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1 Vector Spaces

1.1 Definition and Examples

Definition 1.1. A nonempty set V is said to be vector space over a field F if there are two maps
VxV -V and FxV =V

denoted by
(z,y)—»z+y and (o,2)+— az,

respectively, called vector addition and scalar multiplication, respectively, which satisfy the
following conditions:

l.x+y=y+a Vz,yeV,

2. (x+y)+z=z+(y+2) Va,y,zeV,

3. J an element, denoted by Oy € V such that x + 0y =2 Vz e V.

4. Vz € V, 3 an element, denoted by —x € V such that = + (—x) = Oy .

5. alz+y)=arx+ay Vrz,yeX,ack,

6. (a+Plx=ax+pfz Va,BeF, eV,

7. (aB)xr =a(fzr) Va,BeF, 2V,

8. la=x VzeV.

Definition 1.2.
(i) Elements of a vector space are called vectors.
(ii) Elements of the field F are called scalars.

(iii) The element Oy is unique, and it is called the zero vector in V. (If u,v € V are such that
zr4+u=xz=z+wvforal eV, then u=u+v=v+u=mwu.) The zero vector is usually denoted by

0, which is distinguished from the zero in F by the context in which it occurs. &

e It can be verified that
0z = Oy, (-l)x=—z VzxeVW



e Condition 1 follows from Conditions 5 and 6: Let x,v € V. By Conditions 6 and 8,
2@4+y)=Q+)(z+y)=1z+y)+1lz+y)=z+y+z+y
and by Condition 5 and 6,
2z +y)=2r+2y=z+r+y+y.

Thus,
rTry+rty=r+r+y+y

so that adding —z and —y on the left and right, respectively, we obtain y +x = = + y.

e Using condition 8, it can verified that for x € V and a € F, if ax = 0, then either « = 0 or
xz=0.

Example 1.3. The assertions in the following examples must be verified by the reader.
1. R™ with coordinate-wise addition and scalar multiplication is a vector space over R, but not a
vector space over C.
2. C™ with coordinate-wise addition and scalar multiplication is a vector space over C.

3. F" with coordinate-wise addition and scalar multiplication is a vector space over F but not a
vector space over a field F D F with F #F.

4. P, (F), the set of all polynomials with coefficients from F and of degree atmost n, is a vector

space over F.

5. P(F) := U Pn(F), the set of all polynomials with coefficients from F, is a vector space over F.
n=1

6. R™*" the set of all real m xn matrices is a vector space over R under usual matrix multiplication

and scalar multiplication.

7. Let Q be a nonempty set. Then the set F (£, F), the set of all F-valued functions defined on €,
is a vector space over F with respect to the following vector space operations: For x,y € F(Q,F)

and a € F, z + y and ax are defined by
(z+y)(t) =z(t) +y(t) Yteq,
(az)(t) = ax(t) VteQ.
The zero function is the zero vector and for
(—x)(t) = —x(t) Vte.

Note that if Q = N, then F(N,F) is the set of all scalar sequences.



Definition 1.4. Let V] and V5 be vector spaces over the same field F. Then V; and V5 are said to

be isomorphic if there exists a function T : V4 — V5 which is bijective (i.e., one-one and onto) and
T(x+y)=T(x)+T(y), T(ax)=al(x)
for all z,y € V and « € F, and the map T is called an isomorphism. &

Example 1.5. The assertions in the following examples must be verified by the reader.

1. The spaces P, (F) and F**! are isomorphic, and an isomorphism is given by
ap + art + -+ ant™ = (ag, a1, ..., a,).

2. The space R™ := R™*!, the space of all column n-vectors is isomorphic with R™.

3. The space R™*" is isomorphic with R™".

1.2 Subspaces

Definition 1.6. A subset S of a vector space V is called a subspace if S itself is a vector space

under the vector addition and scalar multiplication for the space V. &

THEOREM 1.7. A subset S of a vector space V is a subspace if and only if S is closed under vector

addition and scalar multiplication, i.e.,
r,yeS,aeF = x+yeS, axresb.

Example 1.8. The assertions in the following examples must be verified by the reader.

1. S={(a1,a2) € R? : a1 + az = 0} is a subspace of R?.
2. S ={(a1,02,3) € R? : 1 + s — a3 = 0} is a subspace of R3.

3. For each k € {1,...,n},
Sk ={(a1,...,a,) €F": ap =0}

is a subspace of F™.
4. For n € N with n > 2 and each k € {1,...,n — 1},
Sk ={(a1,...,an) €F": a; =0Vi > k}
is a subspace of F".

5. For each n € N, P, is a subspace of P.



10.

11.

12.

13.

14.

For each n € N,
Vo ={x e FIN,F): z(j) =0Vj>n}

is a subspace of F(N,F), and
Coo = U Vi
n=1

is a subspace of F(N,F). Note that elements of W are sequences having only a finite number of

nonzero entries.
For an interval  := [a,b] C R,

(a) C(£2), the set of all real valued continuous functions defined on {2 is a subspace of (2, R).

(b) R(£2), the set of all Riemann integrable real valued continuous functions defined on {2 is a
subspace of F(2,R).

(¢) C(Q) is a subspace of R(Q2)

(d) C*(R), the set of all real valued continuous functions defined on 2 and having continuous

derivative in € is a subspace of C(£2).
(e) S={zxeC(Q): f;x(t)dt = 0} is a subspace of C(Q).
(f) S={xz e C(Q):x(a) =0} is a subspace of C'(f).
(g) S={ze€C(Q):x(a) =0=ux(b)} is a subspace of C().
Let A € R™*™. Then
(a) {x € R": Ax = 0} is a subspace of R",
(b) {Ax:x € R"} is a subspace of R™,
{(a1,a2) : a1 + ag = 0} is a subspace of R%.
{(a1,02) : a1 + ag — ag = 0} is a subspace of R3.
1, 1=47,

0, @#J,
Then {(aq,...,a,) € R" : a; =0 for i > k} is a subspace of R™.

For 4,5 € N, let §;; = { and for i € {1,...,n}, let e; = (§;1,...,0in). Let V. =R"
If V4 and V4 are subspaces of V, then V; + V5 = span(V; U Va).
If V; and V5 are subspaces of V' and if V; C V5, then V; U V5 is a subspace of V.

If V1 and V5 are subspaces of V, then V; N V5 is a subspace of V; but, V7 U V5 need not be a
subspace of V.



1.3 Linear combination and span

Definition 1.9. Let z1,...,x, be vectors in a vector space V. A linear combination of z1,...,z,

is a vector of the form o121 + ... + apx, for some aq,...,qa, € F. &

Definition 1.10. Let S be a subset of a vector space V. The set of all linear combinations of elements

from S is called the span of S, and it is denoted by span(S). &

THEOREM 1.11. Let V be a vector space and S C V.

1. span(S) is a subspace of V.
2. If Vy is a subspace of V' such that S C Vy, then span(S) C Vj.
3. S = span(S) if and only if S is a subspace of V.

Example 1.12. The assertions in the following examples must be verified by the reader.

1. If V = R?, then span({(1,—1)} = {(a1,a2) : a1 + as = 0}.
2. If V = R3, then span({(1,—1,0), (1,0,1)} = {(a1,a2) : a1 + az — az = 0}.

