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1 Vector Spaces

1.1 Definition and Examples

Definition 1.1. A nonempty set V is said to be vector space over a field F if there are two maps

V × V → V and F× V → V

denoted by

(x, y) 7→ x+ y and (α, x) 7→ αx,

respectively, called vector addition and scalar multiplication, respectively, which satisfy the

following conditions:

1. x+ y = y + x ∀x, y ∈ V ,

2. (x+ y) + z = x+ (y + z) ∀x, y, z ∈ V ,

3. ∃ an element, denoted by 0V ∈ V such that x+ 0V = x ∀x ∈ V .

4. ∀x ∈ V , ∃ an element, denoted by −x ∈ V such that x+ (−x) = 0V .

5. α(x+ y) = αx+ αy ∀x, y ∈ X, α ∈ F,

6. (α+ β)x = αx+ βx ∀α, β ∈ F, x ∈ V ,

7. (αβ)x = α(βx) ∀α, β ∈ F, x ∈ V ,

8. 1x = x ∀x ∈ V .

♦

Definition 1.2.

(i) Elements of a vector space are called vectors.

(ii) Elements of the field F are called scalars.

(iii) The element 0V is unique, and it is called the zero vector in V . (If u, v ∈ V are such that

x+ u = x = x+ v for all x ∈ V , then u = u+ v = v + u = u.) The zero vector is usually denoted by

0, which is distinguished from the zero in F by the context in which it occurs. ♦

• It can be verified that

0x = 0V , (−1)x = −x ∀x ∈ V.
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• Condition 1 follows from Conditions 5 and 6: Let x, v ∈ V . By Conditions 6 and 8,

2(x+ y) = (1 + 1)(x+ y) = 1(x+ y) + 1(x+ y) = x+ y + x+ y

and by Condition 5 and 6,

2(x+ y) = 2x+ 2y = x+ x+ y + y.

Thus,

x+ y + x+ y = x+ x+ y + y

so that adding −x and −y on the left and right, respectively, we obtain y + x = x+ y.

• Using condition 8, it can verified that for x ∈ V and α ∈ F, if αx = 0, then either α = 0 or

x = 0.

Example 1.3. The assertions in the following examples must be verified by the reader.

1. Rn with coordinate-wise addition and scalar multiplication is a vector space over R, but not a

vector space over C.

2. Cn with coordinate-wise addition and scalar multiplication is a vector space over C.

3. Fn with coordinate-wise addition and scalar multiplication is a vector space over F but not a

vector space over a field F̃ ⊇ F with F̃ 6= F.

4. Pn(F), the set of all polynomials with coefficients from F and of degree atmost n, is a vector

space over F.

5. P(F) :=

∞⋃
n=1

Pn(F), the set of all polynomials with coefficients from F, is a vector space over F.

6. Rm×n, the set of all real m×n matrices is a vector space over R under usual matrix multiplication

and scalar multiplication.

7. Let Ω be a nonempty set. Then the set F(Ω,F), the set of all F-valued functions defined on Ω,

is a vector space over F with respect to the following vector space operations: For x, y ∈ F(Ω,F)

and α ∈ F, x+ y and αx are defined by

(x+ y)(t) = x(t) + y(t) ∀ t ∈ Ω,

(αx)(t) = αx(t) ∀ t ∈ Ω.

The zero function is the zero vector and for

(−x)(t) = −x(t) ∀ t ∈ Ω.

Note that if Ω = N, then F(N,F) is the set of all scalar sequences.

♦
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Definition 1.4. Let V1 and V2 be vector spaces over the same field F. Then V1 and V2 are said to

be isomorphic if there exists a function T : V1 → V2 which is bijective (i.e., one-one and onto) and

T (x+ y) = T (x) + T (y), T (αx) = αT (x)

for all x, y ∈ V and α ∈ F, and the map T is called an isomorphism. ♦

Example 1.5. The assertions in the following examples must be verified by the reader.

1. The spaces Pn(F) and Fn+1 are isomorphic, and an isomorphism is given by

a0 + a1t+ · · ·+ ant
n 7→ (a0, a1, . . . , an).

2. The space Rn := Rn×1, the space of all column n-vectors is isomorphic with Rn.

3. The space Rm×n is isomorphic with Rmn.

♦

1.2 Subspaces

Definition 1.6. A subset S of a vector space V is called a subspace if S itself is a vector space

under the vector addition and scalar multiplication for the space V . ♦

THEOREM 1.7. A subset S of a vector space V is a subspace if and only if S is closed under vector

addition and scalar multiplication, i.e.,

x, y ∈ S, α ∈ F =⇒ x+ y ∈ S, αx ∈ S.

Example 1.8. The assertions in the following examples must be verified by the reader.

1. S = {(α1, α2) ∈ R2 : α1 + α2 = 0} is a subspace of R2.

2. S = {(α1, α2, α3) ∈ R2 : α1 + α2 − α3 = 0} is a subspace of R3.

3. For each k ∈ {1, . . . , n},
Sk = {(α1, . . . , αn) ∈ Fn : αk = 0}

is a subspace of Fn.

4. For n ∈ N with n ≥ 2 and each k ∈ {1, . . . , n− 1},

Sk = {(α1, . . . , αn) ∈ Fn : αi = 0∀i > k}

is a subspace of Fn.

5. For each n ∈ N, Pn is a subspace of P.
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6. For each n ∈ N,

Vn := {x ∈ F(N,F) : x(j) = 0∀ j ≥ n}

is a subspace of F(N,F), and

c00 :=

∞⋃
n=1

Vn

is a subspace of F(N,F). Note that elements of W are sequences having only a finite number of

nonzero entries.

7. For an interval Ω := [a, b] ⊆ R,

(a) C(Ω), the set of all real valued continuous functions defined on Ω is a subspace of F(Ω,R).

(b) R(Ω), the set of all Riemann integrable real valued continuous functions defined on Ω is a

subspace of F(Ω,R).

(c) C(Ω) is a subspace of R(Ω)

(d) C1(Ω), the set of all real valued continuous functions defined on Ω and having continuous

derivative in Ω is a subspace of C(Ω).

(e) S = {x ∈ C(Ω) :
∫ b
a
x(t)dt = 0} is a subspace of C(Ω).

(f) S = {x ∈ C(Ω) : x(a) = 0} is a subspace of C(Ω).

(g) S = {x ∈ C(Ω) : x(a) = 0 = x(b)} is a subspace of C(Ω).

8. Let A ∈ Rm×n. Then

(a) {x ∈ Rn : Ax = 0} is a subspace of Rn,

(b) {Ax : x ∈ Rn} is a subspace of Rm,

9. {(α1, α2) : α1 + α2 = 0} is a subspace of R2.

10. {(α1, α2) : α1 + α2 − α3 = 0} is a subspace of R3.

11. For i, j ∈ N, let δij =

{
1, i = j,

0, i 6= j,
and for i ∈ {1, . . . , n}, let ei = (δi1, . . . , δin). Let V = Rn.

Then {(α1, . . . , αn) ∈ Rn : αi = 0 for i > k} is a subspace of Rn.

12. If V1 and V2 are subspaces of V , then V1 + V2 = span(V1 ∪ V2).

13. If V1 and V2 are subspaces of V and if V1 ⊆ V2, then V1 ∪ V2 is a subspace of V .

14. If V1 and V2 are subspaces of V , then V1 ∩ V2 is a subspace of V ; but, V1 ∪ V2 need not be a

subspace of V .

♦
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1.3 Linear combination and span

Definition 1.9. Let x1, . . . , xn be vectors in a vector space V . A linear combination of x1, . . . , xn

is a vector of the form α1x1 + . . .+ αnxn for some α1, . . . , αn ∈ F. ♦

Definition 1.10. Let S be a subset of a vector space V . The set of all linear combinations of elements

from S is called the span of S, and it is denoted by span(S). ♦

THEOREM 1.11. Let V be a vector space and S ⊆ V .

1. span(S) is a subspace of V .

2. If V0 is a subspace of V such that S ⊆ V0, then span(S) ⊆ V0.

3. S = span(S) if and only if S is a subspace of V .

Example 1.12. The assertions in the following examples must be verified by the reader.

1. If V = R2, then span({(1,−1)} = {(α1, α2) : α1 + α2 = 0}.

2. If V = R3, then span({(1,−1, 0), (1, 0, 1)} = {(α1, α2) : α1 + α2 − α3 = 0}.

3. For i, j ∈ N, let δij =

{
1, i = j,

0, i 6= j,
and for i ∈ {1, . . . , n}, let ei = (δi1, . . . , δin). Let V = Rn.

Then

(a) span({e1, . . . , ek}) = {(α1, . . . , αn) ∈ Rn : αi = 0 for i > k}.

(b) span({e1, . . . , en}) = Rn.

4. If V = P, then span({1, t, . . . , tn}) = Pn and span({1, t, t2, . . .}) = P.

5. For each i ∈ N, let ei = (δi1, δi2, . . . , ). Then span({e1, e2, . . .}) = c00.

♦

Exercise 1.13. Let S be a subset of a vector space V . Prove that

1. span(S) is the intersection of all subspaces which contain S,

2. span[span(S)] = span(S).

♦

Notation: If S1 and S2 are subsets of a vector space V , then the we denote

S1 + S2 := {x+ y : x ∈ S1, y ∈ S2}.
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• If V1 and V2 are subspaces of V , then V1 + V2 is a subspace of V and

V1 + V2 = span(V1 ∪ V2).

Definition 1.14. If V1 and V2 are subspaces of V , then the subspace {x + y : x ∈ V1, y ∈ V2} is

called the sum of subspaces V1 and V2. ♦

1.4 Linear dependence, linear independence, basis and dimension

Definition 1.15. Let V be a vector space and x1, . . . , xn are in V .

1. Vectors x1, . . . , xn are said to be linearly dependent if there exist scalars α1, . . . , αn with

atleast one of them is nonzero such that α1x1 + · · ·+ αnxn = 0.

2. Vectors x1, . . . , xn are said to be linearly independent if they are not linearly dependent, i.e.,

for scalars α1, . . . , αn,

α1x1 + · · ·+ αnxn = 0 =⇒ α1 = 0, . . . , αn = 0.

♦

Definition 1.16. Let V be a vector space and S ⊆ V .

1. S is said to be linearly dependent if S contains a finite subset which is linearly dependent.

2. S is said to be linearly independent if every finite subset of S is linearly independent.

♦

Definition 1.17. Let V be a vector space. A subset E of V is said to be a basis of V if it is linearly

independent and span(E) = V . ♦

Example 1.18. The assertions in the following examples must be verified by the reader.

1. {e1, . . . , en} is a basis of Rn and Cn.

2. {1, t, . . . , tn} is a basis of Pn.

3. {1, 1 + t, 1 + t+ t2, . . . , 1 + t+ · · ·+ tn} is a basis of Pn.

4. {1, t, t2, . . .} is a basis of P.

5. For each i ∈ N, let ei = (δi1, δi2, . . . , ). Then {e1, e2, . . .} is a basis of c00.

6. If E is linearly independent in a vector space, then E is a basis for V0 := span(E).

♦
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• If E is linearly independent and if x ∈ V with x 6∈ span(E), then E∪{x} is linearly independent.

THEOREM 1.19. If V has a finite spanning set and if E0 is linearly independent in V , then there

exists a basis E ⊇ E0.

Proof. Suppose S = {u1, . . . , un} is such that span(S) = V . Let

E1 =

{
E0 if u1 ∈ span(E0),

E0 ∪ {u1} if u1 6∈ span(E0).

Then E1 is linearly independent and span(E1) = span(E0 ∪ {u1}). Having defined E1, . . . , Ek−1,

define

Ek =

{
Ek−1 if uk ∈ span(Ek−1),

Ek−1 ∪ {uk} if uk 6∈ span(Ek−1).

Thus, for k = 1, . . . , n, Ek is linearly independent and

span(Ek) = span(Ek−1 ∪ {uk}) = span(E0 ∪ {u1, . . . , uk}).

Hence,

V = span{u1, . . . , un} ⊆ span(E0 ∪ {u1, . . . , un}) = span(En) ⊆ V.

Thus, E := En satisfies the requirements.

Taking E0 = ∅ in the above theorem, we obtain the following corollary.

COROLLARY 1.20. Every vector space having a finite spanning set has a finite basis.

THEOREM 1.21. Suppose a basis of a vector space V contains n vectors. Then every subset

containing more than n vectors is linearly dependent.

Proof. Suppose E = {u1, . . . , un} be a basis of V . Its enough to prove that every subset containing

n + 1 vectors is linearly dependent. Let S = {x1, . . . , xn+1} ⊆ V . We prove S is linearly dependent.

Without loss of generality assume that {x1, . . . , xn} is linearly independent. Since {u1, . . . , un} is a

basis of V , there exists scalars α
(1)
1 , . . . , α

(1)
n such that

x1 = α
(1)
1 u1 + . . . , α(1)

n un.

Since x1 6= 0, all of α
(1)
1 , . . . , α

(1)
n cannot be zero. So, atleast one of α

(1)
1 , . . . , α

(1)
n is nonzero. Without

loss of generality assume that α
(1)
1 6= 0. Then

u1 ∈ span{x1, u2, . . . , un}.

But, V = span{u1, u2, . . . , un}. Hence,

span{x1, u2, . . . , un} = V.
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There exists scalars α
(2)
1 , . . . , α

(2)
n such that

x2 = α
(2)
1 x1 + α

(2)
2 u2 . . . , α

(2)
n un.

Since x1, x2 are linearly independent, all of α
(2)
2 , . . . , α

(2)
n cannot be zero. So, atleast one of α

(2)
2 , . . . , α

(2)
n

is nonzero. Without loss of generality assume that α
(2)
2 6= 0. Then

u2 ∈ span{x1, x2, u3, . . . , un}.

But, V = span{x1, u2, . . . , un}. Hence,

span{x1, x2, . . . , un} = V.

Proceeding like this, we obtain at the nth step,

span{x1, x2, . . . , xn} = V.

Thus, xn+1 ∈ span{x1, x2, . . . , xn} = V so that x1, . . . , xn+1 are linearly dependent.

COROLLARY 1.22. If a vector space V has a finite basis, then any two basis of V contains the

same number of vectors.

Definition 1.23. Let V be a vector space. Then

1. V is said to be a finite dimensional space, if V has a finite basis, and in that case the number

of elements in a basis is called the dimension of V , and it is denoted by dim(V).

2. V is said to be an infinite dimensional space, if V does not have a finite basis, and we write

dim(V ) =∞.

♦

Example 1.24. The assertions in the following examples must be verified by the reader.

1. Fn and Pn are finite dimensional spaces, and dim(Fn) = n, dim(Pn) = n+ 1.

2. dim({α1, . . . , αn) ∈ Rn : α1 + · · ·+ αn = 0} = n− 1.

3. P, C[a, b], c00 are infinite dimensional spaces.

4. Every vector space containing an infinite linearly independent set is infinite dimensional.

5. If A ∈ Rm×n with n > m, then there exists x ∈ Rn such that Ax = 0.

♦

Exercise 1.25. 1. If V1 and V2 are subspaces of a vector space V such that V1 ∩ V2 = {0}, and

if E1 and E2 are bases of V1 and V2, respectively, then E1 ∪ E2 is a basis of V1 + V2; and in

particular,

dim(V1 + V2) = dim(V1) + dim(V2).
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2. Let V1 and V2 be subspaces of a vector space V . Then

dim(V1 + V2) = dim(V1) + dim(V2)− dim(V1 ∩ V2).

3. Let V1, V2,W1,W2 be subspaces of a vector space V such that

V1 ∩ V2 = {0}, W1 ∩W2 = {0} and V1 + V2 = W1 +W2.

If V1 ⊆W1 and V2 ⊆W2, then prove that V1 = W1 and V2 ⊆W2.

4. Let V1 and V2 be vector spaces and let T be an isomorphism from V1 onto V2. Let E ⊆ V1.

Then E is a basis of V1 if and only if {T (u) : u ∈ E} is a basis of V2.

5. Let {u1, . . . , un} be a subset of a vector space V and T : Fn → V be defined by

T (α1, . . . , αn) = α1u1 + . . .+ αnun, (α1, . . . , αn) ∈ Fn.

Prove that {u1, . . . , un} is linearly independent if and only if T is one-one.

♦

1.5 Quotient space

Let V be vector space and W be a subspace of V . For x ∈ V , define

Wx := {x+ u : u ∈W},

and let

VW := {Wx : x ∈ V }.

On VW , define addition and scalar multiplication as follows:

Wx +Wy := Wx+y, αWx := Wαx.

