp(Rd) and ‖f ∗ ϕε‖p ≤ ‖f‖p.

Proof. Let f ∈ Lp(Rd) for and g ∈ L1(Rd). First let = 1. Then,∫
|f ∗ g)(x)| ≤

∫ (∫
|f(x− y)g(y)|dy

)
dx

≤
∫ (∫

|f(x− y)|dx
)
|g(y)|dy

= ‖f‖1‖g‖1.

Next, let 1 < p <∞ and let q such that (1/p) + (1/q) = 1. Then

|f ∗ g)(x)| ≤
∫
|f(x− y)g(y)|dy

≤
∫
|f(x− y)| |g(y)|1/p|g(y)|1/qdy

≤
(∫
|f(x− y)|)|p|g(y)|)dy

)1/p(∫
|g(y)|dy

)1/q

=

(∫
|f(x− y)|)|p|g(y)|dy

)1/p

‖g‖1/q
1 .
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Hence, ∫
|(f ∗ g)(x)|pdx = ‖g‖p/q1

∫ (∫
|f(x− y)|)|p|g(y)|dy

)
dx

= ‖g‖p/q1

∫ (∫
|f(x− y)|)|pdx

)
|g(y)|dy

= ‖g‖
1+ p

q

1 ‖f‖pp
so that (∫

|(f ∗ g)(x)|pdx
)1/p

= ‖g‖
1
p

1
q

1 ‖f‖p = ‖g‖1‖f‖p.

Thus, f ∗ g ∈ Lp(Rd) and ‖f ∗ g‖p ≤ ‖f‖p‖g‖1. �

Corollary 2.5. If f ∈ Lp(Rd) with 1 ≤ p <∞, then

f ∗ ϕε ∈ Lp(Rd) and ‖f ∗ ϕε‖p ≤ ‖f‖p.

Theorem 2.6. Let Lp(Ω) for 1 ≤ p <∞. Then f ∗ ϕε ∈ C∞(Ω) ∩ Lp(Rd) and

‖f ∗ ϕε − f‖p → 0 as ε→ 0.

Proof. By Proposition 2.2, f ∗ ϕε ∈ C∞(Ω). If Ω 6= Rd, then we extend f to all of Rd

by defining it to be zero on Ωc. First let p = 1. Then we have∫
|(f ∗ ϕε)(x)|dx ≤

∫ ∣∣∣∣∫ [f(x)− f(x− y)]ϕε(y)dy

∣∣∣∣ dx
=

∫ ∫
|f(x)− f(x− y)|ϕε(y)dydx

≤
∫ (∫

|f(x)− f(x− y)|dx
)
ϕε(y)dy

=

∫
‖f − τyf‖1ϕε(y)dy.

Next let 1 < p <∞. Then we have

|f(x)− (f ∗ ϕε)(x)| ≤
∫
|f(x)− f(x− y)|ϕε(y)dy

≤
∫
|f(x)− f(x− y)|[ϕε(y)]1/p[ϕε(y)]qdy

≤
(∫
|f(x)− f(x− y)|)|pϕε(y)dy

)1/p(∫
ϕε(y)dy

)1/q

=

(∫
|f(x)− f(x− y)|)|pϕε(y)dy

)1/p

.
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Hence, ∫
|f(x)− (f ∗ ϕε)(x)|pdx ≤

∫ (∫
|f(x)− f(x− y)|)|pϕε(y)dy

)
dx

=

∫ (∫
|f(x)− f(x− y)|)|pdx

)
ϕε(y)dy

=

∫
‖f − τyf‖ppϕε(y)dy.

Thus, for 1 ≤ p <∞, we have∫
|f(x)− (f ∗ ϕε)(x)|pdx ≤

∫
‖f − τyf‖ppϕε(y)dy.

Now, recall that ‖f − τyf‖pp → 0 as y → x. Therefore, for any given η > 0, there exists

δ > 0 such that

‖f − τyf‖pp < η whenever |y| < δ.

Also, we know that ‖τyf‖p = ‖f‖p and for any r > 0,∫
|y|≥r

ϕε(y)dy → 0 as ε→ 0.

Hence, there exists ε0 > 0 such that∫
|y|≥δ

ϕε(y)dy < η whenever 0 < ε < ε0.

Thus, we obtain∫
|f(x)− (f ∗ ϕε)(x)|pdx ≤

∫
‖f − τyf‖ppϕε(y)dy

=

∫
|y|<δ
‖f − τyf‖ppϕε(y)dy +

∫
|y|≥δ
‖f − τyf‖ppϕε(y)dy

≤ η

∫
|y|<δ

ϕε(y)dy + (2‖f‖p)p
∫
|y|≥δ

ϕε(y)dy

≤ (1 + (2‖f‖p)p)η

whenever ε < ε0. Thus, we have proved that f ∗ ϕε ∈ Lp(Rd) and ‖f ∗ ϕε − f‖p → 0

as ε→ 0. �

Theorem 2.7. C∞c (Ω) is dense in Lp(Ω).

Proof. The proof involves the following two steps:

(1) For every f ∈ Lp(Ω) and ε > 0, there exists g ∈ Lp(Ω) with compact support

such that ‖f − g‖ < ε.
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(2) For every g ∈ Lp(Ω) with compact support, g∗ϕε ∈ C∞c (Ω) and ‖g−g∗ϕε‖ → 0

as ε→ 0.

Proof of Step (1): Let f ∈ Lp(Ω). For n ∈ N, let

Kn = {x ∈ Ω : |x| ≤ n, dist(x,Ωc) ≥ 1/n}.

Then each Kn is a compact subset of Ω. Taking fn := fχ
Kn
, we see that fn ∈ Lp(Ω)

with supp(fn) ⊆ Kn and

‖f − fn‖p → 0 as n→∞.

Thus, given ε > 0, there exists g := fN such that ‖f − g‖p < ε.

Proof of Step (2): Let g ∈ Lp(Ω) with compact support. Let ϕ be a mollifier and ε > 0

be given. By Proposition 2.2, g ∗ϕε ∈ C∞c (Rd), where ϕε(x) := (1/εd)ϕ(x/ε). We may

take ε small enough such that supp(g ∗ ϕε) ⊆ Ω. Also, by Theorem 2.6,

‖g − (g ∗ ϕε)‖p → 0 as ε→ 0.