L 1=y,

3. For i,j € N, let §;; = { and for i € {1,...,n}, let e; = (§;1,...,0in). Let V. =R"

0, i#j,
Then
(a) span({e1,...,ex}) = {(a1,...,an) € R" : a; = 0 for i > k}.
(b) span({e1,...,en}) =R™
4. If V = P, then span({1,t,...,t"}) = P, and span({1,t,t%,...}) = P.

5. For each i € N, let e; = (d;1,d;2,- .., ). Then span({ej,es,...}) = coo.

¢
Exercise 1.13. Let S be a subset of a vector space V. Prove that
1. span(S) is the intersection of all subspaces which contain S,
2. span[span(S)] = span(S).
¢

Notation: If S; and S are subsets of a vector space V, then the we denote

S1+ Sy ={x+y:xeS,yec S}



e If Vi and V5 are subspaces of V, then Vi + V5 is a subspace of V' and
Vi + Vo = span(V; U V3).

Definition 1.14. If V5 and V5 are subspaces of V, then the subspace {x +y : x € Vi, y € Va} is
called the sum of subspaces V; and V5. &

1.4 Linear dependence, linear independence, basis and dimension
Definition 1.15. Let V be a vector space and z1,...,z, arein V.

1. Vectors x1,...,x, are said to be linearly dependent if there exist scalars a,...,q, with

atleast one of them is nonzero such that oz + -+ - + a2, = 0.

2. Vectors x1,...,x, are said to be linearly independent if they are not linearly dependent, i.e.,

for scalars aq, ..., ay,

Oéll‘1+"'+anxn20 — 041:0,...,04”:0.

Definition 1.16. Let V' be a vector space and S C V.

1. S is said to be linearly dependent if S contains a finite subset which is linearly dependent.

2. S is said to be linearly independent if every finite subset of S is linearly independent.

o

Definition 1.17. Let V be a vector space. A subset E of V' is said to be a basis of V' if it is linearly
independent and span(F) = V. &

Example 1.18. The assertions in the following examples must be verified by the reader.

1. {e1,...,en} is a basis of R™ and C™.

2. {1,t,...,t"} is a basis of P,.

LI+t 1+t+t%.. ., 1+t+ - +t"} is a basis of P,.

4. {1,t,t%,...} is a basis of P.

5. For each i € N, let ¢; = (0;1,0;2,...,). Then {e1,ea,...} is a basis of ¢gp.

6. If E is linearly independent in a vector space, then E is a basis for V) := span(FE).



e If E is linearly independent and if x € V with « & span(F), then EU{z} is linearly independent.

THEOREM 1.19. IfV has a finite spanning set and if Eqy s linearly independent in V', then there

exists a basis EE O Ejy.

Proof. Suppose S = {uy,...,u,} is such that span(S) = V. Let

B Ey if uy € span(Ey),
L EoU{u1} if uy & span(Fy).

Then E; is linearly independent and span(F;) = span(Ep U {u1}). Having defined Ei,..., Ex_1,
define

E, = )
Ep_q U{ug} if ug & span(Eg_1).

Thus, for Kk =1,...,n, Fy is linearly independent and

{ E._q if uy, € span(FEx_1),

span(Ey) = span(Ey_1 U {ux}) = span(Eo U {uy,...,ux}).

Hence,
V =span{uy,...,u,} Cspan(FEg U {us,...,u,}) =span(E,) C V.

Thus, E := E,, satisfies the requirements. O

Taking Fy = @ in the above theorem, we obtain the following corollary.
COROLLARY 1.20. Every vector space having a finite spanning set has a finite basis.
THEOREM 1.21. Suppose a basis of a vector space V' contains n vectors. Then every subset

containing more than n vectors is linearly dependent.

Proof. Suppose E = {uy,...,u,} be a basis of V. Its enough to prove that every subset containing

n + 1 vectors is linearly dependent. Let S = {z1,...,2,41} C V. We prove S is linearly dependent.

Without loss of generality assume that {xi,...,2,} is linearly independent. Since {uy,...,u,} is a
basis of V, there exists scalars agl), e ag) such that

xr = agl)ul + ... a%l)un.
Since z1 # 0, all of agl), . ’%(11) cannot be zero. So, atleast one of agl), ceey aﬁf) is nonzero. Without

loss of generality assume that agl) # 0. Then

uy € spanf{xy, ug, ..., Uy}
But, V = span{us,us,...,u,}. Hence,
span{xy, ug,...,un} = V.



There exists scalars 0452), ceey ag) such that

T = af):cl + OééQ)UQ R ,aﬁf)un.
Since x1, x5 are linearly independent, all of agz), ceey ag) cannot be zero. So, atleast one of aéz), . ,af)

is nonzero. Without loss of generality assume that agQ) # 0. Then

ug € span{xy, Ta, Uz, ..., Up}-
But, V = span{xy,us,...,u,}. Hence,
span{xy, za,...,up} = V.

Proceeding like this, we obtain at the n'® step,
span{z1, za,...,xpn} = V.
Thus, z,4+1 € span{z1,xa,...,x,} =V so that x1,...,x,41 are linearly dependent. O

COROLLARY 1.22. If a vector space V' has a finite basis, then any two basis of V' contains the

same number of vectors.

Definition 1.23. Let V be a vector space. Then

1. V is said to be a finite dimensional space, if V' has a finite basis, and in that case the number

of elements in a basis is called the dimension of V', and it is denoted by dim(V).

2. V is said to be an infinite dimensional space, if V' does not have a finite basis, and we write

dim(V) = oo.
¢
Example 1.24. The assertions in the following examples must be verified by the reader.
1. F™ and P, are finite dimensional spaces, and dim(F™) =n, dim(P,)=n+ 1.
2. dim({ag,...,an) ER" oy +- 4+ a, =0} =n—1
3. P, Cla,b], cop are infinite dimensional spaces.
4. Every vector space containing an infinite linearly independent set is infinite dimensional.
5. If A € R™*"™ with n > m, then there exists x € R" such that Az = 0.
¢

Exercise 1.25. 1. If V4 and V, are subspaces of a vector space V such that V3 NV, = {0}, and
if £1 and FEs are bases of V; and Vs, respectively, then £y U Es is a basis of Vi + V5; and in
particular,

dim(Vy + V2) = dim(V;) + dim(V%).



. Let V7 and V5 be subspaces of a vector space V. Then

dim(V; + V3) = dim(V;) + dim(Va) — dim(V; N V3).

. Let V1, Va, W1, W5 be subspaces of a vector space V' such that
VlﬂVQZ{O}, WlmWQZ{O} and Vi + Vo =W7; + W,
If Vi € Wy and Vo, C Wa, then prove that V3 = Wy and Vo C W,

. Let V7 and V5 be vector spaces and let T be an isomorphism from V; onto V5. Let £ C Vi.
Then E is a basis of V; if and only if {T'(u) : u € E} is a basis of V5.

. Let {u1,...,u,} be a subset of a vector space V and T': F"* — V be defined by
T(at,...,an) =Qrur + ...+ apty, (a1,...,a,) € F".

Prove that {uy,...,u,} is linearly independent if and only if T is one-one.

1.5 Quotient space

Let V be vector space and W be a subspace of V. For x € V', define

Wy ={z+u:ue W}

and let

Vw ={W,:z eV}

On Vi, define addition and scalar multiplication as follows:

W+ Wy i=Wepy, aW,:i=Wq,.