Note hat

Wx = W ⇐⇒ x ∈W.

• VW is a vector space with respect to the above operations with zero W0 and additive inverse

−Wx := W−x.

Definition 1.26. The vector space VW is called a quotient space of V with respect to W . This vector

space is usually denoted by V/W , and its elements are also denoted by x+W instead of Wx. ♦

Example 1.27. The reader is advised to verify the following assertions:

1. If V is R2 or R3 and W is a straight line passing through origin, then V/W is the set of all

straight lines parallel to W .
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2. If V = R3 and W is a plane passing through origin, then V/W is the set of all planes having

the same normal as of W .

♦

THEOREM 1.28. Let V be a finite dimensional vector space and W be a subspace of V . Then

dim(VW ) = dim(V )− dim(W ).

Proof. If W = {0} or W = V , then the result can be seen easily. Hence, assume that {0}not = W 6= V .

Let {u1, . . . .uk} be a basis of W and let v1, . . . , vm be in V such that {u1, . . . .uk, v1, . . . , vm} is a basis

of V . We have to show that dim(V/W ) = m. We show this by proving that {Wv1 , . . . ,Wvm} is a

basis of V/W .

Let α1, . . . , αm be in F such that

α1Wv1 + · · ·+ αmWvm = W, i.e., Wα1v1+···+αmvm = W,

i.e.,

α1v1 + · · ·+ αmvm ∈W.

Hence, there are β1, . . . , βk in F such that

α1v1 + · · ·+ αmvm = β1u1 + ·+ βkuk,

i.e.,

(α1v1 + · · ·+ αmvm)− (β1u1 + ·+ βkuk) = 0.

Since {u1, . . . .uk, v1, . . . , vm} is a basis of V , we have αi = 0, βj = 0 for i ∈ {1, . . . ,m}, j ∈ {1, . . . , k}.
Thus, {Wv1 , . . . ,Wvm} is linearly independent.

It remains to show that span{Wv1 , . . . ,Wvm} = V/W . For this, let x ∈ V and let Let α1, . . . , αm, β1, . . . , βk

in F such that

x = α1v1 + · · ·+ αmvm + β1u1 + ·+ βkuk.

Then

Wx = α1v1 + · · ·+ αmvm +W = α1Wv1 + · · ·+ αmWvm .

This completes the proof.

1.6 Existence of a basis

We have seen that if a vector space has a finite spanning set, then it has a finite basis.

Does every vector space have a basis?

This question cannot be answered that easily. If we assume Zorn’s lemma, then we can answer the

above question affirmatively. In order to state Zorn’s lemma we have to recall some concepts
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Definition 1.29. A relation R on set S is partial order on S if it is

1. Reflexive: xRx for every x ∈ S,

2. Antisymmetric: For x, y ∈ S, xRx, & yRx=⇒x = y,

3. Transitive: For x, y, z ∈ S, xRy, & yRz=⇒xRz.

A set together with a partial order is called a partially ordered set. A partial order is usually denoted

by �. ♦

Definition 1.30. Let S be a partially ordered set with partial order �.

1. An element b ∈ S is called an upper bound for a subset T of S if x � b for all x ∈ T .

2. A subset T of S is said to be a totally ordered subset of S if any two elements of T can be

compared, that is, for every x, y ∈ T , either x � y or y � x.

3. An element x0 ∈ S is called a maximal element of S if for any x ∈ S,

x0 � x =⇒ x = x0.

♦

Example 1.31. The reader is advised to verify the following assertions:

1. The set R with usual order ≤ is a partially ordered set.

2. Any subset of R is a totally ordered subset of R, and if a subset T of R is bounded above, then

every b ≥ sup(T ) is an upper bound of T .

3. R does not have any maximal element.

4. Any subset of R is a partially ordered set with the partial order ≤. If S ⊆ R is bounded above

and then b := sup(S) ∈ S, then b is a maximal element of S.

♦

Example 1.32. Let X be any set and S be the power set, i.e., the set of all subsets of X. For A,B

in S, define A � B ⇐⇒ A ⊆ B. Then � is a partial order on S. ♦

Example 1.33. Consider the closed unit disc in the plane, D = {reiθ : 0 ≤ r ≤ 1, 0 ≤ θ < 2π}. For

r1e
iθ1 , r2e

iθ2 in D, define

r1e
iθ1 � r2eiθ2 ⇐⇒ θ1 = θ2 & r1 ≤ r2.

Then � is a partial order on D. For each θ ∈ [0, 2π), the set

Dθ := {reiθ : 0 ≤ r ≤ 1}

is a totally order subset of D, and the point eiθ is an upper bound for Dθ. Further, D does not have

any upper bound. However, every point on the boundary of D is a maximal element of D. ♦
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Zorn’s lemma: Suppose S is a nonempty partially ordered set. If every totally ordered subset of S

has an upper bound, then S has a maximal element.

THEOREM 1.34. Every nonzero vector space has a basis. In fact, if E0 is a linearly independent

subset of vector space V , then there exists a basis E for V such that E0 ⊆ E.

Proof. Let V be a nonzero vector space and let E0 be a linearly independent subset of V . Let E be

the family of all linearly independent subsets of V which contains E0. That is, E ∈ E if and only if E

is a linearly independent subset of V such that E0 ⊆ E. For E1, E2 in E define

E1 � E2 ⇐⇒ E1 ⊆ E2.

Then � is a partial order on E . Since E0 ∈ E , E is nonempty. Let T be a totally ordered subset of T .

Let

T0 =
⋃
T∈T

T.

Then T0 ∈ E and T0 is an upper bound of T . Hence, by Zorn’s lemma, E has a maximal element, say

E. If span(E) 6= V , then there exists x0 ∈ V \ span(E), and in that case Ẽ := {x0} ∪ span(E) ∈ E ,

which contradicts the maximality of E. Thus, E is linearly independent such that E0 ⊆ E and

span(E) = V . In particular, E is a basis of V .

2 Linear Transformations

Recall that if A is an m× n matrix with entries from F ∈ {R,C}, and if x, y ∈ Fn, and α ∈ F, then

A(x+ y) = Ax+Ay,, A(αx) = αAx.

Generalization of the above properties of matrices we define the concept of a linear transformation

between any two vector spaces.

2.1 Definition properties and examples

Definition 2.1. Let V1 and V2 be vector spaces over the same space F. A function T : V1 → V2 is

called a linear transformation or a linear operator if

T (x+ y) = T (x) + T (y) and T (αx) = αT (x)

for every x, y ∈ V1 and α ∈ F. ♦

We observe: Let T : V1 → V2 be a linear transformation.

• T (0) = 0.
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• N(T ) := {x ∈ V1 : T (x) = 0} is a subspace of V1.

• R(T ) := {T (x) : x ∈ V1} is a subspace of V2.

Definition 2.2. Let T : V1 → V2 be a linear transformation.

1. The subspaces N(T ) and R(T ) are called the null space and range space of T .

2. The dim[R(T )] is called the rank of T and dim[N(T )] is called the nullity of T .

♦

Convention: If T : V1 → V2 is a linear transformation and x ∈ V1, then the T (x) is usually denoted

by Tx, i.e., Tx := T (x) for all x ∈ V1.

Example 2.3. The assertion in each of the following is to be verified by the reader. The space C[a, b]

and C1[a, b] are vector spaces over R.

1. Let A ∈ Rm×n and let T : Rn → Rm be defined by

Tx = Ax , x ∈ Rn.

Then T is a linear transformation.

2. For x ∈ C[a, b], define

T (x) =

∫ b

a

x(t)dt.

Then T : C[a, b]→ R is a linear transformation.

3. For x ∈ C1[a, b], define

(Tx)(t) = x′(t), t ∈ [a, b].

Then T : C1[a, b]→ C[a, b] is a linear transformation.

4. For τ ∈ [a, b] and x ∈ C1[a, b], define

T (x) = x′(τ).

Then T : C1[a, b]→ R is a linear transformation.

5. Let V1 and V2 be vector spaces over the same field F.

(a) T : V1 → V2 defined by

Tx = 0 ∀x ∈ V1

is a linear transformation. This transformation is called the zero transformation.

14



(b) The map T : V → V defined by

Tx = x ∀x ∈ V

is a linear transformation. This transformation is called the identity transformation on

V .

(c) For each λ ∈ F, Tλ : V1 → V2 defined by

Tx = λx ∀x ∈ V1

is a linear transformation. This transformation is called a scalar transformation.

6. Let F be either R or C and V be any of the spaces c00, `
1, `∞. Recall that

c00 = {x ∈ F(N,F) : ∃ k ∈ N with x(j) = 0 ∀ j ≥ k},

`1 = {x ∈ F(N,F) :

∞∑
j=1

|x(j)| converges},

`∞ = {x ∈ F(N,F) : (x(n)) bounded}.

(a) T : V → V defined by

T (α1, α2, . . . , ) = (0, α1, α2, . . . , )

is a linear transformation, called the right shift operator.

(b) T : V → V defined by

T (α1, α2, . . . , ) = (α2, α3, . . . , )

is a linear transformation, called the left shift operator.

♦

THEOREM 2.4. Let T : V1 → V2 be a linear transformation. Then T is one-one if and only if

N(T ) = {0}.

THEOREM 2.5. Let T : V1 → V2 be a linear transformation.

1. If u1, . . . , un are in V1 such that Tu1, . . . , Tun are linearly independent in V2, then u1, . . . , un

are linearly independent in V1.

2. If T is one-one and u1, . . . , un are linearly independent in V1, then Tu1, . . . , Tun are linearly

independent in V2.

COROLLARY 2.6. Let T : V1 → V2 be a linear transformation.

1. If E1 is a basis of V1, then R(T ) = span(T (E1)).

2. dimR(T ) ≤ dim(V1).
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3. If T is one-one, then dimR(T ) = dim(V1).

4. If V1 and V2 are finite dimensional such that dim(V1) = dim(V2), then T is one-one if and only

if T is onto.

THEOREM 2.7. (Sylvester’s law of nullity) Let T : V1 → V2 be a linear transformation. Then

rank(T ) + null(T ) = dim(V1).

Proof. We know that rank(T ) ≤ dim(V1 and null(T ) ≤ dim(V1. Thus, if either rank(T ) = ∞ or

null(T ) = ∞, then the Theorem holds. Next assume that r = rank(T ) < ∞ and k = null(T ) < ∞.

Let {u1, . . . , uk} be a basis of N(T ) and {v1, . . . , vr} be a basis of R(T ). Let w1, . . . , wr in V1 be such

that Twj = vj for j = 1, . . . , r. The reader may verify that

{u1, . . . , uk, w1, . . . , wr}

is a basis for V1, which would compete the proof.

Exercise 2.8. Let A ∈ Rm×n and let T : Rn → Rm be the linear transformation defined by

Tx = Ax , x ∈ Rn.

1. T is one-one if and only if the columns of A are linearly independent.

2. R(T ) is the space spanned by the columns of A, and rank(T ) is the dimension of the space

spanned by the columns of A.

♦

Exercise 2.9. Let V1 and V2 be finite dimensional vector spaces over the same field F and let

{u1, . . . , un} be a basis of V1. Let {v1, . . . , vn} ⊆ V2. Define T : V1 → V2 be

T
( n∑
i=1

αiui

)
=

n∑
i=1

αiv, (α1, . . . , αn) ∈ Fn.

1. Show that T is a linear transformation such that T (uj) = vj for j ∈ {1, . . . , n}.

2. T is one-one if and only if {v1, . . . , vn} is linearly independent.

3. T is onto if and only if span({v1, . . . , vn}) = V2.

♦

Exercise 2.10. Let V1 and V2 be finite dimensional vector spaces over the same field F and let

E := {u1, . . . , un} be a linearly independent subset of V1. Let {v1, . . . , vn} ⊆ V2. Show that there

exists a linear transformation T : V1 → V2 such that T (uj) = vj for j ∈ {1, . . . , n}. ♦
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THEOREM 2.11. Let L(V1, V2) be the set of all linear transformations from V1 to V2. For T, T1, T2

in L(V1, V2) and α ∈ F, define T1 + T2 and αT by

(T1 + T2)(x) = T1x+ T2x ∀x ∈ V1,

T (αx) = αTx ∀x ∈ V1.

Then L(V1, V2) is a vector space with respect to the above addition and scalar multiplication its zero

as the zero–transformation and (−T )(x) := −Tx for all x ∈ V1.

Definition 2.12. The space L(V,F) is called the dual space of V and it is denoted by V ′. Elements

of V ′ are usually denoted by lover case letters f, g, etc. ♦

THEOREM 2.13. Let V be a finite dimensional space and E = {u1, . . . , un} be an order basis of

V . For each j ∈ {1, . . . , n}, let fj : V → F be defined by

fj(x) = αj for x :=

n∑
i=1

αiui.

Then

1. f1, . . . , fn are in V ′ and they satisfy fi(uj) = δij for i, j ∈ {1, . . . , n},

2. {f1, . . . , fn} is a basis of V ′.

COROLLARY 2.14. Let V be a finite dimensional space. Then V and V ′ are linearly isomorphic.

Definition 2.15. Let V be a finite dimensional space and E = {u1, . . . , un} be an order basis of V .

The basis {f1, . . . , fn} of V ′ obtained in the above theorem is called the dual basis of V corresponding

to the ordered basis E. ♦

Note that if E = {u1, . . . , un} is an order basis of V and F = {f1, . . . , fn} is the corresponding

ordered dual basis, then for every x ∈ V and f ∈ V ′,

x =

n∑
i=1

fi(x)ui, f =

n∑
i=1

f(ui)fi.

THEOREM 2.16. Let E = {u1, . . . , un} be an order basis of V . If f1, . . . , fn are in V ′ such that

fi(uj) = δij, then {f1, . . . , fn} is the dual basis of V .

THEOREM 2.17. Let V1, V2, V3 be vector spaces over the same field F. If T1 ∈ L(V1, V2) and

T2 ∈ L(V2, V3). Then the composition of T2 and T1, namely T2 ◦ T1 belongs to L(V1, V3).

Notation: The composition operator T2 ◦ T1 is usually denoted by T2T1.

THEOREM 2.18. Let T : V1 → V2 be a linear transformation which is one-one and onto. Then its

inverse T−1 : V2 → V1 is a linear transformation, and

TT−1 = IV2
and T−1T = IV1

,

where IV1
and IV1

are the identity transformations on V1 and V2, respectively.
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Exercise 2.19. Let T1 ∈ L(V1, V2) and T2 ∈ L(V2, V3). Show that

1. T2T1 one-one implies T1 one-one.

2. T2T1 onto implies T2 one-one.

♦

THEOREM 2.20. Let V be a vector space and W be a subspace of V . Then the map η : V → V/W

defined by

η(x) = x+W, x ∈ V,

is a linear transformation.

Definition 2.21. The map η in the above theorem is called the quotient map associated with the

subspace W . ♦

Now, we give another proof for the Sylvester’s law of nullity (Theorem 2.7) in the case of dim(V1) <

∞.

Another proof for Theorem 2.7. Let dim(V1) <∞. Consider the operator T̃ : V1/N(T )→ V2 defined

by

T̃ (x+N(T )) = Tx, x ∈ V1.

Then, it can be easily seen that T̃ is one-one. Hence, V1/N(T ) is linearly isomorphic with R(T̃ ) =

R(T ). Consequently,

dim[R(T )] = dim[V1/N(T )] = dim(V1)− dim[N(T )].

This completes the proof.

2.2 Matrix representation

Let V1 and V2 be finite dimensional vector spaces over the same field F and let E1 := {u1, . . . , un}
and E2 := {v1, . . . , vm} be ordered bases of V1 and V2, respectively. Let T : V1 → V2 be a linear

transformation. For each j ∈ {1, . . . , n}, let a1j , . . . , amj in F be such that

Tuj =

m∑
i=1

aijvi.

Then for every x ∈ V1, if (α1, . . . , αn) are the n-tuple of scalars such that x =
∑n
j=1 αjuj , then

Tx =

n∑
j=1

αjTuj =

n∑
j=1

αj

(
m∑
i=1

aijvi

)
=

m∑
i=1

 n∑
j=1

aijαj

 vi.
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Definition 2.22. The matrix (aij) in the above discussion is called the matrix representation of

T with respect to the ordered bases E1, E2 of V1 and V2, respectively. This matrix is usually denoted

by [T ]E1E2 , i.e.,

[T ]E1E2 := (aij).

♦

• For each j, [Tuj ]E2
is the jth column of [T ]E1E2

.