Now, let f ∈ Lp(Ω) and ε > 0. Then by Step (1), there exists g ∈ Lp(Ω) with

compact support such that ‖f − g‖p < ε and by Step (2), g ∗ ϕε ∈ C∞c (Ω) and

‖g − g ∗ ϕε‖ → 0 as ε→ 0. Thus,

‖f − g ∗ ϕε‖p ≤ ‖f − g‖p + ‖g − g ∗ ϕε‖p → 0

as ε→ 0. This completes the proof. �

We have proved in Theorem 2.6 that ‖f −f ∗ϕε‖p → 0 as ε→ 0 for evert f ∈ Lp(Ω)

with 1 ≤ p < ∞. Thne next theorem show that the convergence can be strongerif

f ∈ Cc(Ω).

Theorem 2.8. Suppose f ∈ Cc(Ω). Then f ∗ ϕε → f uniformly on Ω.

Proof. For x ∈ Ω, we have

|f(x)− (f ∗ ϕε)(x)| ≤
∫
|f(x)− f(x− y)|ϕε(y)dy.

Since f is uniformly on supp(f),∫
|f(x)− f(x− y)|ϕε(y)dy ≤

∫
|y|<ε
|f(x)− f(x− y)|ϕε(y)dy

≤ sup{|f(x)− f(x− y)| : x ∈ supp(f), |y| < ε}
→ 0 as ε→ 0.

�
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3. Proof of uniqueness theorem

Proof of Theorem 1.17. It is enough to proof that

f ∈ L1
loc(Ω), uf = 0 =⇒ f = 0 a.e.

So, let f ∈ L1
loc(Ω) such that uf = 0, i.e.,

∫
Ω
f(x)ϕ(x)dx = 0 for all ϕ ∈ D(Ω). Let K

be a compact subset of Ω and ψ be as in Proposition 2.3. Then fψ ∈ L1(Rd). This is

seen as follows: Let Kψ := supp(ψ). Then∫
Rd
|fψ| =

∫
Kψ

|fψ| ≤ ‖ψ‖∞
∫
Kψ

|f | <∞.

Let ϕ be a mollifier on Rd and ϕε(x) := 1
εd
ϕ(x

ε
). Then we have

(ϕε ∗ fψ)(x) =

∫
Rd
ϕε(x− y)f(y)ψ(y)dy = 0

for every x ∈ Rd since y 7→ ϕε(x− y)ψ(y) belongs to D(Ω). Also, by Theorem 2.6, we

have

‖ϕε ∗ fψ − fψ‖1 → 0 as ε→ 0.

Hence, fψ = 0 in L1(Rd) so that f = 0 a.e. on K. Since Ω can be written as a

countable union of compact subsets it follows that f = 0 a.e. on Ω. �

Example 3.1. For each k ∈ N, let

fk(x) :=
k∑

n=−k

einx, x ∈ R.

Then, we have

ufk(ϕ) =

∫
R
fk(x)ϕ(x) =

k∑
n=−k

∫
R
ϕ(x)einxdx = 2π

k∑
n=−k

ϕ̂(−n).

Hence, for every ϕ ∈ D(R),

ufk(ϕ)→ 2π
∑
n∈N

ϕ̂(n) = 2πϕ(0) = 2πδ0(ϕ).

Thus, ufk → 2πδ0 as k →∞. Identifying ufk with fk, we may write the above fact as∑
n∈Z

en = 2πδ0,

where en(x) := einx.
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4. A characterization of distributions

First a characterization theorem.

Theorem 4.1. Let u be a linear functional on D(Ω). Then u is a distribution if and

only if for each compact K ⊆ Ω, there exists a constant C > 0 and an N ∈ N0 such

that

|u(ϕ)| ≤ C
∑
|α|≤N

‖∂αϕ‖∞ (1)

for all ϕ ∈ D(Ω) with supp(ϕ) ⊆ K.

Proof. Suppose u is a distribution. Assume for a moment that there exists a compact

K ⊆ Ω such that (1) is not satisfied for any C > 0 and N ∈ N. Then for every N ∈ N
and C > 0, there exists ϕ, depending on (N,C), such that supp(ϕ) ⊆ K and

|u(ϕ)| > C
∑
|α|≤N

‖∂αϕ‖∞.

In particular, for every N ∈ N, there exists ϕN such that supp(ϕN) ⊆ K and

|u(ϕN)| > N
∑
|α|≤N

‖∂αϕN‖∞.

Let ϕ̃N := ϕN/|u(ϕN)|, N ∈ N. Then we have

1 = |u(ϕ̃N)| > N
∑
|α|≤N

‖∂αϕ̃N‖∞ ≥ N‖∂αϕ̃N‖∞

for all N ∈ N. Hence, ϕ̃N → 0 in D(Ω) as N → ∞. But, u(ϕ̃N) = 1 for all N ∈ N.

Thus, we arrived at a contradiction to the fact that u is a distribution.

Conversely, let (ϕn) in D(Ω) such that ϕn → 0 in D(Ω). Let K ⊆ Ω be a compact

set with supp(ϕn) ⊆ K for all n ∈ N. Suppose that there exists a constant C > 0 and

N ∈ N0 such that

|u(ϕ)| ≤ C
∑
|α|≤N

‖∂αϕ‖∞

for all ϕ ∈ D(Ω) with supp(ϕ) ⊆ K. Then we have

|u(ϕn)| ≤ C
∑
|α|≤N

‖∂αϕn‖∞.

By the assumption on (ϕn), u(ϕn)→ 0. �
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5. Distributions of finite and infinite orders

Definition 5.1. Let u be a distribution on Ω. Then u is said to be of finite order,

if there exists N ∈ N0 satisfying the condition in Theorem 4.1 which is valid for all

compact set K ⊆ Ω, and in that case, the infimum of all such N is called the order of

u. If u is not of finite order, then it is said to be of infinite order.

Example 5.2. Every regular distribution is of finite order: To see this, let f ∈ L1
loc(Ω).

Then for every ϕ ∈ D(Ω), we have

|uf (ϕ)| ≤
∫

Ω

|f(x)| |ϕ)(x)|dx ≤ ‖ϕ‖∞
∫

Ω

|f(x)|dx.

Thus, (1) in Theorem 4.1 is satisfied with N = 0 and C =
∫

Ω
|f(x)|dx.

Example 5.3. Define

u(ϕ) :=
∞∑
j=0

ϕ(j)(j), ϕ ∈ D(R).

Note that, since ϕ is with compact support, the above is a finite sum for each ϕ. More

precisely, if supp(ϕ) ⊆ [−k, k] for some k ∈ N, then

u(ϕ) =
k−1∑
j=0

ϕ(j)(j).