Note hat

Wy=W <— xzeW.

e 1y is a vector space with respect to the above operations with zero Wy and additive inverse
Wy =W_,.

Definition 1.26. The vector space Vyy is called a quotient space of V' with respect to W. This vector

space is usually denoted by V/W, and its elements are also denoted by x + W instead of W,. &

Example 1.27. The reader is advised to verify the following assertions:

1. If V is R? or R3 and W is a straight line passing through origin, then V/W is the set of all

straight lines parallel to W.

10



2. If V = R3 and W is a plane passing through origin, then V/W is the set of all planes having

the same normal as of W.

THEOREM 1.28. Let V be a finite dimensional vector space and W be a subspace of V. Then

dim(Vyy) = dim(V) — dim(W).

Proof. If W = {0} or W = V, then the result can be seen easily. Hence, assume that {0}not = W # V.
Let {u1,....u;} be a basis of W and let vq, ..., v, be in V such that {uq,....ug,v1,..., vy} is a basis
of V. We have to show that dim(V/W) = m. We show this by proving that {W,,,..., W, }is a
basis of V/W.

Let aq,...,a,, be in [ such that
041Wv1 + avam =W, ie, Wa1v1+»--+amvm =W,

ie.,

a1v1 + -+ Qv € WL

Hence, there are (3, ..., 0, in F such that
Q11+ F AUy = Brur + -+ B,

ie.,

(011111 +-+ amvm) - (61“1 + -+ ﬁkuk) =0.
Since {u1,. ... Uk, v1,...,Un} is a basis of V, we have o; =0, 5; =0fori € {1,...,m}, j € {1,...,k}.
Thus, {W,,,...,W,, } is linearly independent.

It remains to show that span{W,,,..., W, } = V/W. For this, let € V and let Let a1, ..., am, f1, ...

in IF such that
T =101+ o+ QU+ Brur + -+ Bruk.

Then
We=a1v1+ -+ amm +W=aW,, +--- +a,W,,,.

This completes the proof. O

1.6 Existence of a basis

We have seen that if a vector space has a finite spanning set, then it has a finite basis.
Does every vector space have a basis?
This question cannot be answered that easily. If we assume Zorn’s lemma, then we can answer the

above question affirmatively. In order to state Zorn’s lemma we have to recall some concepts

11
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Definition 1.29. A relation R on set S is partial order on S if it is

1. Reflexive: xRz for every x € S,
2. Antisymmetric: For x,y € S, aRx, &yRe=—=z =1y,
3. Transitive: For z,y,z € S, 2Ry, &yRz=— xR=z.
A set together with a partial order is called a partially ordered set. A partial order is usually denoted

by =. %
Definition 1.30. Let S be a partially ordered set with partial order <.

1. An element b € S is called an upper bound for a subset T of S if x < b for all x € T.

2. A subset T of S is said to be a totally ordered subset of S if any two elements of T can be
compared, that is, for every x,y € T, either x <y or y < z.

3. An element zg € S is called a maximal element of S if for any = € S,

To X r = x=2xp.

Example 1.31. The reader is advised to verify the following assertions:

1. The set R with usual order < is a partially ordered set.

2. Any subset of R is a totally ordered subset of R, and if a subset T of R is bounded above, then
every b > sup(T) is an upper bound of T.

3. R does not have any maximal element.

4. Any subset of R is a partially ordered set with the partial order <. If S C R is bounded above
and then b := sup(S) € S, then b is a maximal element of S.

¢
Example 1.32. Let X be any set and S be the power set, i.e., the set of all subsets of X. For A, B
in S, define A < B <= A C B. Then < is a partial order on S. &

Example 1.33. Consider the closed unit disc in the plane, D = {Teie :0<r<1,0<6<2r}. For

r1e%1 r2e'%2 in D, define
ref < roe’?? = 01 =0, & 71 <ro.
Then = is a partial order on D. For each 6 € [0, 27), the set
Dy :={re?:0<r <1}

is a totally order subset of D, and the point €%’ is an upper bound for Dy. Further, D does not have

any upper bound. However, every point on the boundary of D is a maximal element of D. &

12



Zorn’s lemma: Suppose S is a nonempty partially ordered set. If every totally ordered subset of S

has an upper bound, then S has a maximal element.

THEOREM 1.34. FEvery nonzero vector space has a basis. In fact, if Eq is a linearly independent
subset of vector space V', then there exists a basis E for V such that Ey C E.

Proof. Let V be a nonzero vector space and let Ey be a linearly independent subset of V. Let £ be
the family of all linearly independent subsets of V' which contains Ey. That is, E € £ if and only if F
is a linearly independent subset of V' such that Ey C E. For Ey, F5 in £ define

E1 = E2 <~ E1 - EQ.

Then < is a partial order on £. Since Ey € £, £ is nonempty. Let 7 be a totally ordered subset of T .

Let
Ty=|JT
TeT
Then Ty € € and Tj is an upper bound of 7. Hence, by Zorn’s lemma, £ has a maximal element, say
E. If span(E) # V, then there exists zo € V \ span(E), and in that case E := {20} Uspan(E) € &,
which contradicts the maximality of F. Thus, F is linearly independent such that Ey C E and
span(E) = V. In particular, F is a basis of V. O

2 Linear Transformations

Recall that if A is an m x n matrix with entries from F € {R,C}, and if z,y € F", and o € FF, then
Alz+y) = Az + Ay,, Alaz) = aAz.

Generalization of the above properties of matrices we define the concept of a linear transformation

between any two vector spaces.

2.1 Definition properties and examples

Definition 2.1. Let V; and V5 be vector spaces over the same space F. A function T : V; — V5 is

called a linear transformation or a linear operator if
Tx+y) =T)+T(y) and T(ax)=aT(z)

for every z,y € V5 and a € F. O
We observe: Let T': V7 — V5 be a linear transformation.
° T(O) =0.

13



e N(T):={z e Vy:T(x) =0} is a subspace of V.
e R(T):={T(x):x € Vi} is a subspace of Vx.

Definition 2.2. Let T : V; — V5 be a linear transformation.

1. The subspaces N(T') and R(T) are called the null space and range space of T.

2. The dim[R(T)] is called the rank of T" and dim[N(7")] is called the nullity of T

o

Convention: If T': V; — V5 is a linear transformation and = € Vi, then the T'(x) is usually denoted
by Tz, i.e., Ta :=T(z) for all z € V.

Example 2.3. The assertion in each of the following is to be verified by the reader. The space C|a, b]

and C'[a, b] are vector spaces over R.

1. Let A€ R™*"™ and let T : R" — R™ be defined by
Te=Az, zeR"

Then T is a linear transformation.

2. For z € Cla,b], define

Then T : Cla,b] — R is a linear transformation.

3. For x € C'[a,b], define
(Tx)(t) =2'(t), t€la,b)].

Then T : C'[a,b] — C|a,b] is a linear transformation.

4. For 7 € [a,b] and z € C[a, b], define

Then T : C'[a,b] — R is a linear transformation.
5. Let V7 and V5 be vector spaces over the same field .

(a) T : Vi — V; defined by
Ter=0 Vel

is a linear transformation. This transformation is called the zero transformation.