Example 2.23. Let A ∈ Rm×n and let T : Rn → Rm be defined by

Tx = Ax , x ∈ Rn.

Recall that T is a linear transformation. Now, taking the standard basis E1 and E2 for Rn and Rm,

respectively, it can be seen that [T ]E1E2
= A. ♦

Let V be an n-dimensional vector space and E = {u1, . . . , un} be an ordered basis of V . Recall

the canonical isomorphism J : V → Rn defined by

J(x) =


α1

...

αn

 , x :=

n∑
i=1

αiui.

Let us denote

[x] := J(x).

In fact,

[x]E := [f1(x), . . . , fn(x)]T ,

where F = {f1, . . . , fn} is the dual basis of V , i.e., F = {f1, . . . , fn} is a basis of V ′ such that

fi(uj) = δij .

• For each j, [uj ]E is the jth standard basis vector of Fn, i.e., [uj ]E = [δ1j δ2j . . . δnj ]
T ,

THEOREM 2.24. Let V1 and V2 be finite dimensional vector spaces over the same field F with

dim(V1) = n and dim(V2) = m and let E1 and E2 be ordered bases of V1 and V2, respectively. Let

T : V1 → V2 be a linear transformation. Then the following hold:

1. [Tx]E2 = [T ]E1E2 [x]E1 for all x ∈ V1.

2. T is one-one (respectively, onto) if and only if [T ]E1E2
: Rn → Rm is one-one (respectively,

onto).

3. For A ∈ Rm×n,

A = [T ]E1E2 ⇐⇒ [Tx]E2 = A[x]E1 ∀x ∈ V1.
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4. T = J2[T ]E1E2J
−1
1 , where J1 : V1 → Rn and J2 : V2 → Rm are the canonical isomorphisms,

THEOREM 2.25. Let V1, V2, V3 be finite dimensional vector spaces over the same field F, and let

E1, E2, E3 be ordered bases of V1, V2, V3, respectively. If T1 ∈ L(V1, V2) and T2 ∈ L(V2, V3). Then the

[T2T1]E1E3 = [T2]E2E3 [T1]E1E2 .

Proof. Note that for every x ∈ V1,

[T2T1x]E3
= [T2]E2E3

[T1x]E2
= [T2]E2E3

[T1]E1E2
[x]E1

.

Hence, by Theorem 2.24(3), [T2T1]E1E3 = [T2]E2E3 [T1]E1E2 .

Exercise 2.26. For n ∈ N, let D : Pn → Pn−1 and T : Pn → Pn+1 be defined by

D(a0 + a1t+ · · ·+ ant
n) = a1t+ 2a2t+ · · ·+ nant

n−1,

T (a0 + a1t+ ·+ ant
n) = a0t+

a1
2
t2 + · · ·+ an

n+ 1
tn+1.

Let Ek = {1, t, . . . , tk} for k ∈ N. Find

[D]EnEn−1 , [T ]EnEn+1 , [TD]EnEn , [DT ]EnEn .

♦

2.3 Matrix representation under change of basis

Let V1 and V2 be finite dimensional vector spaces over the same field F and let T : V1 → V2 be

a linear transformation. Let E1 = {u1, . . . , un} and Ẽ1 = {ũ1, . . . , ũn} be two bases of V1 and

E2 = {v1, . . . , vm} and Ẽ2 = {ṽ1, . . . , ṽm} be two bases of V2. One may want to know the relation

between [T ]E1E2
and [T ]Ẽ1Ẽ2

. For this purpose we consider the linear transformations Φ1 : V1 → V1

and Φ2 : V2 → V2 such that

Φ1(ui) = ũi, Φ2(vj) = ṽj

for i = 1, . . . , n; j = 1, . . . ,m.

THEOREM 2.27.

[T ]Ẽ1Ẽ2
= [Φ2]−1E2E2

[T ]E1E2
[Φ1]E1E1

.

Proof. Note that

[Φ1]E1Ẽ1
= (δij) = In×n, [Φ2]E2Ẽ2

= (dij) = Im×m.

Let

[T ]E1E2
= (aij), [T ]Ẽ1Ẽ2

= (ãij),

[Φ1]E1E1
= (sij), [Φ2]E2E2

= (tij).
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Then

T ũj =
∑
i

ãij ṽi, Tuj =
∑
i

aijvi,

Φ1uj =
∑
i

sijui, Φ2vj =
∑
i

tijvi, .

Hence,

T ũj = TΦ1uj =
∑
i

sijTui =
∑
i

sij
∑
k

akivk =
∑
k

(∑
i

akisij

)
vk,

∑
i

ãij ṽi =
∑
i

ãijΦ2vi =
∑
i

ãij
∑
k

tkivk =
∑
k

(∑
i

tkiãij

)
vk.

Thus, ∑
i

akisij =
∑
i

tkiãij

consequently,

[T ]E1E2
[Φ1]E1E1

= [Φ2]E2E2
[T ]Ẽ1Ẽ2

,

i.e.,

[T ]Ẽ1Ẽ2
= [Φ2]−1E2E2

[T ]E1E2 [Φ1]E1E1 .

3 Inner Product Spaces

Recall that in the Euclidian space R3 we have the concept of dot product and absolute value:

For x = (α1, α− 2, α3), y = (β1, β2, β3) in R3,

x.y = α1β1 + α2β2 + α3β3,

|x| =
√
|α1|2 + |α2|2 + |α3|2.

We consider the generalization of these concepts to any vector space. Throughout this section we

assume that F is either R or C.

Definition 3.1. Let V be a vector space over F. An inner product on V is a map which associates

each pair (x, y) of elements from V to a unique number in F, denoted by 〈x, y〉 such that the following

conditions are satisfied:

1. 〈x, x〉 ≥ 0 ∀x ∈ V , and for every x ∈ V , 〈x, x〉 = 0 ⇐⇒ x = 0.

2. 〈x+ y, z〉 = 〈x, z〉+ 〈y, z〉 ∀x, y, z ∈ V ,

3. 〈αx, y〉 = α〈x, y〉 ∀x ∈ V, ∀α ∈ F,

4. 〈x, y〉 = 〈y, x〉 ∀x, y ∈ V .
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A vector space together with an inner product is called an inner product space. ♦

Definition 3.2. Let V be an inner product space and x ∈ V . The the number

‖x‖ :=
√
〈x, x〉 (positive square root)

is called the norm of x. A vector x with ‖x‖ = 1 is called a unit vector. ♦

Exercise 3.3. Prove the following:

1. ‖x‖ ≥ 0 ∀x ∈ V and ‖x‖ = 0 ⇐⇒ x = 0.

2. ‖αx‖ = |α| ‖x‖ ∀x ∈ V, ∀α ∈ F.

♦

Example 3.4. The assertions in the following are to be verified:

1. On the vector space c00, 〈x, y〉 :=
∑∞
j=1 x(j)y(j) defines an inner product.

2. On the vector space C[a, b], 〈, y〉 :=
∫ b
a
x(t)y(t)dt defines an inner product.

3. Let τ1, . . . , τn+1 be distinct real numbers. On the vector space Pn,

〈p, q〉 :=
∑n+1
i=1 p(τi)q(τi) defines an inner product.

♦

Exercise 3.5. Let V be an inner product space. Prove the following:

1. For x ∈ V , 〈x, u〉 = 0∀u ∈ V=⇒x = 0.

2. For u ∈ V , if f : V → F is defined by f(x) = 〈x, u〉 for all x ∈ V , then f ∈ V ′.

3. If S ⊆ V is such that span(S) = V , then for every x ∈ V ,

〈x, u〉 = 0 ∀u ∈ S =⇒ x = 0.

4. Let u1, u2, . . . , un be linearly independent vectors in V and let x ∈ V . Then

〈x, ui〉 = 0 ∀ i ∈ {1, . . . , n} ⇐⇒ 〈x, y〉 = 0 ∀ y ∈ span{u1, . . . , un}.

In particular, if {u1, u2, . . . , un} is a basis of V , then

〈x, ui〉 = 0 ∀ i = 1, . . . , n ⇐⇒ x = 0.

♦

Exercise 3.6. Let V be an inner product space. Show that, for each y ∈ V , the map x 7→ 〈x, y〉 is a

linear functional on V . ♦
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Exercise 3.7. Let V = c00 with usual inner product, and let f(x) =
∑∞
j=1 x(j) for x ∈ c00. Show

that f ∈ V ′, but there does not exist y ∈ c00 such that f(x) = 〈x, y〉 for all x ∈ c00. ♦

THEOREM 3.8. (Parallelogram law) Let V be an inner product space and x, y ∈ V . Then

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2).

Definition 3.9. Let V be an inner product space and x ∈ V .

1. Vectors x, y are said to be orthogonal vectors if 〈x, y〉 = 0, and in that case we write x ⊥ y.

2. A subset S of V said to be an orthogonal set if x ⊥ y for every x, y ∈ V with x 6= y.

3. A subset S of V said to be an orthonormal set if it is an orthogonal set and ‖x‖ = 1 for x ∈ S.

4. For a subset S of V , then set

S⊥ := {x ∈ V : x ⊥ u ∀u ∈ S}

is called the orthogonal compliment of S.

♦

THEOREM 3.10. Every orthogonal set which does not contain 0 in it is a linearly independent set.

In particular, every orthonormal set is linearly independent.

THEOREM 3.11. (Pythagoras2 theorem) Let V be an inner product space and x, y ∈ V . If

x ⊥ y, then

‖x+ y‖2 = ‖x‖2 + ‖y‖2.

THEOREM 3.12. (Cauchy–Schwarz inequality) Let V be an inner product space. Then for

every x, y ∈ V ,

|〈x, y〉| ≤ ‖x‖ ‖y‖. (∗)

Equality holds if and only if x and y are linearly dependent.

Proof. If y = 0, then clearly the inequality holds. Hence, assume that y 6= 0, and let u :=
〈x, y〉
‖y‖2

.

Then we note that

x− u ⊥ u

so that, writing x = u+ (x− u) and using by Pythagoras theorem we obtain

‖x‖2 = ‖u‖2 + ‖x− u‖2. (∗∗)

Hence, ‖u‖2 ≤ ‖x‖2; equivalently,

|〈x, y〉| ≤ ‖x‖ ‖y‖.

Clearly, if x and y are linearly dependent, then equality holds in (∗). Conversely, from (∗∗), equality

holds in (∗) implies x = u and hence x and y are linearly dependent.

2Greek Philosopher and Mathematician born around 570 BC
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More generally we have the following:

THEOREM 3.13. Suppose {u1, . . . , un} is an orthonormal set in an inner product space V and

x ∈ V . Then

x−
n∑
i=1

〈x, ui〉ui ⊥ span{u1, . . . , un}

and
n∑
i=1

|〈x, ui〉|2 ≤ ‖x‖2.

Further, the following are equivalent:

1. x ∈ span{u1, . . . , un}

2. x =
∑n
i=1〈x, ui〉ui

3. ‖x‖2 =
∑n
i=1 |〈x, ui〉|2.

Definition 3.14. Let S := {u1, . . . , un} is an orthonormal set in an inner product space V .

1. The inequality in Theorem 3.13 is called the Bessel’s inequality.

2. For x ∈ span(S), the equality in Theorem 3.13 (2) is called the Fourier expansion of x.

3. For x ∈ span(S), the equality in Theorem 3.13 (3) is called the Parseval’s identity for x.

♦

Exercise 3.15. For (α1, . . . , αn) ∈ Fn and (β1, . . . , βn) ∈ Fn, show that

n∑
j=1

|αjβj | ≤
( n∑
j=1

|αj |2
) 1

2
( n∑
j=1

|βj |2
) 1

2

.

♦

Exercise 3.16. For x, y ∈ F(N) prove that

∞∑
j=1

|αjβj | ≤
( ∞∑
j=1

|αj |2
) 1

2
( ∞∑
j=1

|βj |2
) 1

2

.

Hint: Use Exercise 10. ♦

Exercise 3.17. Let

`2 = {x ∈ F(N) :

∞∑
j=1

|x(j)|2 <∞}.

Prove that

1. `2 is a subspace F(N).
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2. For x, y ∈ `2,

∞∑
j=1

|x(j)y(j)| converges.

3. 〈x, y〉 :=

∞∑
j=1

|x(j)y(j)| defines an inner product on `2.

♦

Using Cauchy-Schwarz inequality we obtain the following:

THEOREM 3.18. Let V be an inner product space and x, y ∈ V . For every x, y ∈ V ,

‖x+ y‖ ≤ ‖x‖+ ‖y‖.

COROLLARY 3.19. Let V be an inner product space. Then the map (x, y) 7→ ‖x− y‖ is a metric

on V .

Definition 3.20. The metric defined in Corollary 3.19 is called the metric induced by the inner

product. ♦

Definition 3.21. An inner product space V is called a Hilbert space if it is complete with respect

to the metric induced by the inner product. ♦

Exercise 3.22. For (α1, . . . , αn) ∈ Fn and (β1, . . . , βn) ∈ Fn, show that( n∑
j=1

|αj + βj |2
) 1

2 ≤
( n∑
j=1

|αj |2
) 1

2

+
( n∑
j=1

|βj |2
) 1

2

.

♦

Exercise 3.23. For x, y ∈ F(N) prove that( ∞∑
j=1

|αj + βj |2
) 1

2 ≤
( ∞∑
j=1

|αj |2
) 1

2

+
( ∞∑
j=1

|βj |2
) 1

2

.

Hint: Use Exercise 12. ♦

Exercise 3.24. Let V be an inner product space. Show that

1. ‖x− y‖ ≥ ‖x‖ − ‖y‖ for all x, y ∈ V ,

2. x 7→ ‖x‖ is continuous on V ,

3. S ⊆ V implies S⊥ is a closed subset of V .

♦

Definition 3.25. An orthonormal set E in an inner product space V is called an orthonormal basis

if it is a maximal orthonormal set. ♦
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THEOREM 3.26. Let V be an inner product space. If E is a basis of V which is also an orthonormal

set, then it is an orthonormal basis.

Proof. Suppose E is a basis of V which is also an orthonormal set. If E is not an orthonormal

basis, then there exists an orthonormal set Ẽ ⊇ E such that Ẽ 6= E. In particular there exists

x ∈ Ẽ \E. Then 〈x, u〉 = 0 for every u ∈ E so that x = 0 which contradicts the fact that Ẽ is linearly

independent.

Remark 3.27. An orthonormal basis need not be a basis: For example, consider the inner product

space `2 and E = {e1, e2, . . .}, where ej(i) = δij . Then E is an orthonormal basis, since

〈x, ej〉 = 0 ∀ j ∈ ν =⇒ x = 0.

But, E is not a basis of `2. For instance ( 1
1 ,

1
2 ,

1
3 , . . .) in `2 is not in the span of E. ♦

Now we show that for a finite dimensional inner product space, every orthonormal basis is a basis.

For this, first we observe the following.

THEOREM 3.28. (Gram-Schmidt orthogonalization process) Let V be an inner product space

and {x1, . . . , xn} be an ordered linearly independent set for n ≥ 2. Let u1 = x1 and for j = 1, . . . , n−1,

let

uj+1 = xj+1 −
j∑
i=1

〈xj+1, ui〉
‖ui‖2

ui.

Then {u1, . . . , un} is an orthonormal set and

span{u1, . . . , uj} = span{x1, . . . , xj}, j = 1, . . . , n.

COROLLARY 3.29. Every finite dimensional inner product space has an orthonormal basis, and

every orthonormal basis of a finite dimensional inner product space is a basis.

As a corollary to Theorem 3.13 we have the following:

THEOREM 3.30. Let V be a finite dimensional inner product space and {u1, . . . , un} be an or-

thonormal basis of V . Then the following hold.

1. (Fourier expansion) For all x ∈ V , x =
∑n
j=1〈x, uj〉uj, and

2. (Riesz representation theorem) For every f ∈ V ′, there exists a unique y ∈ V such that

f(x) = 〈x, y〉 for all x ∈ V .

Proof. Part 1 follows from Theorem 3.13. For part 2, let f ∈ V ′ and x ∈ V . From part 1,

f(x) =

n∑
j=1

〈x, uj〉f(uj) = 〈x,
n∑
j=1

f(uj)uj〉.

Thus, f(x) = 〈x, y〉, where y =
∑n
j=1 f(uj)uj .

Uniqueness follows easily (Write details!).
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COROLLARY 3.31. Let V1 and V2 be a inner product spaces and A : V1 → V2 be a linear trans-

formation. If V1 is finite dimensional, then there exists a unique linear transformation B : V2 → V1

such that

〈Ax, y〉 = 〈x,By〉 ∀ (x, y) ∈ V1 × V2.