Further, if K is a compact set and if K ⊆ [−k, k] for some k ∈ N, then we have

|u(ϕ)| ≤
k−1∑
j=0

‖ϕ(j)‖∞

for every ϕ ∈ D(R) with supp(ϕ) ⊆ K. Hence, by Theorem 4.1, u ∈ D′(R). This

distribution is of infinite order (Why?).

Exercise 5.4. Show that the delta-distribution is of 0 order.

Exercise 5.5. Show that the distribution in Example 5.3 is of infinite order.

6. Restrictions and support of distributions

Definition 6.1. Let u be a distribution on Ω and Ω0 be an open subset of Ω. Then

restriction of u to Ω0, denoted by uΩ0 is a distribution on Ω0 defined by

uΩ0(ϕ) := u(ϕ) for every ϕ ∈ D(Ω0).

Definition 6.2. Let u be a distribution on Ω. Then the support of u is the set

supp(u) := {x ∈ Ω : uG 6= 0 for every open set G ⊂ Ω with x ∈ G}.
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Note that, for u ∈ D′(Ω) and x ∈ Ω,

x 6∈ supp(u) ⇐⇒ ∃ open set G ⊂ Ω with x ∈ G such that uG = 0.

Hence,

supp(u) = Ω \
⋃
{G : uG = 0}.

Thus, supp(u) is a closed subset of Ω.

Exercise 6.3. supp(δa) = {a}.

Exercise 6.4. For f ∈ L1
loc(Ω), supp(uf ) = supp(f).

Exercise 6.5. For u ∈ D′(Ω) and ϕ ∈ D(Ω), supp(u) ∩ supp(f) = ∅ =⇒ u(ϕ) = 0.

7. Multiplication by C∞ functions

Theorem 7.1. If f ∈ C∞(Ω), then fϕ ∈ D(Ω) for every ϕ ∈ D(Ω).

Proof. Exercise. �

Theorem 7.2. For f ∈ C∞(Ω) and u ∈ D′(Ω), then the map

ϕ 7→ u(fϕ), ϕ ∈ D(Ω),

is a distribution.

Proof. Suppose ϕn → ϕ in D(Ω). Then it can be seen that fϕn → fϕ in D(Ω). Hence,

u(fϕn)→ u(fϕ). �

Notation 7.3. For f ∈ C∞(Ω) and u ∈ D′(Ω), the distribution f 7→ fϕ as in Theorem

7.2 is denoted by fu.

Example 7.4. f ∈ C∞(Ω) and a ∈ Ω, we have

(fδa)(ϕ) = δa(fϕ) = f(a)ϕ(a) = f(a)δa(ϕ) ∀ϕ ∈ D(Ω).

Hence, fδa = f(a)δ.

Example 7.5. f, g ∈ L1
loc(Ω), we have

(fug)(ϕ) = ug(fϕ) =

∫
g(x)f(x)ϕ(x)dx = ufg(ϕ) ∀ϕ ∈ D(Ω).

Hence, fug = ufg.

Theorem 7.6. Let f ∈ C∞(Ω). Then the map u 7→ fu is continuous in the sense that

un → u in D′(Ω) =⇒ fun → fu in D′(Ω).
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8. Translation of distributions

We observe that if f ∈ L1
loc(Rd) and h ∈ Rd,

uτhf (ϕ) =

∫
(τhf)(x)ϕ(x)dx =

∫
f(x− h)ϕ(x)dx =

∫
f(x)ϕ(x+ h)dx = uf (τ−hϕ).

Identifying L1
loc-functions with the corresponding distributions, we may write the above

as

(τhf)(ϕ) = f(τ−hϕ) ∀ϕ ∈ D(Rd).

Motivated by this, for u ∈ D′(Rd) and h ∈ Rd, we may define

(τhu)(ϕ) := u(τ−hϕ), ϕ ∈ D(Rd).

Theorem 8.1. If u ∈ D′(Rd) and h ∈ Rd, then τhu defined by

(τhu)(ϕ) := u(τ−hϕ), ϕ ∈ D(Rd),

is s distribution.

Definition 8.2. For u ∈ D′(Rd) and h ∈ Rd, the distribution τhu defined by

(τhu)(ϕ) := u(τ−hϕ), ϕ ∈ D(Rd),

is called the translation of u by h.

Example 8.3. Observe that

(τhδa)(ϕ) = δa(τ−hϕ) = (τ−hϕ)(a) = ϕ(a+ h) = δa+h(ϕ).

Hence, τhδa = δa+h.

Theorem 8.4. For each h ∈ Rd, the map u 7→ τhu is continuous on D′(Rd) in the

sense that un → u in D′(Rd) implies τhun → τhu in D′(Rd).

9. The spaces E(Ω) and E ′(Ω)

Definition 9.1. The space C∞(Ω) with the notion of convergence defined by

fn → f ⇐⇒ ∂αfn → ∂αf uniformly on every compactK ⊆ Ω ∀α ∈ Nd
0

is denoted by E(Ω).

Clearly,

D(Ω) ⊆ E(Ω).

Theorem 9.2. Let u be a distribution. Then the map f 7→ fu from E(Ω) to D′(Ω) is

continuous in the sense that

fn → f in E(Ω) =⇒ fnu→ fu in D′(Ω).
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Recall that f ∈ E(Ω) and u ∈ D′(Ω), fu defined by

(fu)(ϕ) := u(fϕ), ϕ ∈ D(Ω),

is a distribution.

Theorem 9.3. Let f ∈ E(Ω) and u ∈ D′(Ω). Then

supp(fu) ⊆ supp(f) ∩ supp(u).

Proof. Suppose x0 6∈ supp(f). Then there exists an open nbd Ω0 ⊆ Ω of x0 such that

f = 0 on Ω0. Hence,

(fu)(ϕ) = 0 ∀ϕ ∈ D(Ω0)

so that fu = 0 on Ω0. Therefore, x0 6∈ supp(fu). Also, x0 6∈ supp(f) implies there

exists an open nbd Ω0 ⊆ Ω of x0 such that u = 0 on Ω0 so that fu = 0 on Ω0 and

hence, x0 6∈ supp(fu) �

Corollary 9.4. If u is a distribution with compact support, then for any f ∈ E(Ω), fu

is also of compact support.

Definition 9.5. The set of all linear functionals u on E(Ω) such that

ϕn → ϕ in E(Ω) =⇒ u(ϕn)→ u(ϕ)

is denoted by E ′(Ω). A sequence (un) in E ′(Ω) is said to converge to u ∈ E ′(Ω), weritten

un → u if

un(f)→ u(f) ∀ f ∈ E(Ω).