14



(b) The map T : V — V defined by
Tr=x2 VzxeV

is a linear transformation. This transformation is called the identity transformation on

V.
(c) For each A € F, T : V; — V4 defined by

Tr=M\x Vzel]

is a linear transformation. This transformation is called a scalar transformation.

6. Let F be either R or C and V be any of the spaces cgg, £}, ¢>. Recall that

coo = {z € F(N,F) : 3k € N with 2(j) =0Vj > k},

' ={zc FN,F): Z |z(j)| converges},

j=1

0° ={x € F(N,F) : (z(n)) bounded}.

(a) T:V — V defined by

T(al,ag,...,) = (0,0[1,042,...,)

is a linear transformation, called the right shift operator.

(b) T :V — V defined by

T(O{l,OéQ,...,):(04270[3,...,)

is a linear transformation, called the left shift operator.

o

THEOREM 2.4. Let T : Vi3 — V5 be a linear transformation. Then T is one-one if and only if
N(T) = {0}.

THEOREM 2.5. Let T : Vi — V4 be a linear transformation.

1. If uy,...,uy are in Vi such that Tuy,...,Tu, are linearly independent in Va, then uy, ..., uy

are linearly independent in V.

2. If T is one-one and u,...,u, are linearly independent in Vi, then Tuq,...,Tu, are linearly

independent in Vs.

COROLLARY 2.6. Let T : Vi — V5 be a linear transformation.

1. If Ey is a basis of Vi, then R(T) = span(T(E1)).

2. dim R(T") < dim(V4).

15



3. If T is one-one, then dim R(T") = dim(V4).

4. If Vi and Vy are finite dimensional such that dim(V7) = dim(V2), then T is one-one if and only
if T is onto.

THEOREM 2.7. (Sylvester’s law of nullity) Let T : V3 — V; be a linear transformation. Then

rank(7) + null(T) = dim(V7).

Proof. We know that rank(7) < dim(V; and null(T) < dim(V;. Thus, if either rank(7) = oo or
null(T) = oo, then the Theorem holds. Next assume that r = rank(7) < oo and k = null(T) < co.
Let {u1,...,ur} be a basis of N(T') and {v1,...,v,} be a basis of R(T). Let wy,...,w, in V; be such
that Tw; = v; for j =1,...,r. The reader may verify that

{ug, ..., up,w1,..., W}
is a basis for V7, which would compete the proof. O
Exercise 2.8. Let A € R™*" and let T': R™ — R"™ be the linear transformation defined by

Ty =Az, ze€R"

1. T is one-one if and only if the columns of A are linearly independent.

2. R(T) is the space spanned by the columns of A, and rank(T") is the dimension of the space
spanned by the columns of A.

¢

Exercise 2.9. Let V; and V, be finite dimensional vector spaces over the same field F and let
{u1,...,un} be a basis of V;. Let {v1,...,v,} C V5. Define T : V; — V5 be

T(iaim) = iaiv, (a1,...,ap) € F™
i=1 i=1

1. Show that T is a linear transformation such that T'(u;) = v, for j € {1,...,n}.
2. T is one-one if and only if {vy,...,v,} is linearly independent.

3. T is onto if and only if span({v1,...,v,}) = V5.

¢

Exercise 2.10. Let Vi and V5 be finite dimensional vector spaces over the same field F and let
E := {uy,...,un} be a linearly independent subset of V;. Let {v1,...,v,} C V5. Show that there
exists a linear transformation T : Vi — V5 such that T'(u;) = v; for j € {1,...,n}. O
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THEOREM 2.11. Let L(V1,Va) be the set of all linear transformations from Vi to Va. For T, Ty, Ty
in L(V1,V2) and o € F, define Ty + To and oT by

(Tl +T2)($):T1.’L‘+T2$ VxEVl,

T(az) =aTx Ve V.

Then L(V1,V3) is a vector space with respect to the above addition and scalar multiplication its zero

as the zero—transformation and (—T)(z) := —Tx for all x € V;.

Definition 2.12. The space L(V,TF) is called the dual space of V and it is denoted by V’. Elements
of V' are usually denoted by lover case letters f, g, etc. &

THEOREM 2.13. Let V be a finite dimensional space and E = {uy,...,u,} be an order basis of
V. For each j € {1,...,n}, let f; : V — F be defined by

fi(x) =a; for xr:zn:aiui-

i=1
Then
1. fi,..., fn are in V' and they satisfy fi(u;) = ;5 fori,j € {1,...,n},
2. {fi,..., fn} is a basis of V.
COROLLARY 2.14. Let V be a finite dimensional space. Then V and V' are linearly isomorphic.

Definition 2.15. Let V be a finite dimensional space and E = {uy,...,u,} be an order basis of V.
The basis {f1,. .., fn} of V/ obtained in the above theorem is called the dual basis of V' corresponding
to the ordered basis E. &

Note that if £ = {us,...,u,} is an order basis of V and F' = {f1,..., fn} is the corresponding
ordered dual basis, then for every x € V and f € V/,

v=> fi@ui, f= flw)fi.
i=1 i=1
THEOREM 2.16. Let E = {uy,...,u,} be an order basis of V. If f1,..., fn are in V' such that
fi(u;) = 6i5, then {f1,..., fn} is the dual basis of V.
THEOREM 2.17. Let V1, Vs, V3 be vector spaces over the same field F. If Ty € L£(V1,Va2) and

Ty € L(Va,V3). Then the composition of Ty and Ty, namely Ty o Ty belongs to L(Vi,V3).

Notation: The composition operator 15 o T is usually denoted by T57T}.

THEOREM 2.18. Let T : Vi — V4 be a linear transformation which is one-one and onto. Then its

inverse T~ : Vo — Vi is a linear transformation, and
TT ! = Iy, and 7T = Iy,

where Iy, and Iy, are the identity transformations on Vi and Va, respectively.
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Exercise 2.19. Let 71 € £L(V1,Vs) and Ty € L(V3, V3). Show that

1. T5T; one-one implies T} one-one.

2. T5Ty onto implies T5 one-one.

o

THEOREM 2.20. Let V be a vector space and W be a subspace of V.. Then the map n:V — V/W
defined by
nx)=x+W, zeV,

s a linear transformation.
Definition 2.21. The map 7 in the above theorem is called the quotient map associated with the

subspace W. &

Now, we give another proof for the Sylvester’s law of nullity (Theorem 2.7) in the case of dim(V;) <

Another proof for Theorem 2.7. Let dim(V;) < co. Consider the operator T : Vi /N(T) — Va defined
by

T(x+ N(T)) =Tz, xe€Vi.

Then, it can be easily seen that T is one-one. Hence, Vi /N(T) is linearly isomorphic with R(T) =
R(T). Consequently,

dim[R(T)] = dim[Vy /N(T)] = dim(V;) — dim[N(T)).

This completes the proof. O]

2.2 Matrix representation

Let V4 and V; be finite dimensional vector spaces over the same field F and let By := {uy,...,un}

and Ey := {v1,...,v,} be ordered bases of V; and Va, respectively. Let T : Vi3 — V5 be a linear

transformation. For each j € {1,...,n}, let a1;,...,am; in F be such that
m
T’u]‘ = Z Aj5V;.
i=1
Then for every x € Vi, if (1, ..., ay) are the n-tuple of scalars such that = = 2?21 aju;, then

n n m m n
Tr = E OéjT’ZLj = E &%} E AV | = E E a;j05 | U;.
=1 =1 i

i=1 i=1 \j=1
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Definition 2.22. The matrix (a;;) in the above discussion is called the matrix representation of
T with respect to the ordered bases E1, Fo of V; and Vb, respectively. This matrix is usually denoted
by [T)E,E,, 1-€.