Proof. Let {u1, . . . , un} be an orthonormal basis of V1 and x ∈ V1. Since x =
∑n
j=1〈x, uj〉uj , for every

y ∈ V2, we have

〈Ax, y〉 =

〈
n∑
j=1

〈x, uj〉Auj , y

〉
=

n∑
j=1

〈x, uj〉〈Auj , y〉 =

n∑
j=1

〈x, 〈Auj , y〉uj〉 =

〈
x,

n∑
j=1

〈Auj , y〉uj

〉
.

Thus, 〈Ax, y〉 = 〈x,By〉 for all (x, y) ∈ V1 × V2, where

By :=

n∑
j=1

〈Auj , y〉uj .

It can be easily seen (Write details!) that B : V2 → V1 is a linear transformation and it is the unique

linear transformation satisfying 〈Ax, y〉 = 〈x,By〉 for all (x, y) ∈ V1 × V2.

Definition 3.32. The transformation B in Corollary 3.31 is called the adjoint of A, and it is usually

denoted by A∗. ♦

Definition 3.33. Let V be a finite dimensional inner product space and A : V → V be a linear

transformation. Then A is called a

1. self-adjoint operator if A∗ = A,

2. normal operator if A∗A = AA∗,

3. unitary operator if A∗A = I = AA∗.

♦

Observe the following:

• If A is self adjoint, the 〈Ax, x〉 ∈ R for every x ∈ X.

• If A is normal, then ‖Ax‖ = ‖A∗x‖ for every x ∈ X.

• If A is unitary, then 〈Ax,Ay〉 = 〈x, y〉 for every x, y ∈ X. In particular, images of orthogonal

vectors are orthogonal.

Exercise 3.34. 1. Let V = F3 with standard inner product. In the following, given vectors

x, y, z ∈ F3 construct orthonormal vectors u, v, w in F3 such that span{u, v} = span{x, y} and

span{u, v, w} = span{x, y, z}.

(a) x = (1, 0, 0), y = (1, 1, 0), z = (1, 1, 1);
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(b) x = (1, 1, 0), y = (0, 1, 1), z = (1, 0, 1).

2. Let dim(V ) = n and let E = {u1, . . . , un} be an ordered orthonormal set which is a basis of V .

Let A : V → V be a linear transformation. Show that [A]E,E = (〈Auj , ui〉). [Hint: Use Fourier

expansion.]

3. Let dim(V ) = n and let E = {u1, . . . , un} be an ordered orthonormal set which is a basis of

V . Let A,B : V → V be a linear transformations satisfying 〈Ax, y〉 = 〈x,By〉 for all x, y ∈ V .

Show that [B]E,E = [A]
T

E,E , conjugate transpose of [A]E,E .

4. Let E1 = {u1, . . . , un} and E2 = {v1, . . . , vm} be an ordered orthonormal bases of inner product

spaces V1 and V2, respectively. If A : V1 → V2 is a linear transformation, then prove that

[A∗]E2,E1
= (bij), where bij = 〈Aui, uj〉.

♦

THEOREM 3.35. (Projection theorem) Let V be an inner product space and V0 be a finite

dimensional subspace of V . Then

V = V0 + V ⊥0 .

In particular, for every x ∈ V , there exists a unique pair (y, z) ∈ V0 × V ⊥0 such that x = y + z.

Proof. Let {u1, . . . , un} be an orthonormal basis for V0. For x ∈ V , let y =
∑n
j=1〈x, uj〉uj . Then we

see that x = y + (x− y) with y ∈ V0 and x− y ∈ V ⊥0 . Uniqueness follows easily (Write details!).

COROLLARY 3.36. (Best approximation) Let V be an inner product space and V0 be a finite

dimensional subspace of V . Then for every x ∈ V , there exists a unique pair y ∈ V0 such that

‖x− y‖ = inf
u∈V0

‖x− u‖.

Proof. Let x ∈ V and let (y, z) ∈ V0 × V ⊥0 be as in Theorem 3.35. Then, x − y = z ∈ V ⊥0 and for

every u ∈ V0, y − u ∈ V0 so that by Pythagoras theorem,

‖x− u‖2 = ‖(x− y) + (y − u)‖2 = ‖x− y‖2 + ‖y − u‖2.

Thus, ‖x− y‖ ≤ ‖x− u‖ for all u ∈ V0 so that

‖x− y‖ = inf
u∈V0

‖x− u‖.

If there is also y1 ∈ V0 such that ‖x− y1‖ = inf
u∈V0

‖x− u‖, then we have

‖x− y1‖ = ‖x− y‖

and hence, again by Pythagoras theorem,

‖x− y1‖2 = ‖(x− y) + (y − y1)‖2 = ‖x− y‖2 + ‖y − y1‖2.

Thus, we obtain ‖y − y1‖ = 0.
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Exercise 3.37. Let V be an inner product space and V0 be a finite dimensional subspace of V . For

x ∈ V , let (y, z) be the unique element in V0 × V ⊥0 such that x = y + z. Let P,Q : V → V be defined

by P (x) = y and Q(x) = z. Prove that P and Q are liner transformations satisfying the following:

R(P ) = V0, R(Q) = V ⊥0 , P 2 = P, Q2 = Q, P +Q = I,

〈Pu, v〉 = 〈u, Pv〉 ∀u, v ∈ V, ‖x− Px‖ ≤ ‖x− u‖ ∀u ∈ V0.

♦

Exercise 3.38. Let V be an inner product space and V0 be a subspace of V and let x ∈ V and y ∈ V0.

Prove the following:

1. If 〈x− y, u〉 = 0 ∀u ∈ V0 =⇒ ‖x− y‖ = inf
u∈V0

‖x− u‖.

2. If span(S) = V0 and 〈x− y, u〉 = 0 ∀u ∈ S =⇒ ‖x− y‖ = inf
u∈V0

‖x− u‖.

♦

Exercise 3.39. Let V be an inner product space, V0 be a finite dimensional subspace of V and x ∈ V .

Let {u1, . . . , uk} be a basis of V0. Prove that for y =
∑k
j=1 αjuj ,

〈x− y, u〉 = 0 ∀u ∈ V0 ⇐⇒
k∑
j=1

〈uj , ui〉αj = 〈x, ui〉, i = 1, . . . , k.

Further, prove that there exists a unique (α1, . . . , αk) ∈ Fk such that

k∑
j=1

〈uj , ui〉αj = 〈x, ui〉, i = 1, . . . , k,

and in that case ‖x− y‖ = inf
u∈V0

‖x− u‖. ♦

Exercise 3.40. 1. Let V = C[0, 1] with inner product: 〈f, g〉 :=

∫ 1

0

f(t)g(t)dt. Let x(t) = t5.

Find best approximation for x from the space V0, where

(i)V0 = P1, (ii)V0 = P2, (iii)V0 = P3, (iv)V0 = P4, (v)V0 = P5.

2. Let V = C[0, 2π] with inner product: 〈f, g〉 :=

∫ 2π

0

f(t)g(t)dt. Let x(t) = t2. Find best

approximation for x from the space V0, where

V0 = span{1, sin t, cos t, sin 2t, cos 2t}.

♦

Exercise 3.41. Let V = C[0, 1] with inner product: 〈f, g〉 :=

∫ 1

0

f(t)g(t)dt for f, g ∈ C[0, 1]. Let

x(t) = sin t. Find the best approximation for x from the subspace V0 := span{u1, u2, u3}}, where

u1(t) = 1, u2(t) = t, u3(t) = t2. ♦
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4 Eigenvalues and Eigenvectors

4.1 Definition and Examples

Definition 4.1. Let V be a vector space (over a field F) and T : V → V be a linear operator. A

scalar λ is called an eigenvalue of T if there exists a non-zero x ∈ V such that

Tx = λx,

and in that case x is called an eigenvector of T corresponding to the eigenvalue λ.

The set of all eigenvalues of T is called the eigen-spectrum or point spectrum of T , and we

denote it by σeig(T ). ♦

Let T : V → V be a linear operator and λ ∈ F. Observe:

• λ ∈ σeig(T ) ⇐⇒ T − λI is not one-one.

• A non-zero x ∈ V is an eigenvector of T corresponding to λ ∈ σeig(T ) ⇐⇒ x ∈ N(A−λI)\{0}.

• The set of all eigenvectors T corresponding to λ ∈ σeig(T ) is the set N(A− λI) \ {0}.

Definition 4.2. Let T : V → V be a linear operator and λ be an eigenvalue of T .

1. The subspace N(T − λI) of V is called the eigenspace of T corresponding to the eigenvalue λ.

2. dim[N(T − λI)] is called the geometric multiplicity of λ.

♦

Remark 4.3. If V is the zero space, then zero operator is the only operator on V , and it does not

have any eigenvalue as there is no non-zero vector in V . ♦

Example 4.4. Let A ∈ Rn×n, and consider it as a linear operator from Rn to itself. We know that

• A is not one-one if and only if

• columns of A are linearly dependent if and only if

• det(A) = 0.

Thus, λ ∈ σeig(A) ⇐⇒ det(A− λI) = 0. ♦
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4.2 Existence of eigenvalues

Note that for a given A ∈ Rn×n, there need not exist λ ∈ R such that det(A− λI) = 0. For example,

consider n = 2 and

A =

[
0 1

−1 0

]
.

This matrix has no eigenvalues!

However, if A ∈ Cn×n, then, by the fundamental theorem of algebra, there exists λ ∈ C such that

det(A− λI) = 0. Thus, in this case

σeig(A) 6= ∅.

Now, recall that if V is a finite dimensional vector space, say of dimension n, and {u1, . . . , un} is a

basis of V and if T : V → V is a linear transformation, then

• T is one-one ⇐⇒ columns of [T ]EE are linearly independent,

and hence, in this case,

• λ ∈ σeig(T ) ⇐⇒ det([T ]EE − λI) = 0.

Note that the above equivalence is true for any basis E of V . Hence, eigenvalues of a linear operator

T can be found by finding the zeros of the polynomial det([T ]EE − λI) in F. This also shows that:

THEOREM 4.5. If V is a finite dimensional over an algebraically closed field F, then every linear

operator on V has atleast one eigenvalue

Recall from algebra that C is an algebraically closed field, whereas R and Q are not algebraically

closed.

We shall give a proof for the above theorem without relying on the concept of determinant. Before

that let us observe that the conclusion in the above theorem need not hold if the space is infinite

dimensional.

Example 4.6. (i) Let V = P, the space of all polynomials over F, which is either R or C. Let

Tp(t) = tp(t), p(t) ∈ P.

Note that for λ ∈ F and p(t) ∈ P,

Tp(t) = tp(t) ⇐⇒ p(t) = 0.

Hence, σeig(T ) = ∅.

(ii) Let V = c00 and T be the right shift operator on V , i.e.,

T (α1, α2, . . .) = (0, α1, α2, . . .).

Then we see that σeig(T ) = ∅. ♦
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Proof of Theorem 4.5 independent of determinant. Let V be an n dimensional vector space

over an algebraically closed field F. Let x be a non-zero vector in V . If Tx = 0, then 0 is an eigenvalue.

Assume that Tx 6= 0. Then we known that {x, Tx, . . . , Tnx} is linearly dependent, so that there exist

α0, α1, . . . , αk in F with k{1, . . . , n} such that ak 6= 0 and

α0x+ α1Tx+ · · ·+ αkT
kx = 0,

i.e.,

(α0I + α1T + · · ·+ αkT
k)x = 0.

Thus,

p(T )x = 0,

where p(t) := α0 + α1t + · · · + αkt
k. By fundamental theorem of algebra, there exist λ1, . . . , λk in F

such that

p(t) = αk(t− λ1) · · · (t− λk).

Since p(T )x = 0, we have

αk(T − λ1I) · · · (T − λkI)x.

This shows that atleast one of T − λ1I, . . . , T − λkI is not one-one. Thus, at least one of λ1, . . . , λk

is an eigenvalue of T , and hence, σeig(T ) 6= ∅.

Can we show existence of an eigenvalue by imposing more conditions on the space V and the

operator? Here is an answer in this respect.

THEOREM 4.7. Let V be a non-zero finite dimensional inner product space over F which is either

R or C, and T be a self adjoint operator on V . Then σeig(T ) 6= ∅, σeig(T ) ⊆ R.

Proof. Let x be a non-zero vector in V such that Tx = 0. As in the proof of Theorem 4.5, let

p(t) := α0 + α1t+ · · ·+ αkt
k be such that αk 6= 0 and

p(T )x = 0.

Let λ1, . . . , λk in C be such that

p(t) = αk(t− λ1) · · · (t− λk).

If λj 6∈ R for some j, then we know that λj is also a zero of p(t). So, there is ` such that λ` = λj .

Writing λj = αj + iβj with αj , βj ∈ R and βj 6= 0, we have

(t− λj)(t− λ`) = [t− (αj + iβj)][t− (αj − iβj)] = (t− αj)2 + β2
j .

Since p(T )x = 0, it follows that either there exists some m such that λm ∈ R and T − λmI is not

one-one or there exists some j such that λj 6∈ R and (T −αjI)2 +β2
j I is not one-one. In the first case,

λm ∈ R is an eigenvalue. In the latter case, there exists u 6= 0 in V such that

[(T − αjI)2 + β2
j I]u = 0.
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Now, using the self adjointness of T ,

〈[(T − αjI)2 + β2
j I]u, u〉 = 〈(T − αjI)2u, u〉+ β2

j I〈u, u〉

= 〈(T − αjI)u, (T − αjI)u〉+ β2
j I〈u, u〉.

Since u 6= 0, it follows that βj = 0 and (T − αjI)u = 0. Thus, T has a real eigenvalue.

Next, suppose that λ ∈ σeig(T ). If x is an eigenvector corresponding to λ, then we have

λ〈x, x〉 = 〈λx, x〉 = 〈Tx, x〉 = 〈x, Tx〉 = 〈x, λx〉 = λ〈x, x〉.

Hence, λ ∈ R.

THEOREM 4.8. Eigenvectors corresponding to distinct eigenvalues of a linear operator are linearly

independent.

Proof. Let λ1, . . . λn be eigenvalues of a linear operator T : V → V and let u1, . . . , un be eigenvectors

corresponding to λ1, . . . , λn, respectively. We prove the result by induction:

Let n = 2, and let α1, α2 such that α1u1 + α2u2 = 0. Then

T (α1u1 + α2u2) = 0, λ2(α1u1 + λ2α2u2) = 0

so that

α1λ1u1 + α2λ2u2 = 0 (i), α1λ2u1 + α2λ2u2 = 0. (ii)

Hence, (ii)− (i) implies

α1(λ2 − λ1)u1 = 0.

Since λ2 6= λ1 we have α1 = 0. Hence, from the equation α1u1 + α2u2 = 0, we obtain α2 = 0. Next,

assume that the result is true for n = k for some k ∈ N , 2 ≤ k < n. Let α1, . . . , αk+1 be such that

α1u1 + . . .+ αk+1uk+1 = 0. (iii)

Since

T (α1u1 + . . .+ αk+1uk+1) = 0, λn(α1u1 + . . .+ αk+1uk+1) = 0,

we have

α1λ1u1 + . . .+ αk+1λk+1uk+1) = 0 (iv), α1λnu1 + . . .+ αk+1λk+1uk+1) = 0. (v)

Hence, (v)− (iv) implies

α1(λ1 − λk+1)u1 + . . .+ αk(λk − λk+1)uk = 0.

By induction assumption, u1, . . . , uk are linearly independent. Since λ1, . . . , λk, λk+1 are distinct, it

follows that α1 = 0, α − 2 =, . . . , αk = 0. Hence, from (iii), αk+1 = 0 as well. This completes the

proof.
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LEMMA 4.9. Let V be a non-zero finite dimensional inner product space over F which is either R
or C, and T be a normal operator on V . Let λ ∈ F and x ∈ V . Then

Tx = λx ⇐⇒ T ∗x = λ̄x.

Proof. Since T is normal, i.e., T ∗T = TT ∗, it can be seen that T − λI is also a normal operator.

Indeed,

(T − λI)(T ∗ − λ̄I) = TT ∗ − λ̄T − λT ∗ + |λ|2I = T ∗T − λ̄T − λT ∗ + |λ|2I = (T ∗ − λ̄I)(T − λI).

Thus,

‖(T ∗ − λ̄I)x‖2 = 〈(T ∗ − λ̄I)x, (T ∗ − λ̄I)x〉

= 〈(T − λI)(T ∗ − λ̄I)x, x〉

= 〈(T ∗ − λ̄I)(T − λ̄I)x, x〉

= 〈(T − λ̄I)x, (T − λI)x〉

= ‖(T − λI)x‖2.