Theorem 9.6. If u ∈ E ′(Ω), then u0 := u|D(Ω) ∈ D′(Ω). Further, the map u 7→ u0 is

continuous from E ′(Ω) to D′(Ω), in the sense that,

un → u in E ′(Ω) =⇒ u0,n → u0 in D′(Ω).

Proof. Let u ∈ E ′(Ω), Let ϕn → ϕ in D(Ω). Then there exists a compact set K0 ⊆ Ω

such that supp, ϕn, ϕ ⊆ K0 and ∂αϕn → ∂αϕ uniformly on Ω. Hence, ∂αϕn → ∂αϕ

uniformly on every compact subset of Ω. Thus, ϕn → ϕ in E(Ω) so that by hypothesis,

u(ϕn)→ u(ϕ), i.e., u0(ϕn)→ u0(ϕ). The last part is obvious. �

In view of the above theorem, we may say that

E ′(Ω) is embedded in D′(Ω).

We shall show that the distribution u0 in the above theorem is with compact support.

Theorem 9.7. If u ∈ D′(Ω) is with compact support, then u ∈ E ′(Ω) in the sense that

there exists a unique ũ ∈ E ′(Ω) such that
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(1) ũ|D(Ω) = u and

(2) f ∈ E(Ω) with supp(u) ∩ supp(f) = ∅ implies ũ(f) = 0.

For proving the above theorem we shall make use of the following lemma.

Lemma 9.8. If u ∈ D′(Ω) and ϕ ∈ D(Ω) are such that supp(u) ∩ supp(ϕ) = ∅, then

u(ϕ) = 0.

Proof of Theorem 9.7. Suppose u ∈ D′(Ω) is with compact support, say K :=

supp(u). Let ψ ∈ D(Ω) be such that ψ = 1 on K. Then, for every ϕ ∈ D(Ω), we

have

u(ϕ) = u(ψϕ+ (1− ψ)ϕ) = u(ψϕ) + u((1− ψ)ϕ).

Note that supp(u) ∩ sup((1 − ψ)ϕ) = ∅. Hence by the last lemma, u((1 − ψ)ϕ) = 0.

Thus,

u(ϕ) = u(ψϕ) ∀ϕ ∈ D(Ω).

Now, define

ũ(f) = u(ψf), f ∈ E(Ω).

Then we have ũ ∈ E ′(Ω) and ũ|D(Ω) = u. [To see that ũ ∈ E ′(Ω), we may observe that

fn → f in E(Ω) implies ψfn → ψf in D(Ω).]

To see the uniqueness, suppose v ∈ E ′(Ω) is such that

(1) v|D(Ω) = u and

(2) f ∈ E(Ω) with supp(u) ∩ supp(f) = ∅ implies v(f) = 0.

Then, for f ∈ E(Ω), we have

v(f) = v(ψf + (1− ψ)f) = v(ψf) + v((1− ψ)f) = u(ψf) + v((1− ψ)f).

Since (1 − ψ)f = 0 on K := supp(u), assumption (2) on v implies v((1 − ψ)f) = 0.

Thus, v(f) = u(ψf) = ũ(f). �

For the proof of Lemma 9.8, we make use of partition of unity:

Proposition 9.9. (Partition of unity) Let K be a compact set and Ω1, . . . ,Ωn be

open subsets of Rd such that K ⊆ ∪nj=1Ωj. Then there exists ψ1, . . . , ψn in D(Ω0) with

Ω0 := ∪nj=1Ωj such that supp(ψj) ⊆ Ωj and
∑n

j=1 ψj = 1 on K.

Proof. Let x ∈ K. Then x ∈ Ωi for some i ∈ {1, . . . , n}. Let Gx be an open nbd of x

such that Gx is compact and Gx ⊆ Ωi. Since K is compact, there exist x1, . . . , xk ∈ K
such that K ⊆

⋃k
j=1Gxj . For each i ∈ {1, . . . , n}, let Hi be the union of those Gxj
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such that Gxj ⊆ Ωi. Then each H − i is compact and Hi ⊆ Ωi. Hence, there exists

gi ∈ D(Ωi) such that gi = 1 on Hi. Note that K ⊆
⋃n
i=1 Hi. Now, define

ψ1 = g1, ψ2 = (1− g1)g2, . . . , ψn = (1− g1)(1− g2) · · · (1− gn−1)gn.

It can be seen by induction that

ψ1 + · · ·+ ψn = 1− (1− g1)(1− g2) · · · (1− gn).

Since K ⊆
⋃n
i=1Hi, and since gi = 1 on Hi, we obtain ψ1 + · · ·+ ψn = 1 on K. �

Proof of Lemma 9.8. Let u ∈ D′(Ω) and ϕ ∈ D(Ω) are such that supp(u)∩supp(ϕ) =

∅. To prove that u(ϕ) = 0. For this, let K = supp(ϕ). For each x ∈ K, since x 6∈
supp(u), there exists open set Ωx ⊆ Ω such that x ∈ Ωx. Then {Ωx : x ∈ K} is an open

cover of K. Since K is compact, there exists x1, . . . , xn in K such that K ⊆ ∪nj=1Ωxj .

By partition of unity, there there exists ψ1, . . . , ψn in D(Ω0) with Ω0 := ∪nj=1Ωxjsuch

that supp(ψj) ⊆ Ωxj and
∑n

j=1 ψj = 1 on K. Then we have ϕ =
∑n

j=1 ψjϕ so that

u(ϕ) =
∑n

j=1 u(ψjϕ) = 0, since ψjϕ ∈ D(Ωxj) and Ωxj ∩ supp(u) = ∅. �

Now the theorem that we had promised:

Theorem 9.10. If u ∈ E ′(Ω), then u|D(Ω) is a distribution with compact support.

For its proof we use the following characterization:

Theorem 9.11. Let u be a linear functional on E(Ω). Then u ∈ E ′(Ω) if and only if

there exists a compact K ⊆ Ω, constant C > 0 and m ∈ N0 such that

|u(f)| ≤ C
∑
|α|≤m

sup
x∈K
|(∂αf)(x)| ∀ f ∈ E(Ω).

Proof. (⇐): Obvious.

(⇐): Suppose the conclusion is not true. Then for any triple η := (K,C,m) there

exists ϕη ∈ E(Ω) such that

|u(fη)| > C
∑
|α|≤m

sup
x∈K
|(∂αf)(x)|.