[TE, B, = (aij)-

e For each j, [Tu;]p, is the 5 column of [T]g, g,.
Example 2.23. Let A € R™*" and let T : R™ — R™ be defined by
Tz = Az, zeR"™

Recall that T is a linear transformation. Now, taking the standard basis F; and E, for R™ and R™,

respectively, it can be seen that [T]g, g, = A. o

Let V be an n-dimensional vector space and E = {uq,...,u,} be an ordered basis of V. Recall

the canonical isomorphism J : V' — R" defined by

(65) n
Jx)y=1|:1, z:= Zaiui.
a i=1
Let us denote
[2] == J(z)

In fact,

[2]5 = [f1(@), ..., fal@)]",
where F' = {f1,..., fn} is the dual basis of V, i.e., F = {f1,..., fa} is a basis of V' such that
filuj) = 6ij.

e For each j, [uj]p is the j'" standard basis vector of F", i.e., [uj]g = [§1;62; ... 0n;]7,

THEOREM 2.24. Let Vi and V5 be finite dimensional vector spaces over the same field F with
dim(V7) = n and dim(Va) = m and let E; and Ey be ordered bases of Vi and Vs, respectively. Let
T :V1 — Vs be a linear transformation. Then the following hold:

1. [Tx)g, = [T)E,E.|%|E, for all x € V7.

2. T is one-one (respectively, onto) if and only if [T|g, g, : R — R™ is one-one (respectively,

onto).

3. For A € R"™*™
A:[T]E1E2 (== [T:Z?]E2 :A[.T]El Ve V.

19



4. T =0T gk, Jl_l, where J1 : Vi = R" and J : Vo — R™ are the canonical isomorphisms,

THEOREM 2.25. Let Vi, V5, Vs be finite dimensional vector spaces over the same field F, and let
E1, Ey, E3 be ordered bases of Vi, Va, Vs, respectively. If Ty € L(V1,Va) and Ty € L(Va,V3). Then the

(1211 gy By = [T2] By [Th] B, B, -

Proof. Note that for every z € V7,
[TQTlx]E3 = [TQ]E2E3 [le]EQ = [T2]E2E3 [Tl]E1E2 [x]E1
Hence, by Theorem 224(3)7 [TQTl]El E; = [TQ]E2E3 [TI}El Es- O

Exercise 2.26. Forn € N, let D : P,, = P,_1 and T : P,, = P41 be defined by
D(ag +art + -+ ant"™) = a1t + 2a9t + - -+ + nant" 1,

n a1 2 n 41
1 t+- nt") = apt + 1 s ——t .
(ao +ait+-+a ) aot + B + + n1

Let Ey = {1,t,...,t*} for k € N. Find

Dle,En_» [TE.Bnsr» [TDle.E,, [PTlE.E,-

2.3 DMatrix representation under change of basis

Let V7 and V5 be finite dimensional vector spaces over the same field F and let T : V; — V5 be
a linear transformation. Let Fy = {uy,...,u,} and B, = {t1,...,0,} be two bases of V; and
Ey = {v1,...,v,,} and Fy = {1,...,0m} be two bases of V5. One may want to know the relation
between [T|g, g, and [T 5, . For this purpose we consider the linear transformations ®; : Vi — V4
and @, : Vo — V5 such that

1 (wi) = Ui,  P2(vy) =7

fori=1,...,n;j=1,...,m.
THEOREM 2.27.
T8, 5, = [®2)5 2, [T) 2 5, (1] 2, 5, -
Proof. Note that
[@1]g, 5, = (0i) = Inxn, [®2]p, 5, = (dij) = Lnxm.
Let
T)g 5, = (ai5), [Tg 5, = (@),

[@1]E = (5i),  [P2lmm, = (i)
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Then

TUj = E aijvi, TUj = E aijvi,
<I>1uj = E SijUq, @21}]‘ = E tijvi,.
i i

Hence,
i i k [
Zéiﬁ)z‘ = Zaij(pQUi = Zaij Ztkﬂ)k = Z (Ztkidij)vk-
Thus,
Z QiSij = Z Trilij
i i
consequently,
[T, £ [®1] B By = (2] 28, [T 5, 5,
i.e.,

[T} E1Ey, — [QQ]E;E2 [T]E1E2 [(I)l]ElEl :

3 Inner Product Spaces

Recall that in the Euclidian space R?® we have the concept of dot product and absolute value:
For x = (o, — 2,a3), y = (B1, B2, B3) in R?,

.y = o181 + a2fB2 + a3,

2] = Va2 + Jaz]? + Jas .

We consider the generalization of these concepts to any vector space. Throughout this section we

assume that F is either R or C.

Definition 3.1. Let V be a vector space over F. An inner product on V is a map which associates
each pair (x,y) of elements from V to a unique number in F, denoted by (z,y) such that the following

conditions are satisfied:
1. {z,z) >0 VzeV,andforeveryz €V, (z,2) =0 < z = 0.
2. (x+y,2) =(2,2) + {y,2) Va,y,2€V,
3. (ax,y) = alz,yy Ve eV, VackF,

4 (wy) = Tpo) Yayev.

21



A vector space together with an inner product is called an inner product space. &
Definition 3.2. Let V be an inner product space and x € V. The the number

||| := +/{z,z) (positive square root)
is called the norm of z. A vector x with ||z|| =1 is called a unit vector. &

Exercise 3.3. Prove the following:

1. |z]| >0 VzeVand ||z| =0 < z=0.

2. llaz| =lal 2l V&€V, VacF.

Example 3.4. The assertions in the following are to be verified:

1. On the vector space coo, (z,y) := Zjoil x(7)y(4) defines an inner product.

2. On the vector space Cla, b, (,y) := fb x(t)y(t)dt defines an inner product.

a

3. Let 7y, ..., Th+1 be distinct real numbers. On the vector space P,
(p,q) = Z?:Jrll p(73)q(7;) defines an inner product.

Exercise 3.5. Let V be an inner product space. Prove the following:

1. Forx € V, (z,u) =0Vu € V=12 = 0.
2. Foru e V,if f:V — Fis defined by f(z) = (z,u) for all z € V, then f € V.
3. If S C V is such that span(S) =V, then for every z € V,
(z,u)=0 YueS = z=0.
4. Let uy,us,...,u, be linearly independent vectors in V' and let x € V. Then
(x,u;) =0 Vie{l,...,n} <= (z,y)=0 Vy €& span{uy,...,u,}.
In particular, if {u1,us,...,u,} is a basis of V, then
(x,u;) =0 Vi=1,...,n < z=0.

¢

Exercise 3.6. Let V be an inner product space. Show that, for each y € V, the map x — (x,y) is a

linear functional on V. &
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Exercise 3.7. Let V = ¢go with usual inner product, and let f(x) = Z;‘;l x(j) for x € cpo. Show
that f € V', but there does not exist y € ¢ such that f(z) = (z,y) for all x € ¢gp. &

THEOREM 3.8. (Parallelogram law) Let V' be an inner product space and x,y € V. Then
2+ ylI* + ll = ylI* = 2(/l<]1* + [ly[I*)-

Definition 3.9. Let V' be an inner product space and =z € V.