Hence, Tx = λx ⇐⇒ T ∗x = λ̄x.

THEOREM 4.10. Let V be a non-zero finite dimensional inner product space over F which is either

R or C, and T be a normal operator on V . Then eigenvectors associated with distinct eigenvalues are

orthogonal. In particular,

λ 6= µ =⇒ N(T − λI) ⊥ N(T − µI).

Proof. Let T be a normal operator and let λ and µ be distinct eigenvalues of T with corresponding

eigenvectors x and y, respectively. Then

λ〈x, y〉 = 〈λx, y〉 = 〈Tx, y〉. = 〈x, T ∗y〉 = 〈x, µ̄y〉 = µ〈x, y〉

so that

(λ− µ)〈x, y〉 = 0.

Since λ 6= µ, we have 〈x, y〉 = 0.

4.3 Diagonalizability

We observe:

If V is a finite dimensional vector space and T be a linear operator on V such that there

is a basis E for V consisting of eigenvectors of T , then [T ]EE is a diagonal matrix.

In view of the above observation we have the following definition.
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Definition 4.11. Let V be a finite dimensional vector space and T be a linear operator on V . Then

T is said to be diagonalizable if there is a basis E for V consisting of eigenvectors of T such that

[T ]EE is a diagonal matrix. ♦

THEOREM 4.12. Let V be a finite dimensional vector space and T be a linear operator on V . Then

T is diagonalizable if and only if there are distinct λ1, . . . , λk in F such that

V = N(T − λ1I) + · · ·+N(T − λkI).

Look at the following example.

Example 4.13. Consider the matrix

A =

[
0 1

0 0

]
.

We observe that A as a linear operator on R2 has only one eigenvalue which is 0 and its geometric

multiplicity is 1. Hence there is no basis for R2 consisting of eigenvectors of A. Hence, the above

operator is not diagonalizable. ♦

Remark 4.14. Let V be an n- dimensional vector space and T be a linear operator on V . Suppose

T is diagonalizable. Let {u1, . . . , un} be a basis of V consisting of eigenvectors of T , and let λj ∈ F
be such that uj = λjuj for j = 1, . . . , n. Let use the notation U := [u1, . . . , un] for a map from Fn to

V defined by

[u1, . . . , un]


α1

...

αn

 = α1u1 + · · ·αnun.

Then we have

TU = T [u1, . . . , un] = [Tu1, . . . , Tun] = [λ1u1, . . . , λnun].

Thus, using the standard basis {e1, . . . , en} of Fn, we have

TUej = λjej , j = 1, . . . , n.

Thus,

TU = UΛ,

equivalently,

U−1TU = Λ,

where Λ := diag(λ1, . . . , λn), the diagonal matrix with diagonal entries λ1, . . . , λn. If T itself is an

n× n-matrix, then the above relation shows that T is similar to a diagonal matrix. ♦

Under what condition on the space V and operator T can we say that T is diagonalizable?

THEOREM 4.15. Let V be a finite dimensional vector space, say dim(V ) = n, and T be a linear

operator on V .
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(i) If T has n distinct eigenvalues, then T is diagonalizable.

(ii) If T has an eigenvalue λ such that N(T −λI) is a proper subspace of N(T −λI)2, then T is not

diagonalizable.

Proof. (i) Follows from Theorem 4.8.

(ii) Assume for a moment that T is diagonalizable. Then by Theorem 4.12, there are distinct

λ1, . . . , λk in F such that

V = N(T − λ1I) + · · ·+N(T − λkI).

Let x ∈ N(T − λ1)2, and let xj ∈ N(T − λj) be such that

x = x1 + · · ·+ xk.

Then

(T − λ1I)x = (T − λ1I)x1 + · · ·+ (T − λ1I)xk.

We observe that (T − λ1I)x ∈ N(T − λ1I) and (T − λ1I)xj ∈ N(T − λjI) for j = 1, . . . , k. Hence,

(T − λ1I)(x − x1) = 0. Consequently, x ∈ N(T − λ1I). Since N(T − λ1) ⊆ N(T − λ1)2, we obtain

that N(T − λ1I)2 = N(T − λ1I). Similarly, we have N(T − λjI)2 = N(T − λjI) for j = 1, . . . , k.

In view of the above theorem, we introduce the following definition.

Definition 4.16. An eigenvalue λ of a linear operator T : V → V is said to be defective if N(T−λI)

is a proper subspace of N(T − λI)2. ♦

THEOREM 4.17. Let T be a self-adjoint operator on an inner product space V . Then every eigen-

value of T is non-defective.

Proof. Since T is self-adjoint, for x ∈ V ,

〈(T − λI)2x, x〉 = 〈(T − λI)x, (T − λI)x〉.

Hence, N(T − λI)2 = N(T − λI).

Still it is not clear from whatever we have proved whether a self-adjoint operator on a finite

dimensional space is diagonalizable or not. We shall take up this issue in the next section. Before

that let us observe some facts:

• For any linear operator T : V → V ,

{0} ⊆ N(T ) ⊆ N(T 2) ⊆ N(T ) · · · ⊆ N(Tn) ⊆ N(T ) · · · .
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• If there exists k ∈ N such that

N(T k) = N(T k+1)

then

N(T k) = N(T k+j) ∀ j ∈ N.

• If V is finite dimensional and N(T ) 6= {0}, then there exists k ∈ N such that

N(T k−1) 6= N(T k) = N(T k+j) ∀ j ∈ N.

Definition 4.18. Let V be finite dimensional space and λ be an eigenvalue of T . Then the number

` := min{k : N(T − λI)k−1 6= N(T − λI)k = N(T − λI)k+1}

is called the ascent or index of λ. ♦

Note that:

• If ` is the ascent of an eigenvalue λ, then

N(T − λI)` =

∞⋃
k=1

N(T − λI)k.

Definition 4.19. Let V be finite dimensional space and λ be an eigenvalue of T with ascent `. Then

the space N(T −λI)` is called the generalized eigen-space of T corresponding to the eigenvalue λ.

Members of a generalized eigen-space are called generalized eigenvectors. ♦

4.4 Spectral representation of self adjoint operators

A natural question is whether every self-adjoint operator on a finite dimensional inner product space

is diagonalizable. The answer is in affirmative. In order to prove this, we shall make use of a definition

and a preparatory lemma.

Definition 4.20. Let V be a vector space and T be a linear operator on V . A subspace V0 of V is

said to be invariant under T if T (V0) ⊆ V0, that is, for every x ∈ V , x ∈ V0 =⇒Tx ∈ V0, and in that

case, we say that V0 is an invariant subspace of T . ♦

LEMMA 4.21. Let T be a self-adjoint operator on an inner product space V . Let V0 of V be an

invariant subspace of T . Then

(i) V ⊥0 is invariant under T ,

(ii) T0 := T|V0 : V0 → V0, the restriction of T to V0, in self-adjoint.
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Proof. (i) Suppose V0 is invariant under T . Then for every x ∈ V ⊥0 and u ∈ V0, we have Tu ∈ V0,

and hence,

〈Tx, u〉 = 〈x, Tu〉 = 0

so that Tx ∈ V ⊥0 .

(ii) For every x, y ∈ V0, we have

〈T0x, y〉 = 〈Tx, y〉 = 〈x, Ty〉 = 〈x, T0y〉.

This completes the proof.

THEOREM 4.22. (Spectral representation) Let T be a self-adjoint operator on a finite dimen-

sional inner product space V , say of dimension n. Let λ1, . . . , λk be the distinct eigenvalues of T .

Then

V = N(T − λ1I) + · · ·+N(T − λkI).

Further, there exists a linear operator U : Fn → V such that U∗U = In, UU∗ = IV and [T ]EE = U∗TU

is a diagonal matrix with diagonal entries λ1, . . . , λk such that λj repeated nj := dim(T − λjI) times

for j = 1, . . . , k.

Proof. Let V0 = N(T − λ1I) + · · ·+N(T − λkI). By Projection Theorem,

V = V0 + V ⊥0 .

Its enough to show that V ⊥0 = {0}. Suppose V ⊥0 6= {0}. By Lemma 4.21, V ⊥0 is invariant under T

and the operator T1 := T|
V⊥0

: V ⊥0 → V ⊥0 , the restriction of T to V ⊥0 , is self-adjoint. By theorem 4.7,

T has an eigenvalue λ ∈ R. Let x ∈ V ⊥0 be a corresponding eigenvector. Now, since λ1x = T1x = Tx,

λ ∈ {λ1, . . . , λk}. Without loss of generality, assume that λ = λ1. Then x ∈ N(T − λ1I) ⊆ V0. Thus,

x ∈ V ⊥0 ∩ V0 = {0}, a contradiction. Hence, V ⊥0 = {0}, and

V = N(T − λ1I) + · · ·+N(T − λkI).

To see the remaining part, for each j ∈ {1, . . . , k}, let {uj1, . . . , ujnj} be an ordered orthonormal

basis of N(T − λjI). Then we see that

E = {u11, . . . , u1n1
, u21, . . . , u2n2

, . . . , uk1, . . . , uknk}

is an ordered orthonormal basis for V . To simplify the notation, let us write the above ordered E as

{u1, . . . , un} and µi, i = 1, . . . , n such that µnj−1+i = λi for i = 1, . . . , nj with n0 = 0 and j = 1, . . . , k.

Let J : V → Fn be the canonical isomorphism defined by

J(x) = [x]E , x ∈ V.

Then, we have J∗ = J−1 and U := J∗ satisfies

U∗U = JJ−1 = IV , UU∗ = J−1J = In, U∗TU = JTJ−1 = A := [T ]EE .
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Further,

Aej = JTJ−1ej = JTuj = J(µjuj) = µjJuj = µjej .

Thus, A := [T ]EE is a diagonal matrix with diagonal entries µ1, . . . , µn.

Remark 4.23. Recall that the U introduced in the proof of Theorem 4.22 is same as the operator

introduced in Remark 4.14, namely,

U = [u11, . . . , u1n1 , u21, . . . , u2n2 , . . . , uk1, . . . , uknk ].

♦

COROLLARY 4.24. (Spectral representation) Let T be a self-adjoint operator on a finite di-

mensional inner product space V , say of dimension n. Let λ1, . . . , λk be the distinct eigenvalues of T .

For each i, let {ui1, . . . , uini} be an ordered orthonormal basis of N(T − λiI). Then

Tx =

k∑
i=1

ni∑
i=1

λi〈x, uij〉uij , x ∈ V.

COROLLARY 4.25. (Spectral representation) Let T be a self-adjoint operator on a finite di-

mensional inner product space V , say of dimension n. Let λ1, . . . , λk be the distinct eigenvalues of T .

For each i ∈ {1, . . . , k}, let Pj be the orthogonal projection onto N(T − λiI). Then

T =

k∑
i=1

λiPi.

COROLLARY 4.26. (Diagonal representation) Let A ∈ Fn×n be a self adjoint matrix (i.e.,

hermitian if F = C and symmetric if F = R). Then there exists a unitary matrix U ∈ Fn×n such that

U∗TU is a diagonal matrix.

4.5 Singular value representation

Let T be a linear operator on a finite dimensional inner product space V . The we know that T ∗T is a

self adjoint operator. By spectral theorem, we know that V has an orthonormal basis E; {u1, . . . , un}
consisting of eigenvectors of T ∗T , and if T ∗Tuj = λjuj for j = 1, . . . , n (where λj ’s need not be

distinct), then

T ∗Tx =

n∑
j=1

λj〈x, uj〉uj , x ∈ V.

Note that

λj = λj〈uj , uj〉 = 〈λjuj , uj〉 = 〈T ∗Tuj , uj〉 = 〈Tuj , Tuj〉 = ‖Tuj‖2 ≥ 0.

Let λ1, . . . , λk be the nonzero (positive) numbers among λ1, . . . , λn. For j ∈ {1, . . . , k}, let us write

λj = s2j , where sj is the positive square-root of λj . Thus, writing vj =
Tuj
sj

, we obtain

Tuj = sjvj , T ∗vj = sjuj .
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Further, since x =
∑k
j=1〈x, uj〉uj , we have

Tx =

k∑
j=1

〈x, uj〉Tuj =

k∑
j=1

sj〈x, uj〉vj . (1)

Also,

〈x, T ∗y〉 = 〈Tx, y〉 =

〈
k∑
j=1

sj〈x, uj〉vj , y

〉
=

k∑
j=1

sj〈x, uj〉〈vj , y〉 =

〈
x,

k∑
j=1

sj〈y, vj〉uj

〉
.

Hence,

T ∗y =

k∑
j=1

sj〈y, vj〉uj . (2)

Observe that

sj〈vi, vj〉 = 〈vi, sjvj〉 = 〈vi, Tuj〉 = 〈T ∗vi, uj〉 = 〈siui, uj〉 = si〈ui, uj〉.

Therefore, {vj : j = 1, . . . , k} is an orthonormal set. From the representations (1) and (2), it can be

seen that

• {u1, . . . , uk} is an orthonormal basis of N(T )⊥, and

• {v1, . . . , vk} is an orthonormal basis of R(T ).

Definition 4.27. The numbers s1, . . . , sn are called the singular values of T and the set {(sj , uj , vj) :

j = 1, . . . , n} is called the singular system for T .

The representations (1) and (2) above are called the singular value representations of T and

T ∗, respectively. ♦

If we write

U0 = [u1, . . . , uk], V0 = [v1, . . . , vk]

as the operators on Fk defied as in Remark 4.14, then, in view of the relations Tuj = sjvj and

T ∗vj = siuj , we have

TU0 = V0S0, T ∗V0 = U0S,

where S0 = diag(s1, . . . , sk). Suppose n > k. If we extend the orthonormal sets {u1, . . . , uk} and

{v1, . . . , vk} to orthonormal bases {u1, . . . , un} and {v1, . . . , vn}, then for j = k + 1, . . . , n, uj ∈ n(T )

and vj ∈ R(T )⊥ so that,since R(T )⊥ = N(T ∗), we obtain

TU = V S, T ∗V = US,

where

U = [u1, . . . , un], V0 = [v1, . . . , vn], S = diag(s1, . . . , sn),

with sj = 0 for j > k. Thus, we have

V ∗TU = S, U∗T ∗V = S.
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4.6 Spectral decomposition

Throughout this section we assume that V is a finite dimensional space over C and T : V → V is a

linear operator.

In the following, if V1 and V2 are subspaces of V , then by V1 ⊕ V2 we mean V1 + V2 whenever

V1 ∩ V2 = {0}.

The main theorem, in this section, is the following.

THEOREM 4.28. Let λ1, . . . , λk be the distinct eigenvalues of T with ascents `1, . . . , `k be the

ascents of λ1, . . . , λk, respectively. Then

V = N(T − λ1I)`1 ⊕ · · · ⊕N(T − λkI)`k .

where each N(T −λjI)`j is invariant under T . In particular, T is diagonalizable if and only if ascent

of each eigenvalue of T is 1.

• Since ascent of each eigenvalue of a self adjoint operator on an inner product space, an immediate

corollary of the above theorem is Theorem 4.22.

For proving Theorem 4.28, we shall make use of the following lemma.

LEMMA 4.29. Let V be a finite dimensional vector space and T : V → V be a linear operator. Let

λ be an eigenvalue of T with ascent `. Then the following hold.

1. For every j ∈ N, N(T − λI)j and R(T − λI)j are invariant under T .

2. V = N(T − λI)` ⊕R(T − λI)`.

3. λ is an eigenvalue of T0 := T|
N(T−λI)`

, and λ is the only eigenvalue of T0.

4. If µ 6= λ, then for each j ∈ N, N(T − µI)j ∩N(T − λI)` = {0}.

Proof. 1. Let j ∈ N and x ∈ N(T − λI)j . Then

(T − λI)jTx = T (T − λI)jx = 0 =⇒Tx ∈ N(T − λI)j .

Hence, Tx ∈ N(T − λI)j . Let y ∈ R(T − λI)j . Then ∃x ∈ V such that (T − λI)jx = y. Hence,

Ty = T (T − λI)jx = (T − λI)jTx ∈ R(T − λI)j .

Hence, Ty ∈ R(T − λI)j .