So, for m ∈ N, let Km := Bm(0) and fm ∈ E(Ω) such that

|u(fm)| > m
∑
|α|≤m

sup
x∈Km

|(∂αfm)(x)|.
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Let gm = fm/[m
∑
|α|≤m supx∈Km |(∂αfm)(x)|]. Then for every β ∈ Nd

0 with |β| ≤ m

and K ⊆ Ω with K ⊆ Km, we have

sup
x∈K
|∂βgm‖ ≤

∑
|γ|≤m

sup
x∈Km

|(∂γgm)(x)| = 1

m
.

Thus, fm → 0 in E(Ω) but |u(fm)| > 1 for all m ∈ N. This is a contradiction. �

Proof of Theorem 9.10. Let u ∈ E ′(Ω). We have already seen that u|D(Ω) is a

distribution. Let K be as in Theorem 9.11. We claim that supp(u) ⊆ K. To prove

this claim, suppose x 6∈ K. Then there exists an open neighbourhood Gx ⊆ Ω of x

such that Gx ∩K = ∅. Hence, ϕ ∈ D(Gx) implies supp(ϕ) ∩K = ∅. Hence, from the

relation

|u(f)| ≤ C
∑
|α|≤m

sup
x∈K
|(∂αf)(x)| ∀ f ∈ E(Ω)

in Theorem 9.11, we have u(ϕ) = 0. Therefore, x 6∈ supp(u). Thus we have proved

that x 6∈ K implies x 6∈ supp(u). Equivalently, supp(u) ⊆ K. �

In view of Theorems 9.7 and 9.10, there is a one-one correspondence between E ′(Ω)

and distributions with compact support. Therefore, distributions with compact sup-

port is also denoted by E ′(Ω).

10. Differentiation of distributions

Let f ∈ C1(0, 1) ∩ C[0, 1]. Then for every ϕ ∈ C∞c (0, 1), we have∫ 1

0

f ′(x)ϕ(x)dx = [ϕ(x)f(x)]10 −
∫ 1

0

ϕ′(x)f(x)dx = −
∫ 1

0

ϕ′(x)f(x)dx.

Thus,

uf ′(ϕ) = −uf (ϕ′).
More generally, it can be seen that:

If f ∈ C1(Ω) ∩ C(Ω), then for every ϕ ∈ C∞c (Ω) and for every α ∈ Nd
0,∫

Ω

(∂αf)(x)ϕ(x)dx = (−1)|α|
∫ 1

0

f(x)(∂αϕ)(x)dx

so that

u∂αf (ϕ) = (−1)|α|uf (∂
αϕ).

Identifying L1
loc-functions with the corresponding distributions, we may write the above

as

(∂αf)(ϕ) = (−1)|α|f(∂αϕ) ∀ϕ ∈ D(Ω).
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Theorem 10.1. For u ∈ D′(Ω) and α ∈ Nd
0, the map ∂αu : D(Ω)→ C defined by

(∂αu)(ϕ) := (−1)|α|u(∂αϕ), ϕ ∈ D(O),

is a distribution.

Definition 10.2. For u ∈ D′(Ω) and α ∈ Nd
0, the distribution ∂αu defined by

(∂αu)(ϕ) := (−1)|α|u(∂αϕ), ϕ ∈ D(O),

is called the α-th derivative of u.

Notation 10.3. If f ∈ L1
loc(Ω), then ∂αuf is usually denoted by ∂αf .

Example 10.4. Consider the Heaveside function:

H(x) =

{
0, x < 0,

1, x ≥ 0.

Then ∫
R
H(x)ϕ′(x)dx =

∫ ∞
0

ϕ′(x)dx = −ϕ(0) = −δ0(ϕ).

Thus, H ′ = δ0.

Suppose u ∈ D′(Ω) and α ∈ Nd
0.

(1) We say that ∂αu belongs to L1
loc(Ω), and write as ∂αu ∈ L1

loc(Ω) if there exists

a function f ∈ L1
loc(Ω) such that

(∂αu)(ϕ) = uf (ϕ) ∀ϕ ∈ D(O).

(2) We say that ∂αu ∈ Lp(Ω) iff there exists a function f ∈ Lp(Ω) such that

(∂αu)(ϕ) = uf (ϕ) ∀ϕ ∈ D(Ω).

Suppose f ∈ L1
loc(Ω).

(1) We say that ∂αf ∈ L1
loc(Ω) iff there exists a function g ∈ L1

loc(Ω) such that

(∂αuf )(ϕ) = ug(ϕ) ∀ϕ ∈ D(Ω),

i.e., iff

(−1)|α|
∫

Ω

f(x)(∂αϕ)(x)dx =

∫
Ω

g(x)ϕ(x)dx ∀ϕ ∈ D(Ω),

and this fact is also written as∫
Ω

(∂αf)(x)ϕ(x)dx = (−1)|α|
∫

Ω

f(x)(∂αϕ)(x)dx ∀ϕ ∈ D(Ω).
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(2) We say that ∂αf ∈ Lp(Ω) iff there exists a function g ∈ Lp(Ω) such that

(∂αuf )(ϕ) = ug(ϕ) ∀ϕ ∈ D(Ω),

i.e., iff

(−1)|α|
∫

Ω

f(x)(∂αϕ)(x)dx =

∫
Ω

g(x)ϕ(x)dx ∀ϕ ∈ D(Ω),

and this fact is also written as∫
Ω

(∂αf)(x)ϕ(x)dx = (−1)|α|
∫

Ω

f(x)(∂αϕ)(x)dx ∀ϕ ∈ D(Ω).

Definition 10.5. (Sobolev spaces) For r ∈ N0 and 1 ≤ p ≤ ∞, the Sobolev space

W r,p(Ω) is defined as the vector space

W r,p(Ω) := {f ∈ Lp(Ω) : ∂αf ∈ Lp(Ω) ∀ |α| ≤ r}.

Thus, if f ∈ Lp(Ω), then f ∈ W r,p(Ω) iff there exists g ∈ Lp(Ω) such that

(−1)|α|
∫

Ω

f(x)(∂αϕ)(x)dx =

∫
Ω

g(x)ϕ(x)dx ∀ϕ ∈ D(Ω).

Theorem 10.6. For every multi-index α, u 7→ ∂αu is continuous on D′(Ω), i.e.,

un → u in D′(Ω) =⇒ ∂αun → ∂αu in D′(Ω).

Proof. Follows from the definitions. �

11. Convolution involving distributions

Suppose f ∈ L1
loc(Rd) and ϕ ∈ D(Rd). Then we have

(f ∗ ϕ)(x) =

∫
Rd
f(y)ϕ(x− y), x ∈ Rd.