1. Vectors z,y are said to be orthogonal vectors if (z,y) = 0, and in that case we write x L y.
2. A subset S of V said to be an orthogonal set if x | y for every z,y € V with x # y.
3. A subset S of V said to be an orthonormal set if it is an orthogonal set and ||z|| = 1 for x € S.
4. For a subset S of V, then set

Sti={zecV:zlu YuecS}

is called the orthogonal compliment of S.

¢
THEOREM 3.10. Every orthogonal set which does not contain 0 in it is a linearly independent set.

In particular, every orthonormal set is linearly independent.

THEOREM 3.11. (Pythagoras? theorem) Let V be an inner product space and x,y € V. If
x Ly, then

e+l = [l + llyll*.

THEOREM 3.12. (Cauchy—Schwarz inequality) Let V be an inner product space. Then for
every x,y €V,

[z, u)| < [l lyl]- (%)

Equality holds if and only if x and y are linearly dependent.

Proof. If y = 0, then clearly the inequality holds. Hence, assume that y # 0, and let u := <||$,y2>
Y
Then we note that
rz—ulu
so that, writing = u + (z — u) and using by Pythagoras theorem we obtain
ll]® = llull® + [l — ul/*. (%)

Hence, ||ul|? < ||z||%; equivalently,
(@, 9)| < [l lyl]-

Clearly, if  and y are linearly dependent, then equality holds in (x). Conversely, from (xx), equality

holds in (*) implies © = w and hence x and y are linearly dependent. O

2Greek Philosopher and Mathematician born around 570 BC
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More generally we have the following:

THEOREM 3.13. Suppose {uy,...,u,} is an orthonormal set in an inner product space V and
x € V. Then

n

T — T, u;)u; L span{uq, ..., Uy,
S (wous)u; L spanfur,...up)
i=1

and
n

Dl u) P < ).

i=1
Further, the following are equivalent:
1. z € spanfuq, ..., u,}
2.z =" {z u)u
3. Nlll® = 320 K, ua) .

Definition 3.14. Let S := {uq,...,u,} is an orthonormal set in an inner product space V.

1. The inequality in Theorem 3.13 is called the Bessel’s inequality.
2. For x € span(S), the equality in Theorem 3.13 (2) is called the Fourier expansion of z.

3. For z € span(S), the equality in Theorem 3.13 (3) is called the Parseval’s identity for x.

&
Exercise 3.15. For (a1,...,a,) € F* and (f1,..., 8n) € F?, show that
n n 1 n 1
3 3
> lassil < (D lesl?)" (Do 185)
=1 =1 =1
&
Exercise 3.16. For z,y € F(N) prove that
> leisil < (X lasl?) (Do 18:)
j=1 j=1 j=1
Hint: Use Exercise 10. &

Exercise 3.17. Let -
2 ={zc FN): Z lz(§)]* < oo}

j=1
Prove that

1. % is a subspace F(N).
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o0
2. For z,y € (2, Z |z(j)y ()| converges.
j=1

3. (z,y) = Z |#(4)y(j)| defines an inner product on £2.
j=1

Using Cauchy-Schwarz inequality we obtain the following;:

THEOREM 3.18. Let V' be an inner product space and x,y € V. For every x,y € V,
lz +yll < [zl + [lyl-

COROLLARY 3.19. Let V be an inner product space. Then the map (x,y) — ||z — y|| is a metric
onV.

Definition 3.20. The metric defined in Corollary 3.19 is called the metric induced by the inner
product. &

Definition 3.21. An inner product space V is called a Hilbert space if it is complete with respect

to the metric induced by the inner product. &

Exercise 3.22. For (a1,...,a,) € F* and (f1,...,Bs) € F?, show that

(o +52) < (Slal): + (S 1P)
Jj=1 j=1 j=1

(B

¢
Exercise 3.23. For z,y € F(N) prove that
(D las+812)" < (X las?) "+ (X18:2)
j=1 j=1 j=1
Hint: Use Exercise 12. &
Exercise 3.24. Let V be an inner product space. Show that
L |z = yll = [lz]| = [lyl| for all 2,y € V,
2. x — ||z| is continuous on V,
3. S C V implies S+ is a closed subset of V.
¢

Definition 3.25. An orthonormal set F in an inner product space V' is called an orthonormal basis

if it is a maximal orthonormal set. &
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THEOREM 3.26. Let V' be an inner product space. If E is a basis of V' which is also an orthonormal

set, then it is an orthonormal basis.

Proof. Suppose E is a basis of V' which is also an orthonormal set. If F is not an orthonormal
basis, then there exists an orthonormal set £ O E such that E # F. In particular there exists
z € E\ E. Then (x,u) = 0 for every u € E so that 2 = 0 which contradicts the fact that E is linearly
independent. O

Remark 3.27. An orthonormal basis need not be a basis: For example, consider the inner product

space (> and E = {ey, es,...}, where e;(i) = §;;. Then E is an orthonormal basis, since
(r,ej) =0 Vjev = z=0.

But, E is not a basis of £2. For instance (3,3, %,...) in £% is not in the span of E. $

Now we show that for a finite dimensional inner product space, every orthonormal basis is a basis.

For this, first we observe the following.

THEOREM 3.28. (Gram-Schmidt orthogonalization process) Let V' be an inner product space
and {x1,...,2,} be an ordered linearly independent set forn > 2. Letuy = x1 and forj=1,...,n—1,
let

L (a0, i)
ujJrl = I‘j+1 — Z Wul
i=1 ¢

Then {u1,...,un} is an orthonormal set and
span{us,...,u;} =span{z1,...,x;}, j=1,...,n.
COROLLARY 3.29. FEvery finite dimensional inner product space has an orthonormal basis, and

every orthonormal basis of a finite dimensional inner product space is a basis.

As a corollary to Theorem 3.13 we have the following:

THEOREM 3.30. Let V be a finite dimensional inner product space and {u,...,u,} be an or-
thonormal basis of V.. Then the following hold.

1. (Fourier expansion) For allz € V, x = 37 (z,u;)u;, and

2. (Riesz representation theorem) For every f € V', there exists a unique y € V such that
f(z) ={(x,y) forallx € V.

Proof. Part 1 follows from Theorem 3.13. For part 2, let f € V' and z € V. From part 1,

n n
)= wyug) f(ug) = (2, > flug)uy).
Jj=1 j=1
Thus, f(z) = (z,y), where y = 2?21 fluj)u;.
Uniqueness follows easily (Write details!). O
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COROLLARY 3.31. Let Vi and V5 be a inner product spaces and A : Vi — Vs be a linear trans-
formation. If Vy is finite dimensional, then there exists a unique linear transformation B : Vo — V)
such that

(Az,y) = (x,By) VY (z,y) € Vi x Va.