2. Since dim(V ) < ∞ and since dim[N(T − λI)`] + dim[R(T − λI)`] = dim(V ), it is enough to

show that N(T − λI)` ∩R(T − λI)` = {0}.
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Suppose x ∈ N(T − λI)` ∩R(T − λI)` = {0}. Then, (T − λI)`x = 0 and there exists u ∈ V such

that x = (T − λI)`u. Then (T − λI)`x = (T − λI)2`u = 0 so that u ∈ N(T − λI)2` = N(T − λI)`.

Thus x = (T − λI)`u = 0.

3. Note that, if 0 6= x ∈ N(T − λI), then x ∈ N(T − λI)` and hence λx = Tx = T0x so that λ

is an eigenvalue of T0. Next suppose that µ ∈ C such that µ 6= λ and µ is an eigenvalue of T0 with a

corresponding eigenvector y ∈ N(T − λI)`. Then we have

0 = (T − λI)`y = (λ− µ)`y

which is a contradiction, since λ 6= µ and y 6= 0. Thus, λ is the only eigenvalue of T0.

4. By (2), it is enough to show that N(T − µI)j ⊆ R(T − λI)`. We shall prove this by induction.

Let j = 1 and x ∈ N(T − µI). By (2), there exists u ∈ N(T − λI)` and v ∈ R(T − λI)` such that

x = u+ v. Then

0 = (T − µI)x = (T − µI)u+ (T − µI)v.

Since (T − µI)u ∈ N(T − λI)` and (T − µI)v ∈ R(T − λI)`, by (2) we have (T − µI)u = 0. Now, if

u 6= 0, then it follows that, µ is also an eigenvalue of T0, which is a contradiction, due to (3). Thus,

u = 0 and x = v ∈ R(T − λI)`.

Next assume that N(T −µI)j ⊆ R(T −λI)` for some j ≥ 1. We have to show that N(T −µI)j+1 ⊆
R(T − λI)`. So let x ∈ N(T − µI)j+1. By (2), there exists u ∈ N(T − λI)` and v ∈ R(T − λI)` such

that x = u+ v. Then

0 = (T − µI)j+1x = (T − µI)j+1u+ (T − µI)j+1v.

Since (T − µI)j+1u ∈ N(T − λI)` and (T − µI)j+1v ∈ R(T − λI)`, by (2) we have (T − µI)j+1u = 0,

i.e., (T −µI)u ∈ N(T −µI)j ⊆ N(T −λI)`. But, by induction hypothesis, N(T −µI)j ⊆ R(T −λI)`.

Thus, (T −µI)u ∈ N(T −λI)` ∩R(T −λI)` = {0}. Thus, if u 6= 0, then µ is also an eigenvalue of T0.

which is a contradiction, due to (3). Thus, u = 0 and x = v ∈ R(T − λI)`.

Proof of Theorem 4.28. In view of Lemma 4.29, it is enough to prove that V is spanned by gener-

alized eigenvectors of T . We shall prove this by induction on dimension of V . The case of dim(V ) = 1

is obvious, for in this case, V is spanned by the eigenspace of T , as there is only one eigenvalue and

the generalized eigenspace corresponding to that is the eigenspace which is the whole space. Next

assume that the result is true for all vector spaces of dimension less than n, and let dim(V ) = n. Let

λ be an eigenvalue of T with ascent `. Then, by Lemma 4.29, V = N(T − λI)` + R(T − λI)` where

dim[R(T − λI)`] < n. Let T̃ := T|
R(T−λI)`

. By induction assumption, R(T − λI)` is spanned by the

generalized eigenvectors of T̃ . But, generalized eigenvectors of T̃ are generalized eigenvectors of T as

well. Thus both N(T − λI)` and R(T − λI)` are spanned by the generalized eigenvectors of T . This

completes the proof.

THEOREM 4.30. Let λ1, . . . , λk be the distinct eigenvalues of T with ascents of λ1, . . . , λk, respec-

tively. Let

p(t) = (t− λ1)`1 · · · (t− λk)`
k

.
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Then,

p(T ) = 0.

Further, if q(t) is a polynomial satisfying q(T ) = 0, then p(t) divides q(t).

Proof. Since (T − λrI)`r and (T − λsI)`s commute, it follows that

p(T )u = 0

for every u ∈ N(T − λiI)`i , i = 1, . . . , k. Hence, by Theorem 4.28, p(T )x = 0 for every x ∈ V .

Consequently, p(T ) = 0.

Next, let q(t) be a polynomial such that q(T ) = 0. Let µ1, . . . , µr be the distinct zeros of q(t) so

that

q(t) = a(t− µ1)n1 · · · (t− µr)nr

for some 0 6= a ∈ C. Since q(T ) = 0, for each j ∈ {1, . . . , k}, we have

a(T − µ1I)n1 · · · (T − µrI)nru = 0 ∀u ∈ N(T − λjI)`j . (∗)

Now, if µi 6= λj , then we know that (T − µiI)ni is one-one on N(T − λjI)`j . Hence, it follows that

there exists i such that µi = λj such that

(T − λjI)niu = 0 ∀u ∈ N(T − λjI)`j .

Taking u ∈ N(T −λjI)`j \N(T −λjI)`j−1, it follows that ni ≥ `j . Thus, {λ1, . . . , λk} ⊆ {µ1, . . . , µr}.
Without loss of generality, we can assume that

mj = λj so that nj ≥ `j for j = 1, . . . , k. Thus, p(t) divides q(t).

Definition 4.31. A monic polynomial p(t) is called a minimal polynomial for T if p(T ) = 0 and

for any polynomial q(t) with q(T ) = 0, p(t) divides q(t). ♦

• Theorem 4.30 shows that if λ1, . . . , λk are the distinct eigenvalues of T with ascents of λ1, . . . , λk,

respectively, then

p(t) := (t− λ1)`1 · · · (t− λk)`
k

is the minimal polynomial of T .

For the next definition we recall the concept of matrix representation:

Let V be a finite dimensional vector space, and let E1 := {u1, . . . , un} and E2 := {v1, . . . , vn} be

bases of V . Let T : V → V be a linear operator. Let Then

[T ]E1E1 = [J−1]E2E1 [T ]E2E2 [J ]E1E2 = [J ]−1E2E1
[T ]E2E2 [J ]E1E2 ,

where J : V → V is the isomorphism defined by

J(α1u1 + . . .+ αnun) = α1v1 + . . .+ αnvn.
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Hence, we have

det[T ]E1E1 = det[T ]E2E2 .

Thus, determinant of the matrix representation of an operator is independent of the basis with respect

to which it is represented.

Definition 4.32. Let E be a basis of V . The monic polynomial

qT (t) := det[tI − T ]EE

is called the characteristic polynomial of T , where E is any basis of V . ♦

4.7 Cayley-Hamilton theorem

We know that eigenvalues of T are the zeros of the characteristic polynomial qT (t). Thus, λ1, . . . , λk

are the distinct eigenvalues of T if and only if

qT (t) = (t− λ1)n1 · · · (t− λk)nk

with n1, . . . , nk in N such that n1 + · · ·+ nk = n := dim(V ).

THEOREM 4.33. (Cayley–Hamilton theorem)

qT (T ) = 0.

Proof. Recall that for operators T, T1, T2 : V → V and α ∈ C,

[T1 + T2]EE = [T1]EE + [T2]EE , [αT ]EE = α[T ]EE .

Hence, if qT (t) = tn + a1t
n−1 + . . .+ an−1t+ an, then

[qT (T )]EE = [T ]nEE + a1[T ]n−1EE + . . .+ an−1[T ]EE + an[I]EE

= qT ([T ]EE).

Recall that, by the Cayley–Hamilton theorem for matrices, we have qT ([T ]EE) = 0. Therefore,

[qT (T )]EE = 0 so that qT (T ) = 0.

Definition 4.34. Let λ be an eigenvalue of T and λ be an eigenvalue of T . Then the order of λ as a

zero of the characteristic polynomial qT (t) is called the algebraic multiplicity of λ. ♦

THEOREM 4.35. Let λ be an eigenvalue of T with ascent `. Then m := dim[N(T − λI)`] is the

algebraic multiplicity of λ.

In order to prove the above theorem we make use of the following observation.

PROPOSITION 4.36. Suppose V1 and V2 are invariant subspaces of a linear operator T : V → V

such that V = V1 ⊕ V2. Let T1 = T|V1 and T2 = T|V2 . Then

det(T ) = det(T1) det(T2).
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Proof. Writing x ∈ V as

x = x1 + x2 with x1 ∈ V1, x2 ∈ V2,

we have

Tx = T1x1 + T2x2.

Define T̃1, T̃2 : V → V by

T̃1x = T1x1 + x2, T̃2x = x1 + T2x2.

Then we have

T̃1T̃2x = T̃1(x1 + T2x2) = T1x1 + T2x2 = Tx.

Thus, with respect to any basis E of V , we have

[T ]EE = [T̃1]EE [T̃2]EE

and hence

det(T ) = det(T̃1) det(T̃2).

Next we show that

det(T̃1) = det(T1), det(T̃2) = det(T2).

For this, let E1 = {u1, . . . , ur} and E2 = {ur+1, . . . , un} be bases of V1 and V2 respectively. Consider

the basis E = E1 ∪ E2 for V . Then, we have

T̃1uj =

{
T1uj , j = 1, . . . , r,

uj , j = r + 1, . . . , s.
and T̃2uj =

{
uj , j = 1, . . . , r,

T2uj , j = r + 1, . . . , s.

Hence, we obtain,

det(T̃1) = det(T1), det(T̃2) = det(T2).

This completes the proof.

Proof of Theorem 4.35. Let K = N(T − λI)` and R = R(T − λI)`. We know that K and R are

invariant under T and V = K ⊕ R. Let T1 := T|K and T2 := T|R . We know that λ is the only

eigenvalue of T1. Also, observe that λ is not an eigenvalue of T2. Indeed, if x ∈ R such that T2x = λx,

then x ∈ N(T − λI) ⊆ K so that x = 0. By Proposition 4.36,

det(tI − T ) = det(tI1 − T1) det(tI2 − T2),

where I1 and I2 are identity operators on K and R respectively. Since det(λI2 − T2) 6= 0, it is clear

that the algebraic multiplicity of λ as an eigenvalue of T is same as the algebraic multiplicity of λ as

an eigenvalue of T1. Since λ is the only eigenvalue of T1, we obtain that m := dim(K) is the algebraic

multiplicity of λ.

Remark 4.37. Recall that if T is a self-adjoint operator on a finite dimensional inner product space,

then we have

T =

k∑
i=

λiPi
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where λ1, . . . , λk are the distinct eigenvalues of T and P1, . . . , Pk are the orthogonal projections onto

the eigenspaces N(T − λI), . . . , N(T − λkI), respectively.

Next suppose that V is a finite dimensional vector space and T is a diagonalizable operator. Again

let λ1, . . . , λk be the distinct eigenvalues of T . We know that

V = N(T − λI)⊕ · · ·N(T − λkI).

Hence, every x ∈ V can be written uniquely as

x = x1 + · · ·+ xk with xi ∈ N(T − λiI).

For i = 1, . . . , k, let Pi : V → V be defined by

Pix = xi, x ∈ V.

The, it can be easily seen that P 2
i = Pi so that Pi is a projection onto N(T − λiI). Hence,

I = P1 + · · ·+ Pk

and

T = TP1 + · · ·+ TPk =

k∑
i=1

λiPi.

Next, consider any linear operator finite dimensional vector space over C and let λ1, . . . , λk be the

distinct eigenvalues of T with ascents `, . . . , `k, respectively. Then, by spectral decomposition theorem,

we have

V = N(T − λI)⊕ · · ·N(T − λkI).

Hence, every x ∈ V can be written uniquely as

x = x1 + · · ·+ xk with xi ∈ N(T − λiI)`i .

Again, for i = 1, . . . , k, let Pi : V → V be defined by

Pix = xi, x ∈ V.

Then we have

I = P1 + · · ·+ Pk

and

T = TP1 + · · ·+ TPk =

k∑
i=1

λiPi +

k∑
i=1

(T − λiI)Pi.

Let Di = (T − λiI)Pi. Then we see that

D`i
i = 0 and D`i−1 6= 0.

Thus, Di is a nilpotent operator of index `i for i = 1, . . . , k. ♦
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4.8 Triangulization and Jordan representation

As in last section, we assume that V is a finite dimensional space over C and T : V → V is a linear

operator.

THEOREM 4.38. (Triangulization) There exists a basis E for V such that [T ]EE is a triangular

matrix.

Proof. First let us assume that T has only one eigenvalue λ with ascent `. Then V = N(T − λI)`. If

` = 1, then the result is obvious. In fact, in this case T is diagonalizable. So, assume that ` > 1. Let

Kj = N(T − λI)j and gj = dim(Kj), j = 1, . . . , `.

Then, we have K` = V and Kj is a proper subspace of Kj+1 for j = 1, . . . , `−1. Let E = {u1, . . . , un}
be a basis of V such that {u1, . . . , ugj} is a basis of Kj for j = 1, . . . , `. Then, {u1, . . . , ug1} is a basis

of K1 := N(T − λI) and

{ugj+1, . . . , ugj} ⊆ Kj+1 \Kj , j ∈ {1, . . . , `− 1}.

Further,

span({ugj+1, . . . , ugj+1
}) ∩Kj = {0}.

Note that for each k ∈ {1, . . . , n},

Tuk = λuk + (T − λI)uk.

Clearly, Tuk = λuk for k = 1, . . . , g1. If k ∈ {g1 + 1, . . . , n}, then there exists j ∈ {1, . . . , `− 1} such

that k ∈ {gj+1, . . . , gj+1}, i.e., k is such that uk ∈ {ugj+1, . . . , ugj+1}. Then we have (T −λI)uk ∈ Kj

so that Tuk takes the form

Tuk = λuk +

gj∑
i=1

α
(k)
i ui.

Thus, [T ]EE is a triangular matrix with every diagonal entry λ.

Next assume that the distinct eigenvalues of T are λ1, . . . , λr with `1, . . . , `r, respectively. Let

Vj := N(T − λI)`j , j = 1, . . . , r.

Let Tj : Vj → Vj be the restriction of T to Vj . Then we know that λj is the only eigenvalue of Tj . Let

Ej be a basis for Vj such that Aj := [Tj ]EjEj is a triangular diagonal matrix with diagonal entries

λj . Now, taking E = ∪rj=1Ej , we it follows that E is a basis of V and [T ]EE has block diagonal form

with blocks A1, . . . , Ar.

THEOREM 4.39. (Jordan form) There exists a basis E such that [T ]E = (aij), where

aii ∈ {λ1, . . . , λk}, aij =

{
0 if j < i and j > i+ 1,

0 or 1 if j = i+ 1
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Proof. In view of the fact that each N(T −λjI)`j is invariant under T and the spectral decomposition

theorem (Theorem 4.28), it is enough to consider the case of T having only one eigenvalue.

So, let λ be the only eigenvalue of T with ascent `. Then V = N(T − λI)`. If ` = 1, then we are

done. In fact, in this case T is diagonalizable. So, assume that ` > 1, and let

Kj = N(T − λI)j and gj := dim(Kj) for j ∈ {1, . . . , `}.

Then for j ∈ {1, . . . , ` − 1}, Kj is a proper subspace of Kj+1. Let Kj+1 = Kj ⊕ Yj+1, where Yj+1

is spanned by Kj+1 \ Kj . Let h1 = g1 and for j = 1, . . . , ` − 1, let hj+1 = gj+1 − gj . Thus,

hj+1 = dim(Yj+1), j = 1, . . . , `− 1, and h1 + · · ·+ h` = g` = dim(V ).

The idea is to identify linearly independent vectors u
(i)
j , j = 1, . . . , hi, in Ki \ Ki−1 for each

i = 1, . . . , ` so that their union is the basis of V with respect to which T has a the required form.

Now, let u
(`)
1 , . . . , u

(`)
h`

be a basis of Y`. Let us observe that following:

1. (T − λI)u
(`)
1 , . . . , (T − λI)u

(`)
h`

are linearly independent, and

2. (T − λI)u
(`)
j ∈ K`−1 \K`−2 for j = 1, . . . , h`, whenever ` > 2.

Let α1, . . . , αh` ∈ C be such that
∑h`
i=1 αi(T − λI)u

(`)
i = 0. Then

h∑̀
i=1

αiu
(`)
i ∈ N(T − λI) ⊆ K`−1.

Hence,
∑h`
i=1 αiu

(`)
i ∈ K`−1 ∩ Y` = {0} so that αi = 0 for i = 1, . . . , h`. Thus, (1) is proved. To

see (2), first we observe that (T − λI)u
(`)
j ∈ K`−1. Suppose (T − λI)u

(`)
j ∈ K`−2 for some j. Then

u
(`)
j ∈ K`−1 ∩ Y` = {0}, which is not possible. This proves (2).