Let us introduce the notation:

ϕ̃(x) = ϕ(−x), ϕ ∈ C(Rd), x ∈ Rd.

Then

ϕ(x− y) = ϕ̃(y − x) = (τxϕ̃)(y).

Thus, we have

(f ∗ ϕ)(x) = uf (τxϕ̃), ϕ ∈ D(Rd), x ∈ Rd.

Motivated by this, we have the following definition.
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Definition 11.1. The convolution of u ∈ D′(Rd) and ϕ ∈ D(Ω) is defined by

(u ∗ ϕ)(x) = u(τxϕ̃), x ∈ Rd,

where ϕ̃(s) = ϕ(−s).

Theorem 11.2. Let u ∈ D′(Rd) and ϕ, ψ ∈ D(Ω). Then

(1) u ∗ ϕ ∈ C∞(Rd),

(2) supp(u ∗ ϕ) ⊆ supp(u) + supp(ϕ),

(3) ∂α(u ∗ ϕ) = u ∗ ∂αϕ = (∂αu) ∗ ϕ.

(4) u ∗ (ϕ ∗ ψ) = (u ∗ ϕ) ∗ ψ.

Recall that, if ϕ ∈ D is such tha ϕ ≥ 0 and
∫
ϕ = 1 and for ε > 0 if ϕε(x) = 1

εd
ϕ(xε),

then ϕε ∈ D and {ϕε : ε > 0} is called an approximate identity. It is known that

(1) f ∈ L1
loc(Rd) implies f ∗ ϕε ∈ C∞(Rd).

(2) f ∈ Cc(Rd) implies f ∗ ϕε → f uniformly as ε→ 0.

(3) f continuous at x implies (f ∗ ϕε)(x)→ f(x) as ε→ 0.

(4) f ∈ Lp(Rd) for 1 ≤ p <∞ implies f ∗ ϕε → f in Lp(Rd) as ε→ 0.

In the following we use the notation ϕε for an approximate identity.

Theorem 11.3. (Regularization of distributions) Let u ∈ D′(Rd) and {ϕε : ε > 0}
be an approximate identity. Then

u ∗ ϕε → u in D′(Rd).

Proof. For ψ ∈ D(Rd), we have

(u ∗ ϕε)(ψ) =

∫
(u ∗ ϕε)(y)ψ(y)dy =

∫
(u ∗ ϕε)(y)ψ̃(0− y)dy = [(u ∗ ϕε) ∗ ψ̃](0)

= [u ∗ (ϕε ∗ ψ̃)](0)→ (u ∗ ψ̃)(0) as ε→ 0.

But,

(u ∗ ψ̃)(0) = u(τ0ψ) = u(ψ).

Thus, u ∗ ϕε → u in D′(Rd) as ε→ 0. �

Corollary 11.4. Let u ∈ D′(R) such that u′ = 0. Then u is a constant.

Proof. Let uε := u ∗ ϕε. Then u′ε = u′ ∗ ϕε = 0. Hence, uε = Cε, constants. But,

uε → u. Therefore, there exists a constant C such that uε → C and hence u = C. �
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Now, suppose f, g ∈ L1(Rd). Then for ϕ ∈ D(Rd), we have

(f ∗ g)(ϕ) =

∫
(f ∗ g)(x)ϕ(x)dx =

∫ (∫
f(y)g(x− y)dy

)
ϕ(x)dx

=

∫
f(y)

(∫
g(x− y)ϕ(x)dx

)
dy =

∫
f(y)

(∫
g(s)ϕ(s+ y)ds

)
dy

=

∫
f(y)

(∫
g(s)(τ−yϕ)(s)ds

)
dy

= f(ϕg)

where

ϕg(y) := g(τ−yϕ).

Definition 11.5. For u, v ∈ D′(Rd),

(u ∗ v)(ϕ) := u(ϕv)

where

ϕv(y) := v(τ−yϕ).

Exercise 11.6. Show that

(u ∗ v)(ϕ) = u ∗ (̃v ∗ ϕ̃).

12. Schwarz space and tempered distributions

Definition 12.1. The Schwarz space S(Rd) is the space of all functions in C∞b (Rd)

such that for every α, β ∈ Nd
0, xα∂βf ∈ Cb(Rd). The elements of S(Rd) are called the

rapidly decreasing functions.

Thus, if f ∈ C∞b (Rd), then

f ∈ S(Rd) ⇐⇒ sup
x∈Rd
|xα∂βf(x)| <∞

for every α, β ∈ Nd
0.

We observe that for each α, β ∈ Nd
0,

f 7→ ‖f‖α,β := sup
x∈Rd
|xα∂βf(x)|

defines a semi norm on S(Rd).

Note that if f ∈ C∞b (Rd), f ∈ S(Rd) if and only if for every α, β ∈ Nd
0, there exists

Cα,β > 0 such that

|∂βf(x)| ≤ Cα,β
|xα|

∀ z ∈ Rd.
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In fact,

|∂βf(x)| ≤ ‖f‖α,β
|xα|

∀ z ∈ Rd,

where

‖f‖α,β := sup
x∈Rd
|xα∂βf(x)|.

It can be seen that, for each α, β ∈ Nd
0,

f 7→ ‖f‖α,β := sup
x∈Rd
|xα∂βf(x)|

defines a norm on S(Rd). In view of the above observation, elements of S(Rd) are also

called rapidly decreasing functions.

Theorem 12.2. For 1 ≤ p ≤ ∞, S(Rd) ⊆ Lp(Rd). In fact, for f ∈ S(Rd),

‖f‖p ≤ Cp
∑
|α|≤2d

‖f‖α,0,

where Cp :=
(∫

dx
(1+|x|2)p

)1/p

for 1 ≤ p < ∞ and C∞ = 1. Further, S(Rd) is dense in

Lp(Rd) for 1 ≤ p <∞.

Proof. Let f ∈ S(Rd). The result is trivially true if p =∞. So, let 1 ≤ p <∞. Then∫
|f |p =

∫
(1 + |x|2)p|f |p

(1 + |x|2)p
≤ C sup

x∈Rd
(1 + |x|2)p|f |p,

where C :=
∫

dx
(1+|x|2)p

. But,

(1 + |x|2)|f | =

(
1 +

d∑
j=1

x2
j

)
|f | = |f |+

d∑
j=1

|x2
jf | ≤

∑
|α|≤2d

‖f‖α,0.

Thus, we obtain f ∈ Lp(Rd), and

‖f‖p ≤ C1/p
∑
|α|≤2d

‖f‖α,0.