Proof. Let {uq,...,u,} be an orthonormal basis of V; and z € V;. Since x = Z?Zl(x, uj)u,, for every

y € Vo, we have

(Az,y) = <Z<m uj)Auj,y > Z z,uj) (Aug, y)

Jj=1

M:

z, (Auj, y)u;) = <x, Z (Auj,y>uj> .
j=1

J:1

Thus, (Az,y) = (z, By) for all (z,y) € V; x Vi, where

n
Y= Z (Auj, y)u;
j=1
It can be easily seen (Write details!) that B : Vo — V4 is a linear transformation and it is the unique

linear transformation satisfying (Az,y) = (z, By) for all (z,y) € V] x V5. O

Definition 3.32. The transformation B in Corollary 3.31 is called the adjoint of A, and it is usually
denoted by A*. O

Definition 3.33. Let V be a finite dimensional inner product space and A : V. — V be a linear

transformation. Then A is called a

1. self-adjoint operator if A* = A,
2. normal operator if A*A = AA*,

3. unitary operator if A¥A=1= AA*.

Observe the following:

o If A is self adjoint, the (Az,x) € R for every z € X.
o If A is normal, then ||Ax| = ||A*z| for every z € X.

e If A is unitary, then (Az, Ay) = (x,y) for every z,y € X. In particular, images of orthogonal

vectors are orthogonal.

Exercise 3.34. 1. Let V = 3 with standard inner product. In the following, given vectors
x,y,2 € F3 construct orthonormal vectors u, v, w in F? such that span{u,v} = span{z,y} and

span{u, v, w} = span{z,y, z}.

(a) x=(1,0,0), y =(1,1,0), z = (1,1,1);
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(b) x =(1,1,0), y = (0,1,1), 2 = (1,0, 1).

2. Let dim(V) = n and let E = {uy,...,u,} be an ordered orthonormal set which is a basis of V.
Let A:V — V be a linear transformation. Show that [A]g g = ((Au;, u;)). [Hint: Use Fourier

expansion.]

3. Let dim(V) = n and let £ = {uy,...,u,} be an ordered orthonormal set which is a basis of
V. Let A,B:V — V be a linear transformations satisfying (Az,y) = (z, By) for all x,y € V.
Show that [Blg g = W;E, conjugate transpose of [A]g g.

4. Let By = {u1,...,up} and Ey = {v1,...,vn} be an ordered orthonormal bases of inner product
spaces V7 and Vb, respectively. If A : V3 — V5 is a linear transformation, then prove that
[A*]Eg,El = (bij)7 where bij = <A'LI/Z, Uj>.

¢

THEOREM 3.35. (Projection theorem) Let V' be an inner product space and Vo be a finite
dimensional subspace of V.. Then
V=Vo+ V5.

In particular, for every x € V, there exists a unique pair (y,z) € Vo x Vg such that x =y + z.
Proof. Let {ui,...,u,} be an orthonormal basis for Vy. For x € V, let y = 3", (x,u;)u;. Then we
see that x = y + (z — y) with y € Vg and x — y € V5-. Uniqueness follows easily (Write details!). O

COROLLARY 3.36. (Best approximation) Let V' be an inner product space and Vy be a finite

dimensional subspace of V.. Then for every x € V, there exists a unique pair y € Vi such that
—y|| = inf || —u].
e =yl = inf [}z
Proof. Let z € V and let (y,z) € Vo x V5~ be as in Theorem 3.35. Then, z —y = 2z € V5" and for
every u € Vg, y —u € Vg so that by Pythagoras theorem,
o —ul* = [I(z —y) + (y = w)|* = lz =yl + |y — ul*.
Thus, ||z —y|| < ||z — u| for all u € Vj so that
—y|| = inf ||z — ul.
Iz =yl = inf flo = ul
If there is also y; € Vj such that ||z — y1]| = in‘g |z — ul|, then we have
ueVo
2 —w1ll = [lz =yl

and hence, again by Pythagoras theorem,

I 2.

lz =wl® =z —y) + (g —y)I* = lz —yI* + ly —

Thus, we obtain ||y — y1] = 0. O

28



Exercise 3.37. Let V be an inner product space and V{, be a finite dimensional subspace of V. For
x €V, let (y, z) be the unique element in Vy x V5" such that © =y + z. Let P,Q : V — V be defined
by P(xz) =y and Q(z) = z. Prove that P and @ are liner transformations satisfying the following:

R(P)=Vy, RQ) =V, P*=P @Q*=Q, P+Q=I,
(Pu,v) = (u, Pv) Yu,veV, |z—Pz|<|z—u| Yuel.
¢

Exercise 3.38. Let V be an inner product space and Vj be a subspace of V and let x € V and y € Vj.

Prove the following:
1. I{z—yuy=0 YueVy = |z—y|= 1nf |z — ull.
2. If span(S) =Vp and (x —y,u) =0 YuesS = J|z—y| = mf |z — wl|.

¢

Exercise 3.39. Let V be an inner product space, V| be a finite dimensional subspace of V and z € V.
Let {uy,...,ux} be a basis of V. Prove that for y = Z§:1 oy,

k
(r—y,u) =0 Yuel < Z(Uj»ui>aj =(z,u), 1=1,...,k.
j=1
Further, prove that there exists a unique (aq,...,q) € F* such that
k
Zu],ul = (z,u), i=1,...k,
Jj=1
and in that case ||z — y|| = inf ||z — ul|. &
ueVy
Exercise 3.40. 1. Let V = C]0,1] with inner product: (f,g / fg(t)dt. Let z(t) = 5.
Find best approximation for x from the space V{, where
(Z) Vo = 'Ph (Z’L) VO = 'P27 (Z’LZ) Vb = 773, (’L’U) ‘/0 = 7)4, ('U) Vb = PE,.

2w _

2. Let V = C]0,2n] with inner product: (f,g) := f(t)g(t)dt. Let x(t) = t2. Find best
0
approximation for x from the space 1}, where
Vo = span{1,sint, cost, sin 2t, cos 2t}.
¢
1 —_—
Exercise 3.41. Let V = (][0, 1] with inner product: (f,g) := / f(t)g(t)dt for f,g € C[0,1]. Let
0

x(t) = sint. Find the best approximation for z from the subspace Vy := span{uj,us,us}}, where
ur(t) = 1, ug(t) = t, ug(t) = t2. %
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4 FEigenvalues and Eigenvectors

4.1 Definition and Examples

Definition 4.1. Let V be a vector space (over a field F) and T : V' — V be a linear operator. A

scalar A is called an eigenvalue of T if there exists a non-zero x € V such that
Tx = Az,

and in that case x is called an eigenvector of T' corresponding to the eigenvalue .

The set of all eigenvalues of T is called the eigen-spectrum or point spectrum of 7', and we
denote it by geig(T). &

Let T': V — V be a linear operator and A € F. Observe:

® )\ € 0eg(T) <= T — A is not one-one.
e A non-zero x € V is an eigenvector of T' corresponding to A € oeig(T) <= x € N(A—AI)\{0}.
o The set of all eigenvectors T' corresponding to A € oeis(T") is the set N(A — AI) \ {0}.

Definition 4.2. Let T: V — V be a linear operator and A be an eigenvalue of T'.

1. The subspace N(T — A\I) of V is called the eigenspace of T corresponding to the eigenvalue A.

2. dim[N(T — AI)] is called the geometric multiplicity of .

¢

Remark 4.3. If V is the zero space, then zero operator is the only operator on V', and it does not

have any eigenvalue as there is no non-zero vector in V. &

Example 4.4. Let A € R"*", and consider it as a linear operator from R" to itself. We know that

e A is not one-one if and only if
e columns of A are linearly dependent if and only if

o det(A) =0.