Now, let us denote

u
(`−1)
j = (T − λI)u

(`)
j , j = 1, . . . , h`.

Find u
(`−1)
j ∈ K`−1 \ K`−2 for j = h` + 1, . . . , h`−1 so that u

(`−1)
j , j = 1, . . . , h`−1 are linearly

independent. Continuing this procedure to the next level downwards, we obtain a basis for V as

E = E` ∪ E`−1 ∪ · · · ∪ E1, Ei := {u(i)j : j = 1, . . . , hi}. (∗)

Note that

h1 + h2 + · · ·+ h` = g1 + (g2 − g1) + · · ·+ (g` − g`−1) = g`.

Also, Tu
(1)
j = λu

(1)
j , j = 1, . . . , h1 = g1 and for i > 1,

Tu
(i)
j = λu

(i)
j + (T − λI)u

(i)
j = λu

(i)
j + u

(i−1)
j , j = 1, . . . , hi.

Reordering the basis vectors in E appropriately, we obtain the required form of the matrix represen-

tation of T . Note that at the upper off-diagonal of [T ]E there are g1 − 1 number of 0’s and g` − g1
number of 1’s.
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5 Problems

5.1 (On Section 1: Vector spaces)

In the following, V denotes a vector space over a filed F.

For i, j ∈ N, we denote δij =

{
1, i = j,

0, i 6= j,

1. Prove that 0x = 0V and (−1)x = −x for all x ∈ V .

2. Prove that for x ∈ V and α ∈ F, if αx = 0, then either α = 0 or x = 0.

3. Verify (prove) the following:

(a) Rn with coordinate-wise addition and scalar multiplication is a vector space over R and

over Q, but not a vector space over C.

(b) Fn with coordinate-wise addition and scalar multiplication is a vector space over F but not

a vector space over a field F̃ ⊇ F with F̃ 6= F.

(c) Rm×n, the set of all real m × n matrices is a vector space over R under usual matrix

multiplication and scalar multiplication.

(d) Let Ω be a nonempty set. Then the set F(Ω,F), the set of all F-valued functions defined

on Ω, is a vector space over F with respect to the pointwise addition and pointwise scalar

multiplication.

Is the set of all scalar sequences a special case of the above?.

4. Which of the following subset of C3 a subspace of C3?

(a) {(α1, α2, α3) ∈ C3 : α1 ∈ R}.

(b) {(α1, α2, α3) ∈ C3 : either α1 = 0 or α2 = 0}.

(c) {(α1, α2, α3) ∈ C3 : α1 + α2 = 1 ∈ R}.

5. Which of the following subset of P a subspace of P?

(a) {x ∈ P : degree of x is 3}.

(b) {x ∈ P : 2x(0) = x(1)}.

(c) {x ∈ P : x(t) ≥ 0 for t ∈ [0, 1]}.

(d) {x ∈ P : x(t) = x(1− t)∀ t}.

6. Prove the following:

(a) The spaces Pn(F) and Fn+1 are isomorphic, and find an isomorphism.

(b) The space Rn := Rn×1, the space of all column n-vectors is isomorphic with Rn, and find

an isomorphism.
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(c) The space Rm×n is isomorphic with Rmn, and find an isomorphism.

7. Prove the assertions in the following:

(a) S = {(α1, α2) ∈ R2 : α1 + α2 = 0} is a subspace of R2.

(b) S = {(α1, α2, α3) ∈ R2 : α1 + α2 − α3 = 0} is a subspace of R3.

(c) For each k ∈ {1, . . . , n}, Sk = {(α1, . . . , αn) ∈ Fn : αk = 0} is a subspace of Fn.

(d) For n ∈ N with n ≥ 2 and each k ∈ {1, . . . , n− 1},
Sk = {(α1, . . . , αn) ∈ Fn : αi = 0∀i > k} is a subspace of Fn.

(e) For each n ∈ N, Pn is a subspace of P.

(f) For each n ∈ N, Vn := {x ∈ F(N,F) : x(j) = 0∀ j ≥ n} is a subspace of F(N,F), and

c00 :=
⋃∞
n=1 Vn is a subspace of F(N,F).

(Note that elements of W are sequences having only a finite number of nonzero entries.)

(g) For an interval Ω := [a, b] ⊆ R,

i. R(Ω), the set of all Riemann integrable real valued continuous functions defined on Ω

is a subspace of F(Ω,R).

ii. C(Ω) is a subspace of R(Ω)

iii. C1(Ω), the set of all real valued continuous functions defined on Ω and having contin-

uous derivative in Ω is a subspace of C(Ω).

iv. S = {x ∈ C(Ω) :
∫ b
a
x(t)dt = 0} is a subspace of C(Ω).

v. S = {x ∈ C(Ω) : x(a) = 0} is a subspace of C(Ω).

vi. S = {x ∈ C(Ω) : x(a) = 0 = x(b)} is a subspace of C(Ω).

(h) Let A ∈ Rm×n. Then

i. {x ∈ Rn : Ax = 0} is a subspace of Rn,

ii. {Ax : x ∈ Rn} is a subspace of Rm,

(i) {(α1, α2) : α1 + α2 = 0} is a subspace of R2.

(j) {(α1, α2) : α1 + α2 − α3 = 0} is a subspace of R3.

(k) For i ∈ {1, . . . , n}, let ei = (δi1, . . . , δin). Let V = Rn. Then {(α1, . . . , αn) ∈ Rn : αi =

0 for i > k} is a subspace of Rn.

(l) If V1 and V2 are subspaces of V , then V1 + V2 = span(V1 ∪ V2).

(m) If V1 and V2 are subspaces of V and if V1 ⊆ V2, then V1 ∪ V2 is a subspace of V .

(n) If V1 and V2 are subspaces of V , then V1 ∩ V2 is a subspace of V ; but, V1 ∪ V2 need not be

a subspace of V .

8. Let V be a vector space and S ⊆ V . Prove the following:

(a) span(S) is a subspace of V .

(b) If V0 is a subspace of V such that S ⊆ V0, then span(S) ⊆ V0.
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(c) S = span(S) if and only if S is a subspace of V .

9. Prove the assertions in the following:

(a) If V = R2, then span({(1,−1)} = {(α1, α2) : α1 + α2 = 0}.

(b) If V = R3, then span({(1,−1, 0), (1, 0, 1)} = {(α1, α2) : α1 + α2 − α3 = 0}.

(c) For i ∈ {1, . . . , n}, let ei = (δi1, . . . , δin). Let V = Rn. Then

i. span({e1, . . . , ek}) = {(α1, . . . , αn) ∈ Rn : αi = 0 for i > k}.
ii. span({e1, . . . , en}) = Rn.

(d) If V = P, then span({1, t, . . . , tn}) = Pn and span({1, t, t2, . . .}) = P.

(e) For each i ∈ N, let ei = (δi1, δi2, . . . , ). Then span({e1, e2, . . .}) = c00.

10. Prove that a set of vectors x1, . . . , xn in a vector space V are linearly dependent if and only if

there exists k ∈ {2, . . . , n} such that xk is a linear combination of x1, . . . , xk−1.

11. Prove that any three of the polynomials 1, t, t2, 1 + t+ t2 are linearly independent

12. Give vectors x1, x2, x2, x4 in C3 such that any three of them are linearly independent.

13. Find conditions on α such that the vectors

(a) (1 + α, 1− α), (1− α, 1 + α) are linearly dependent C2,

(b) (α, 1, 0), (1, α, 1), (0, 1, α) are linearly dependent in R3.

14. Suppose x, y, z are linearly independent. Is it true that x + y, y + z, z + x are also linearly

independent?

15. Prove the assertions in the following:

(a) {e1, . . . , en} is a basis of Rn and Cn.

(b) {1, t, . . . , tn} is a basis of Pn.

(c) {1, 1 + t, 1 + t+ t2, . . . , 1 + t+ · · ·+ tn} is a basis of Pn.

(d) {1, t, t2, . . .} is a basis of P.

(e) For each i ∈ N, let ei = (δi1, δi2, . . . , ). Then {e1, e2, . . .} is a basis of c00.

(f) If E is linearly independent in a vector space, then E is a basis for V0 := span(E).

16. Prove:

(a) If E is linearly independent and if x ∈ V with x 6∈ span(E), then E ∪ {x} is linearly

independent.

(b) Every vector space having a finite spanning set has a finite basis.

(c) If a vector space V has a finite basis, then any two basis of V contains the same number

of vectors.
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17. Find bases E1, E2 for C4 such that E1 ∩ E2 = ∅ and {(1, 0, 0, 0), (1, 1, 0, 0)} ⊆ E1 and

{(1, 1, 1, 0), (1, 1, 1, 1)} ⊆ E2.

18. Prove the assertions in the following:

(a) Fn and Pn are finite dimensional spaces, and dim(Fn) = n, dim(Pn) = n+ 1.

(b) dim({α1, . . . , αn) ∈ Rn : α1 + · · ·+ αn = 0} = n− 1.

(c) P, C[a, b], c00 are infinite dimensional spaces.

(d) Every vector space containing an infinite linearly independent set is infinite dimensional.

(e) If A ∈ Rm×n with n > m, then there exists x ∈ Rn such that Ax = 0.

19. Prove:

(a) If V1 and V2 are subspaces of a vector space V such that V1 ∩ V2 = {0}, and if E1 and E2

are bases of V1 and V2, respectively, then E1 ∪ E2 is a basis of V1 + V2; and in particular,

dim(V1 + V2) = dim(V1) + dim(V2).

(b) If V1 and V2 are subspaces of a vector space V , then

dim(V1 + V2) = dim(V1) + dim(V2)− dim(V1 ∩ V2).

(c) Let V1 and V2 be vector spaces and let T be an isomorphism from V1 onto V2. Let E ⊆ V1.

Then E is a basis of V1 if and only if {T (u) : u ∈ E} is a basis of V2.

20. Suppose V1 and V2 are subspaces of a vector space V . Prove:

(a) If V1 and V2 are finite dimensional such that dim(V1) = dim(V2) and V1 ⊆ V2, then V1 = V2.

(b) If V = V1 ∪ V2, then either V1 = V or V2 = V .

21. Prove that, if V0 is a subspace of a vector space V , then there exists a subspace V1 of V such

that

V = V0 + V1 and V0 ∩ V1 = {0}.

22. If V1 is the set of all odd polynomials (i.e., x(−t) = −x(t) for all t), and if V2 is the set of all

even polynomials (i.e., x(−t) = x(t) for all t), prove that V1 and V2 are subspaces of P such that

V = V1 + V2 and V1 ∩ V2 = {0}.

23. Let V1 and V2 be vector spaces over the same field F. For x := (x1, x2), y := (y1, y2) in V1 × V2,

and α ∈ F, define

x+ y = (x1 + y1, x2 + y2), αx = (αx1, αx2).

Prove:

(a) V1 × V2 is a vector space over F with respect to the above operations with its zero as (0, 0)

and −x := (−x1,−x2).
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(b) If V1 and V2 are finite dimensional, then

dim(V1 × V2) = dim(V1) + dim(V2).

(c) If Ṽ1 := {(x1, x2) ∈ V1 × V2 : x2 = 0} and Ṽ2 := {(x1, x2) ∈ V1 × V2 : x1 = 0}, then Ṽ1 and

Ṽ2 are subspaces of V1 × V2 and

V1 × V2 = Ṽ1 + Ṽ2, Ṽ1 ∩ Ṽ2 = {(0, 0)}.

In view of the above, the space V1 × V2 is called the direct sum of V1 and V2.

24. Let V1 and V2 be subspaces of a finite dimensional vector space V such that V = V1 + V2 and

V1 ∩ V2 = {0}. Prove that V is isomorphic with V1 × V2.

25. Let V0 be a subspaces of a finite dimensional vector space V . Prove that V is isomorphic with

(V/V0)× V0.

5.2 (On Section 2: Linear Transformations)

In the following, V1 and V2 are vector spaces over a filed F.

For i, j ∈ N, we denote δij =

{
1, i = j,

0, i 6= j,

1. Let T : V1 → V2 be a linear transformation. Prove that

(a) T (0) = 0.

(b) T is one-one iff N(T ) = {0}.

2. Verify the assertion in each of the following:

(a) Let A ∈ Rm×n and let T : Rn → Rm be defined by

Tx = Ax , x ∈ Rn.

Then T is a linear transformation.

(b) For x ∈ C[a, b], define

T (x) =

∫ b

a

x(t)dt.

Then T : C[a, b]→ R is a linear transformation.

(c) For x ∈ C1[a, b], define

(Tx)(t) = x′(t), t ∈ [a, b].

Then T : C1[a, b]→ C[a, b] is a linear transformation.
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(d) For τ ∈ [a, b] and x ∈ C1[a, b], define

T (x) = x′(τ).

Then T : C1[a, b]→ R is a linear transformation.

(e) Let F be either R or C and V be any of the spaces c00, `
1, `∞. Recall that

c00 = {x ∈ F(N,F) : ∃ k ∈ N with x(j) = 0 ∀ j ≥ k},

`1 = {x ∈ F(N,F) :

∞∑
j=1

|x(j)| converges},

`∞ = {x ∈ F(N,F) : (x(n)) bounded}.

i. T : V → V defined by

T (α1, α2, . . . , ) = (0, α1, α2, . . . , )

is a linear transformation, called the right shift operator.

ii. T : V → V defined by

T (α1, α2, . . . , ) = (α2, α3, . . . , )

is a linear transformation, called the left shift operator.

3. Let T : V1 → V2 be a linear transformation. Prove:

(a) If u1, . . . , un are in V1 such that Tu1, . . . , Tun are linearly independent in V2, then u1, . . . , un

are linearly independent in V1.

(b) If T is one-one and u1, . . . , un are linearly independent in V1, then Tu1, . . . , Tun are linearly

independent in V2.

Let T : V1 → V2 be a linear transformation. Prove:

(a) If E1 is a basis of V1, then R(T ) = span(T (E1)).

(b) dimR(T ) ≤ dim(V1).

(c) If T is one-one, then dimR(T ) = dim(V1).

(d) If V1 and V2 are finite dimensional such that dim(V1) = dim(V2), then T is one-one if and

only if T is onto.

4. Find the following subspaces of the space Pn:

(a) V1 = {p(t) ∈ Pn : p(1) = 0},

(b) V1 = {p(t) ∈ Pn : p(0) = 0, p(1)},

(c) V1 = {p(t) ∈ Pn :
∫ 1

0
p(t)dt = 0}.

5. Let A ∈ Rm×n and let T : Rn → Rm be the linear transformation defined by

Tx = Ax , x ∈ Rn.

Prove:
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(a) T is one-one if and only if the columns of A are linearly independent.

(b) R(T ) is the space spanned by the columns of A, and rank(T ) is the dimension of the space

spanned by the columns of A.

6. Let V1 and V2 be finite dimensional vector spaces over the same field F and let {u1, . . . , un} be

a basis of V1. Let {v1, . . . , vn} ⊆ V2. Define T : V1 → V2 be

T
( n∑
i=1

αiui

)
=

n∑
i=1

αiv, (α1, . . . , αn) ∈ Fn.

(a) Show that T is a linear transformation such that T (uj) = vj for j ∈ {1, . . . , n}.

(b) T is one-one if and only if {v1, . . . , vn} is linearly independent.

(c) T is onto if and only if span({v1, . . . , vn}) = V2.

7. Let V1 and V2 be finite dimensional vector spaces over the same field F and let E := {u1, . . . , un}
be a linearly independent subset of V1. Let {v1, . . . , vn} ⊆ V2. Show that there exists a linear

transformation T : V1 → V2 such that T (uj) = vj for j ∈ {1, . . . , n}.

Let V be a finite dimensional space and E = {u1, . . . , un} be an order basis of V . For each

j ∈ {1, . . . , n}, let fj : V → F be defined by

fj(x) = αj for x :=

n∑
i=1

αiui.

Prove:

(a) f1, . . . , fn are in V ′ and they satisfy fi(uj) = δij for i, j ∈ {1, . . . , n},

(b) {f1, . . . , fn} is a basis of V ′.

8. Prove: Let V be a finite dimensional space. Then V and V ′ are linearly isomorphic.

9. Let E = {u1, . . . , un} be an order basis of V . If f1, . . . , fn are in V ′ such that fi(uj) = δij .

Prove {f1, . . . , fn} is the dual basis of V .

10. Let T1 ∈ L(V1, V2) and T2 ∈ L(V2, V3). Show that

(a) T2T1 one-one implies T1 one-one.