The last part follows, because, D(Rd) is dense in Lp(Rd). �

Definition 12.3. A sequence (fn) in S(Rd) is said to converge to f ∈ S(Rd) if

‖fn − f‖α,β → 0 as n→∞

for each α, β ∈ Nd
0, and in that case we write fn → f in S(Rd).

Theorem 12.4. The space S(Rd) is complete, in the sense that, if (fn) in S(Rd) is

a Cauchy sequence with respect to ‖ · ‖α,β for every α, β ∈ Nd
0, then it converges to a

function in S(Rd).
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Theorem 12.5. The space D(Rd) is a subspace of S(Rd) and for ϕn, ϕ ∈ D(Rd),

ϕn → ϕ in D(Rd) implies ϕn → ϕ in S(Rd).

Proof. Clearly, D(Rd) ⊆ S(Rd). Let ϕn ∈ D such that ϕn → ϕ in D(Rd). Let K be a

compact set in Rd such that supp(ϕn) ∪ supp(ϕ) ⊆ K for all n ∈ N. Then for every

α, β ∈ Nd
0,

‖ϕn − ϕ‖α,β = sup
x∈K
|xα∂β(ϕn − ϕ)(x)| ≤ Cα sup

x∈K
|∂β(ϕn − ϕ)(x)|

for some Cα > 0. Since ϕn → ϕ in D(Rd), supx∈K |∂β(ϕn−ϕ)(x)| → 0 so that ϕn → ϕ

in the space S(Rd). �

In fact,

Theorem 12.6. The space D(Rd) is a dense subspace of S(Rd).

Definition 12.7. A linear functional u on S(Rd) is called a tempered distribution if

for every sequence (fn) in S(Rd) and f ∈ S(Rd), fn → f in S(Rd) implies u(fn)→ u(f).

The space of all tempered distributions is denoted by S ′(Rd).

Definition 12.8. A sequence (un) in S ′(Rd) is said to converge to u ∈ S ′(Rd) if

un(f)→ u(f)

for every f ∈ S(Rd).

Notation 12.9.

S := S(Rd), S ′ := S ′(Rd).

D := D(Rd), D′ := D′(Rd).

Theorem 12.10. The restrictions of tempered distributions to D are in D′. Further,

the map u 7→ u|D is a continuous embedding of S ′(Rd) into D′(Rd).

Proof. Let u ∈ S ′. Let ϕn ∈ D be such that ϕn → ϕ in D. Then by Theorem 12.5,

ϕn → ϕ in S. Hence, u(ϕn) → u(ϕ). Thus, u|D ∈ D′. Since D(Rd) is dense in S(Rd),

u|D = 0 implies u = 0. Clearly, for a sequence (un) in S ′(Rd), un → u in S ′(Rd) implies

that un|D → u|D in D′(Rd). �

Theorem 12.11. Let u be a linear functional on S(Rd). Then u ∈ S ′(Rd) if and only

if there is a constant C > 0 and m ∈ N0 such that

|u(f)| ≤ C
∑

|α|,|β|≤m

‖f‖α,β

for all f ∈ S(Rd).
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Theorem 12.12. For 1 ≤ p ≤ ∞, Lp(Rd) ⊆ S ′(Rd), and fn → f in Lp(Rd) implies

ufn → uf in S ′(Rd). In other words, the inclusion Lp(Rd) ⊆ S ′(Rd) is a (sequentially

continuous) imbedding.

Proof. Let u ∈ S ′(Rd) and ϕ ∈ S(Rd). Then

|uf (ϕ)| ≤
∫
|f | |ϕ| ≤ ‖f‖p‖f‖q.

By Theorem 12.2, ‖f‖q ≤ C
∑
|α|≤2d ‖f‖α,0 for some C > 0. Hence,

|uf (ϕ)| ≤ C
∑
|α|≤2d

‖f‖α,0

for some C > 0. Hence, by Theorem 12.11, u ∈ S ′(Rd).

Next, suppose fn, f ∈ Lp(Rd) be such that fn → f in Lp(Rd). Then, for every

ϕ ∈ S(Rd),

|un(ϕ)− u(ϕ)| ≤
∫
|fn(x)− f(x)| |ϕ(x)|dx ≤ ‖fn − f‖p‖ϕ‖q → 0.

Thus, ufn → uf in S ′(Rd). �

We have

E ′(Rd) ⊆ S ′(Rd) ⊆ D′(Rd)

in the sense of (sequentially) continuous embedding.

Exercise 12.13. The space of polynomials on Rd is a subspace of S ′(Rd).

13. Fourier transform of distributions

Recall that for f ∈ L1(Rd),

f̂(ξ) :=

∫
Rd
f(x)e−ix.ξdx, ξ ∈ Rd.

Hence, for f ∈ L1(Rd) and ϕ ∈ D(Rd),∫
Rd
f̂(ξ)ϕ(ξ)dξ =

∫
Rd

(∫
Rd
f(x)e−ix.ξdx

)
ϕ(ξ)dξ

=

∫
Rd

(∫
Rd
ϕ(ξ)e−ix.ξdξ

)
f(x)dx

=

∫
Rd
ϕ̂(x)f(x)dx.

So, formally, we write

uf̂ (ϕ) = uf (ϕ̂).
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Formally, because,

ϕ ∈ D(Rd) does not imply ϕ̂ ∈ D(Rd).

However,

ϕ ∈ S(Rd) =⇒ ϕ̂ ∈ S(Rd).

In fact, we have:

Theorem 13.1. For every ϕ ∈ S(Rd), ϕ̂ ∈ S(Rd) and the map ϕ 7→ ϕ̂ is a (bijective)

homeomorphism (with respect to sequential continuity), and

‖ϕ̂‖2 = (2π)d/2‖f‖2 ∀ϕ ∈ S(Rd).

Thus, for f ∈ L1(Rd) and ϕ ∈ S(Rd), uf (ϕ̂) makes sense and

ϕ 7→ uf (ϕ̂)

is a tempered distribution.

Theorem 13.2. For u ∈ S ′(Rd), û : S(Rd)→ C defined by

û(f) := u(f̂), f ∈ S(Rd),

belongs to S ′(Rd).

Proof. Exercise. �

The above theorem motivates the following definition.

Definition 13.3. The Fourier transform of u ∈ S ′(Rd) is defined by

û(f) := u(f̂) ∀ f ∈ S(Rd).

Exercise 13.4. Prove the following. The following results hold:

(1) For u ∈ S ′(Rd), û(f) := u(f̂), f ∈ S(Rd), belongs to S ′(Rd).

(2) u 7→ û is continuous on S ′(Rd).

(3) For f ∈ L1(Rd), ûf (ϕ) = uf̂ (f) for all ϕ ∈ S(Rd).

(4) δ̂ = 1.
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14. Problems

Throughout, Ω denotes a nonempty open subset of Rd, where d ∈ N.

(1) Let ϕ be a mollifier. For a ∈ Ω and ε > 0 be such that Bε(a) ⊂ Ω, let

ψε,a(x) := 1
εd
ϕ(x−a

ε
. Show that ψε,a ∈ D(Ω) such that supp(ψε,a) ⊆ Bε(a) and∫

Ω
ψε,adx = 1.

(2) Let ψε,a be as Problem 1, and let ψε := ψε,0. Prove that for f ∈ Cc(Rd),

f ∗ ψε → f uniformly.

(3) Show that D(Ω) is sequentially complete. That is, if (ϕn) in D(Ω) is such

that for every ε > 0 and for every α ∈ Nd
0, there exists N ∈ N such that

‖∂α(ϕn − ϕm)‖∞ < ε for all n ≥ N , then there exists ϕ ∈ D(Ω) such that

‖∂α(ϕn − ϕ)‖∞ → 0 as n→∞ for each α ∈ Nd
0.

(4) Corresponding to f ∈ L1
loc(Ω), let

uf (ϕ) :=

∫
Ω

f(x)ϕ(x)dx, ϕ ∈ D(Ω), x ∈ Ω.

Show that uf is a distribution, and it is of order 0.

(5) Show that the delta-distribution is not a regular distribution.

(6) Show every delta-distribution is a limit of a sequence of regular distributions.

(7) Let (fn) in L1
loc(Ω) and f : Ω→ C be such that fn → f a.e. on Ω and for every

compact K ⊆ Ω, there exists g ∈ L1(Ω) such that |fn| ≤ |g| a.e. on K. Prove

that f ∈ L1
loc(Ω) and fn → f in the sense of distribution.

(8) Let fn, f ∈ C(Ω) such that fn → f uniformly on compact subsets of Ω. Prove

that fn → f in the sense of distribution.

(9) Let fn(x) := einx, x ∈ R. Show that (ufn) converges to the zero distribution.

(10) Making use of necessary results, prove that for f, g ∈ L1
loc(Ω), uf = ug implies

f = g a,e.

(11) Let u be a linear functional on D(Ω). Prove that u is a distribution if and only

if for each compact K ⊆ Ω, there exists a constant C > 0 and an N ∈ N0 such

that

|u(ϕ)| ≤ C
∑
|α|≤N

‖∂αϕ‖∞ (1)

for all ϕ ∈ D(Ω) with supp(ϕ) ⊆ K.

(12) Define u(ϕ) :=
∑∞

j=0 ϕ
(j)(j), ϕ ∈ D(R). Show that u ∈ D′(R), and it is of

infinite order.

(13) Prove that

(a) supp(δa) = {a}.
(b) For f ∈ L1

loc(Ω), supp(uf ) = supp(f).

(c) For u ∈ D′(Ω) and ϕ ∈ D(Ω), supp(u) ∩ supp(f) = ∅ =⇒ u(ϕ) = 0.
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(14) If f ∈ C∞(Ω), then prove that fϕ ∈ D(Ω) for every ϕ ∈ D(Ω).

(15) For f ∈ C∞(Ω) and u ∈ D′(Ω), prove that the map ϕ 7→ u(fϕ), ϕ ∈ D(Ω),

is a distribution.

(16) If f ∈ C∞(Ω) and a ∈ Ω, show that fδa = f(a)δ.

(17) For f, g ∈ L1
loc(Ω), show that fug = ufg.

(18) Let f ∈ E(Ω) and u ∈ D′(Ω). Prove that supp(fu) ⊆ supp(f) ∩ supp(u).

(19) If u is a distribution with compact support, then prove that for any f ∈ E(Ω),

fu is also of compact support.

(20) If u ∈ D′(Ω) is with compact support, then prove that u ∈ E ′(Ω) in the sense

that for every u ∈ D′(Ω), there exists a unique ũ ∈ D′(Ω) such that u|D(Ω) = ũ.

(21) If u ∈ E ′(Ω), then prove that u|D(Ω) ∈ D′(Ω) is with compact support.

(22) Prove that τhδa = δa+h. (Recall: For u ∈ D′(Rd) and h ∈ Rd, the distribution

τhu is defined by (τhu)(ϕ) := u(τ−hϕ), ϕ ∈ D(Rd).

(23) For each h ∈ Rd, show that the map u 7→ τhu is continuous on D′(Rd) in the

sense that un → u in D′(Rd) implies τhun → τhu in D′(Rd).

(24) For u ∈ D′(Ω) and α ∈ Nd
0, show that the map ∂αu : D(Ω) → C defined by

(∂αu)(ϕ) := (−1)|α|u(∂αϕ), ϕ ∈ D(O), is a distribution.

(25) Let H be the Heaviside function, i.e., H(x) =

{
0, x < 0,

1, x ≥ 0.
Show that H ′ = δ0.

(26) For α ∈ Nd
0, x0 ∈ Ω, prove that u defined by u(ϕ) = (∂αϕ)(x0) defines a

distribution of order α.

(27) Let (xn) be a sequence in Ω without a limit point in Ω and (α(n)) be a sequence

in Nd
0. Let u(ϕ) :=

∑∞
n=1 ∂

αnϕ(xn). Prove that u is a distribution, and it has

finite order if and only if sup |α(n)| <∞ and in that case the order is sup |α(n)|.
(28) If u ∈ D′(Ω) and ϕ ∈ D(Ω) such that supp(u) ∩ supp(ϕ) = ∅, then prove that

u(ϕ) = 0.

(29) Suppose u is a linear functional on E(Ω) such that there exists compact K ⊆ Ω,

C > 0 and m ∈ N0 satisfying

|u(ϕ)| ≤ C
∑
|α|≤m

‖∂αϕ‖∞,K ∀ϕ ∈ E ′(Ω).

Prove that u ∈ E ′(Ω).

(30) Suppose u ∈ E ′(Ω) and there exists compact K ⊆ Ω, C > 0 and m ∈ N0

satisfying

|u(ϕ)| ≤ C
∑
|α|≤m

‖∂αϕ‖∞,K ∀ϕ ∈ E ′(Ω).

Prove that u|D(Ω) is a distribution with compact support.
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