(b) T2T1 onto implies T2 onto.

11. Prove: Let V be a vector space and W be a subspace of V . Then the map η : V → V/W defined

by

η(x) = x+W, x ∈ V,

is a linear transformation.

12. Let V1 and V2 be finite dimensional vector spaces over the same field F and let E1 := {u1, . . . , un}
and E2 := {v1, . . . , vm} be ordered bases of V1 and V2, respectively. Let T : V1 → V2 be a linear

transformation. Prove that for each j, [Tuj ]E2
is the jth column of [T ]E1E2

.
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13. Let A ∈ Rm×n and let T : Rn → Rm be defined by Tx = Ax , x ∈ Rn. If E1 and E2 are the

standard bases for Rn and Rm, respectively, then prove that [T ]E1E2 = A.

14. Prove: Let V1 and V2 be finite dimensional vector spaces over the same field F with dim(V1) = n

and dim(V2) = m and let E1 and E2 be ordered bases of V1 and V2, respectively. Let T : V1 → V2

be a linear transformation. Then the following hold:

(a) [Tx]E2 = [T ]E1E2 [x]E1 for all x ∈ V1.

(b) T is one-one (respectively, onto) if and only if [T ]E1E2
: Rn → Rm is one-one (respectively,

onto).

(c) For A ∈ Rm×n,

A = [T ]E1E2
⇐⇒ [Tx]E2

= A[x]E1
∀x ∈ V1.

(d) T = J−12 [T ]E1E2
J1, where J1 : V1 → Rn and J2 : V2 → Rm are the canonical isomorphisms,

15. Let V1, V2, V3 be finite dimensional vector spaces over the same field F, and let E1, E2, E3 be

ordered bases of V1, V2, V3, respectively. If T1 ∈ L(V1, V2) and T2 ∈ L(V2, V3). Then the

[T2T1]E1E3
= [T2]E2E3

[T1]E1E2
.

16. For n ∈ N, let D : Pn → Pn−1 and T : Pn → Pn+1 be defined by

D(a0 + a1t+ · · ·+ ant
n) = a1t+ 2a2t+ · · ·+ nant

n−1,

T (a0 + a1t+ ·+ ant
n) = a0t+

a1
2
t2 + · · ·+ an

n+ 1
tn+1.

Let Ek = {1, t, . . . , tk} for k ∈ N. Find

[D]EnEn−1
, [T ]EnEn+1

, [TD]EnEn , [DT ]EnEn .

17. Let V1 and V2 be finite dimensional vector spaces over the same field F and let T : V1 → V2

be a linear transformation. Let E1 = {u1, . . . , un} and Ẽ1 = {ũ1, . . . , ũn} be two bases of V1

and E2 = {v1, . . . , vm} and Ẽ2 = {ṽ1, . . . , ṽm} be two bases of V2. Let Φ1 : V1 → V1 and

Φ2 : V2 → V2 be the linear transformations such that

Φ1(ui) = ũi, Φ2(vj) = ṽj

for i = 1, . . . , n; j = 1, . . . ,m. Prove that

[T ]Ẽ1Ẽ2
= [Φ2]−1E2E2

[T ]E1E2 [Φ1]E1E1 .

18. Let P2 be the vector space (over R) of all polynomials of degree at most 2 with real coefficients.

Let T : P2 → R2×2 be the linear transformation defined by

T (p(t)) =

[
p(1) p(0)

p(0)− p(1) p(0)

]
.

(a) Find a basis for N(T ) and a basis for R(T ).

(b) If W is the space of all symmetric matrices in R2×2, then find a basis for W ∩R(T ).

56



5.3 (On Section 3: Inner product spaces)

In the following, V is an inner product over F ∈ {R, C}.

For i, j ∈ N, we denote δij =

{
1, i = j,

0, i 6= j,

1. Verify:

(a) On the vector space c00, 〈x, y〉 :=
∑∞
j=1 x(j)y(j) defines an inner product.

(b) On the vector space C[a, b], 〈, y〉 :=
∫ b
a
x(t)y(t)dt defines an inner product.

(c) Let τ1, . . . , τn+1 be distinct real numbers. On the vector space Pn,

〈p, q〉 :=
∑n+1
i=1 p(τi)q(τi) defines an inner product.

2. Prove the following:

(a) For x ∈ V , 〈x, u〉 = 0∀u ∈ V=⇒x = 0.

(b) For u ∈ V , if f : V → F is defined by f(x) = 〈x, u〉 for all x ∈ V , then f ∈ V ′.

(c) Let u1, u2, . . . , un be linearly independent vectors in V and let x ∈ V . Then

〈x, ui〉 = 0 ∀ i ∈ {1, . . . , n} ⇐⇒ 〈x, y〉 = 0 ∀ y ∈ span{u1, . . . , un}.

In particular, if {u1, u2, . . . , un} is a basis of V , and if 〈x, ui〉 = 0 for all i ∈ {1, . . . , n},
then x = 0.

(d) For S ⊆ V , [span(S)]⊥ = S⊥.

3. Let V1 and V2 be subspaces of an inner product space V . Prove that (V1 + V2)⊥ = V ⊥1 ∩ V ⊥2 .

4. Recall that d : V × V → R defined by d(x, y) = ‖x − y‖ is a metric on V , called the metric

induced by the inner product. Then, with respect to the above metric, prove the following:

(a) The map x 7→ ‖x‖ is continuous on V .

(b) For each u ∈ V , the linear functional f : V → F defined by f(x) = 〈x, u〉, x ∈ V , is

continuous.

(c) For every S ⊆ V , the set S⊥ is closed in V .

5. Consider the standard inner product on Fn. For each j ∈ {1, . . . , n}, let

ej = (δ1j , δ2j , . . . , δnj). Show that (ei + ej) ⊥ (ei − ej) for every i, j ∈ {1, . . . , n}.

6. Using Gram-Schmidt orthogonalization process, orthonormalise the sets S in the following:

(a) S = {1, t, t2, t3} with respect to the usual inner product on P3.

(b) S = {(1, 1, 1, 1), (1, 1, 1, 0), (1, 1, 0, 0)} with respect to the usual inner product on R4.
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7. Consider the vector space C[0, 2π] with inner product defined by

〈f, g〉 :=
∫ 2π

0
f(t)g(t) dt for f, g ∈ C[0, 2π]. For n ∈ N, let

un(t) := sin(nt), vn(t) = cos(nt), 0 ≤ t ≤ 2π.

Let w2n−2 = vn and w2n−1 = un for n ∈ N.Show that the sets

{un : n ∈ N}, {vn : n ∈ N}, {wn : n ∈ N}

are orthogonal sets.

8. Suppose {u1, . . . , un} is an orthonormal set in an inner product space V and x ∈ V . Then

x−
n∑
i=1

〈x, ui〉ui ⊥ span{u1, . . . , un}

and
n∑
i=1

|〈x, ui〉|2 ≤ ‖x‖2.

Further, the following are equivalent:

(a) x ∈ span{u1, . . . , un}

(b) x =
∑n
i=1〈x, ui〉ui

(c) ‖x‖2 =
∑n
i=1 |〈x, ui〉|2.

9. Let V = F3 with standard inner product. Form the given vectors x, y, z ∈ F3 in the fol-

lowing Construct orthonormal vectors u, v, w in F3 such that span{u, v} = span{x, y} and

span{u, v, w} = span{x, y, z}.

(a) x = (1, 0, 0), y = (1, 1, 0), z = (1, 1, 1);

(b) x = (1, 1, 0), y = (0, 1, 1), z = (1, 0, 1).

10. For (α1, . . . , αn) ∈ Fn and (β1, . . . , βn) ∈ Fn, show that

n∑
j=1

|αjβj | ≤
( n∑
j=1

|αj |2
) 1

2
( n∑
j=1

|βj |2
) 1

2

.

11. For x, y ∈ F(N) prove that

∞∑
j=1

|αjβj | ≤
( ∞∑
j=1

|αj |2
) 1

2
( ∞∑
j=1

|βj |2
) 1

2

.

Hint: Use Exercise 10.

Let

`2 = {x ∈ F(N) :

∞∑
j=1

|x(j)|2 <∞}.

Prove that
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(a) `2 is a subspace F(N).

(b) For x, y ∈ `2,

∞∑
j=1

|x(j)y(j)| converges.

(c) 〈x, y〉 :=

∞∑
j=1

|x(j)y(j)| defines an inner product on `2.

12. For (α1, . . . , αn) ∈ Fn and (β1, . . . , βn) ∈ Fn, show that

( n∑
j=1

|αj + βj |2
) 1

2 ≤
( n∑
j=1

|αj |2
) 1

2

+
( n∑
j=1

|βj |2
) 1

2

.

13. For x, y ∈ F(N) prove that

( ∞∑
j=1

|αj + βj |2
) 1

2 ≤
( ∞∑
j=1

|αj |2
) 1

2

+
( ∞∑
j=1

|βj |2
) 1

2

.

Hint: Use Exercise 12.

14. Let dim(V ) = n and let E = {u1, . . . , un} be an ordered orthonormal set which is a basis of V .

Let A : V → V be a linear transformation.

(a) Show that [A]E,E = (〈Auj , ui〉). [Hint: Use Fourier expansion.]

(b) Define B : V → V such that 〈Ax, y〉 = 〈x,By〉 for all x, y ∈ V .

15. Let dim(V ) = n and let E = {u1, . . . , un} be an ordered orthonormal set which is a basis of

V . Let A,B : V → V be a linear transformations satisfying 〈Ax, y〉 = 〈x,By〉 for all x, y ∈ V .

Show that [B]E,E = [A]
T

E,E , conjugate transpose of [A]E,E .

16. Let V be finite dimensional and V0 is a subspace of V . Prove that every x ∈ V can be written

uniquely as x = y+ z with y ∈ V0 and z ∈ V ⊥0 . [ Hint: Obtain a basis of V0, extend it to a basis

of V , and consider the orthonormalization of that basis.]

17. Let V be an inner product space and V0 be a finite dimensional subspace of V . Then for every

x ∈ V , there exists a unique pair y ∈ V0 such that

‖x− y‖ = inf
u∈V0

‖x− u‖.

18. Let V be an inner product space and V0 be a subspace of V and let x ∈ V and y ∈ V0. Prove

the following:

(a) If 〈x− y, u〉 = 0 ∀u ∈ V0 =⇒ ‖x− y‖ = inf
u∈V0

‖x− u‖.

(b) If span(S) = V0 and 〈x− y, u〉 = 0 ∀u ∈ S =⇒ ‖x− y‖ = inf
u∈V0

‖x− u‖.
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19. Let V be an inner product space, V0 be a finite dimensional subspace of V and x ∈ V . Let

{u1, . . . , uk} be a basis of V0. Prove that for y =
∑k
j=1 αjuj ,

〈x− y, u〉 = 0 ∀u ∈ V0 ⇐⇒
k∑
j=1

〈uj , ui〉αj = 〈x, ui〉, i = 1, . . . , k.

Further, prove that there exists a unique (α1, . . . , αk) ∈ Fk such that

k∑
j=1

〈uj , ui〉αj = 〈x, ui〉, i = 1, . . . , k,

and in that case ‖x− y‖ = inf
u∈V0

‖x− u‖.

20. Let V = C[0, 1] with inner product: 〈f, g〉 :=

∫ 1

0

f(t)g(t)dt. Let x(t) = t5. Find best approxi-

mation for x from the space V0, where

(i)V0 = P1, (ii)V0 = P2, (iii)V0 = P3, (iv)V0 = P4, (v)V0 = P5.

21. Let V = C[0, 2π] with inner product: 〈f, g〉 :=

∫ 2π

0

f(t)g(t)dt. Let x(t) = t2. Find best

approximation for x from the space V0, where

V0 = span{1, sin t, cos t, sin 2t, cos 2t}.

22. Let V be finite dimensional and V0 is a subspace of V . For x ∈ V , let y, z be as in the last

problem. Define P,Q : V → V by P (x) = y and Q(x) = z. Prove that P and Q are liner

transformations satisfying the following:

R(P ) = V0, R(Q) = V ⊥0 , P 2 = P, Q2 = Q, P +Q = I,

〈Pu, v〉 = 〈u, Pv〉 ∀u, v ∈ V, ‖x− Px‖ ≤ ‖x− u‖ ∀u ∈ V0.

23. Prove the following:

(a) If A is self adjoint, the 〈Ax, x〉 ∈ R for every x ∈ X.

(b) If A is normal, then ‖Ax‖ = ‖A∗x‖ for every x ∈ X.

(c) IfA is unitary, then 〈Ax,Ay〉 = 〈x, y〉 for every x, y ∈ X. In particular, images of orthogonal

vectors are orthogonal.

5.4 (On Section 4: Eigenvalues and eigenvectors)

In the following V is a vector space over F which is either R or C, and T : V → T is a linear operator.

1. Let A ∈ Rn×n, and consider it as a linear operator from Rn to itself. Prove that λ ∈ σeig(A) ⇐⇒
det(A− λI) = 0.
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2. Show that σeig(T ) = ∅ in the following cases:

(a) Let V = P, the space of all polynomials over F and let Tp(t) = tp(t), p(t) ∈ P.

(b) Let V = c00 and T be the right shift operator on V .

3. Find the eigenvalues and some corresponding eigenvectors for the following cases:

(a) V = P and Tf = f ′′.

(b) V = C(R)) and Tf = f ′′.

4. Let V = P2. Using a matrix representation of T , find eigenvalues of T1f = f ′ and T2f = f ′′.

5. Find eigenspectrum of T if T 2 = T .

6. Prove that eigenvectors corresponding to distinct eigenvalues of T are linearly independent.

7. Prove that, for every polynomial p(t) and λ ∈ F and x ∈ V , Tx = λx=⇒ p(T )x = p(λ)x.

8. Let T : R3 → R3 be the linear transformation defined by

T (α, β, γ) = (α, 2α+ 3β, 3α+ 4γ), (α, β, γ) ∈ R3.

Find a basis for R3 consisting of eigenvectors of T .

9. Suppose V is an inner product space and T is a normal operator, i.e., T ∗T = TT ∗. Prove that

vector x is an eigenvector of T corresponding to an eigenvalue λ if and only if x is an eigenvector

of T corresponding to the eigenvalue λ̄.

10. Prove that every symmetric matrix with real entries has a (real) eigenvalue.

11. Let A =

−1 1 1

1 −1 1

1 1 −1

. Find an orthogonal matrix U such that UTAU is a diagonal matrix.

12. Prove that, if V is a finite dimensional inner product space and T is a self adjoint operator, then

σeig(T ) 6= ∅.

13. Let V be a finite dimensional vector space.

(a) Prove that T is diagonalizable if and only if there are distinct λ1, . . . , λk in F such that

V = N(T − λ1I) + · · ·+N(T − λkI).

(b) Prove that, if T has an eigenvalue λ such that N(T−λI) is a proper subspace of N(T−λI)2,

then T is not diagonalizable. Is the converse true?

(c) Give an example of a non-diagonalizable operator on a finite dimensional vector space.

14. Let V be a finite dimensional vector space and T be diagonalizable. If p(t) is a polynomial which

vanishes at the eigenvalues of T , then prove that p(T ) = 0.

15. Let V be a finite dimensional vector space.

61



(a) Let λ 6= µ. Prove that N(T − λI)i ∩N(T − µI)j = {0} for every i, j ∈ N.

(b) Prove that generalized eigenvectors associated with distinct eigenvalues are linearly inde-

pendent.

(c) Prove Cayley-Hamilton theorem for operators.

16. Let V be finite dimensional over C and λ be an eigenvalue of T with ascent `. Prove that

m := dim[N(T − λI)`] is the algebraic multiplicity of λ.

17. Let V finite dimensional, k ∈ N be such that {0} 6= N(T k) 6= N(T k+1), and let Yk be a subspace

of N(T k+1) such that N(T k+1) = N(T k)⊕ Yk. Prove that dim(Yk) ≤ dim[N(T k)].

18. Let V be a finite dimensional vector space and T be diagonalizable. Let u1, . . . , un be eigen-

vectors of T which for a basis of T , and let λ1, . . . , λn be such that Tuj = λjuj , j = 1, . . . , n.

Let f be an F-valued function defined on an opens set Ω ⊆ F such that Ω ⊃ σeig(T ). For

x =
∑n
j=1 αjuj ∈ V , define

f(T )x =
n∑
j=1

αjf(λj)uj .

Prove that there is a polynomial p(t) such that f(T ) = p(T ) [Hint: Lagrange interpolation].
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