Thus, A € geig(A) <= det(A— M) =0. &
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4.2 Existence of eigenvalues

Note that for a given A € R™*™, there need not exist A € R such that det(A — AI') = 0. For example,
consider n = 2 and

0 1

-1 0|

However, if A € C"*", then, by the fundamental theorem of algebra, there exists A € C such that
det(A — M) = 0. Thus, in this case

A:

This matrix has no eigenvalues!

Ueig(A) 7é .
Now, recall that if V' is a finite dimensional vector space, say of dimension n, and {uy,...,u,} is a

basis of V and if T': V — V is a linear transformation, then

e T is one-one <= columus of [T|gg are linearly independent,
and hence, in this case,

o \€0g(T) < det([T)gr — M) =0.

Note that the above equivalence is true for any basis E of V. Hence, eigenvalues of a linear operator
T can be found by finding the zeros of the polynomial det([T]gg — AI) in F. This also shows that:

THEOREM 4.5. IfV is a finite dimensional over an algebraically closed field F, then every linear

operator on V' has atleast one eigenvalue

Recall from algebra that C is an algebraically closed field, whereas R and Q are not algebraically

closed.

We shall give a proof for the above theorem without relying on the concept of determinant. Before
that let us observe that the conclusion in the above theorem need not hold if the space is infinite

dimensional.
Example 4.6. (i) Let V = P, the space of all polynomials over F, which is either R or C. Let
Tp(t) = tp(t), p(t) € P.
Note that for A € F and p(t) € P,
Tp(t) =tp(t) < p(t) =0.

Hence, 0eig(T) = @.

(ii) Let V = ¢gp and T be the right shift operator on V| i.e.,

T(a1,ag,...) = (0,01, a9,...).

Then we see that oes(T) = 2. &
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Proof of Theorem 4.5 independent of determinant. Let V' be an n dimensional vector space
over an algebraically closed field F. Let x be a non-zero vector in V. If Tx = 0, then 0 is an eigenvalue.
Assume that Ta # 0. Then we known that {z,Tx,...,T"z} is linearly dependent, so that there exist
ap, a1, ..., qp in F with {1,...,n} such that a; # 0 and

aox—&—alTx—i—---—l—akax =0,

ie.,
(gl + T+ -+ aka)m =0.

Thus,
p(T)x =0,

where p(t) := ag + oyt + - - - + ogt*. By fundamental theorem of algebra, there exist Aq,..., Az in F
such that

p(t) = Oék(t— )\1)-~-(t— )\k)

Since p(T)z = 0, we have
Oék(T — )\1[) e (T — )\kf)fﬂ

This shows that atleast one of T'— A1,...,T — A1 is not one-one. Thus, at least one of Ay,..., A
is an eigenvalue of 7', and hence, 0.z (T") # @. O

Can we show existence of an eigenvalue by imposing more conditions on the space V and the
operator? Here is an answer in this respect.
THEOREM 4.7. Let V' be a non-zero finite dimensional inner product space over F which is either
R or C, and T be a self adjoint operator on V. Then oeis(T) # &, 0eig(T) C R.
Proof. Let x be a non-zero vector in V' such that Tx = 0. As in the proof of Theorem 4.5, let
p(t) = ag + ait + - - - + at* be such that oy # 0 and

p(T)z = 0.
Let Aq,..., At in C be such that
p(f) = Oék(t - )\1) tee (t — )\k)

If \; € R for some j, then we know that ); is also a zero of p(t). So, there is £ such that A\, = A;.
Writing A\; = o +43; with o, 8; € R and §; # 0, we have

(t =)t = Xe) = [t = (a; + B[t — (e — i) = (¢ — ay)® + B

Since p(T)x = 0, it follows that either there exists some m such that A\,, € R and T'— A, is not
one-one or there exists some j such that A\; € R and (T — ;)% + BJQ-I is not one-one. In the first case,

Am € R is an eigenvalue. In the latter case, there exists u # 0 in V such that

(T — a;I)* + B ]u = 0.
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Now, using the self adjointness of T,

((T = a;1)* + BiNu,u) = (T = a;1)*u,u) + B (u,u)
(T — oD, (T — o Du) + B?I(u, u).

Since u # 0, it follows that 3; = 0 and (T — «;I)u = 0. Thus, T has a real eigenvalue.

Next, suppose that A € geig(T). If x is an eigenvector corresponding to A, then we have
Mz, x) = (Az,z) = (Tx,2) = (v, Tx) = (x, \x) = Xz, 7).
Hence, A € R. O

THEOREM 4.8. FEigenvectors corresponding to distinct eigenvalues of a linear operator are linearly

independent.
Proof. Let A\1,...\, be eigenvalues of a linear operator T': V' — V and let uq, ..., u, be eigenvectors
corresponding to Aq, ..., \,, respectively. We prove the result by induction:

Let n = 2, and let a7, as such that ayu; + asug = 0. Then
T(a1u1 =+ OéQUQ) =0, )\g(ozlul + )\QOQUQ) =0

so that

a1 A u1 + asoug =0 (’L), ai1Xaul + agAaus = 0. (Zl)

Hence, (ii) — (i) implies
al()\g - )\1)’&1 =0.

Since Ay # A1 we have a; = 0. Hence, from the equation aju; + asus = 0, we obtain as = 0. Next,

assume that the result is true for n = k for some k € N, 2 <k <n. Let ay,...,ai+1 be such that
aqul + ..ot QU = 0. (ZZZ)

Since

T(Oqul + ...+ ak+1uk+1) =0, )\n(oz1u1 + ...+ ak+1uk+1) =0,

we have
a1 Ul + ...+ ak+1/\k+1uk+1) =0 (iv), a1 Al + ...+ ak+1/\k+1uk+1) =0. (’U)
Hence, (v) — (iv) implies

041()\1 — )\k+1)ul + ...+ Oék()\k - )\k+1)uk =0.

By induction assumption, uq, ..., u; are linearly independent. Since A1, ..., A\g, Agy1 are distinct, it
follows that ;7 = 0, — 2 =,...,a = 0. Hence, from (iii), ap41 = 0 as well. This completes the
proof. O
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LEMMA 4.9. Let V be a non-zero finite dimensional inner product space over F which is either R
or C, and T be a normal operator on V. Let A€ F and x € V. Then

Tr =\ < T*z = \z.

Proof. Since T is normal, i.e., T*T = TT*, it can be seen that T'— Al is also a normal operator.
Indeed,

(T = XI)(T* = XI) = TT* = \T — XT* + (NI =T*T — XTI — \T* + |\]*T = (T* — XI)(T — \I).

Thus,
I(T* =ADz|* = (T" = M)a, (T* = X))
= (T — \I)(T* — N)z,z)
= ((T* = MI)(T — X))z, )
= ((T = X)z,(T — M)z)
= (T - AD)z|?
Hence, Tz = A\ <= T*r = \x. -

THEOREM 4.10. Let V be a non-zero finite dimensional inner product space over F which is either
R or C, and T be a normal operator on V. Then eigenvectors associated with distinct eigenvalues are

orthogonal. In particular,
AN£Eu = NT—-M)LNT-—ul).

Proof. Let T be a normal operator and let A and p be distinct eigenvalues of T with corresponding

eigenvectors x and y, respectively. Then

Mz, y) = (A, y) = (Tzy). = (2, T"y) = (z, jy) = piz,y)
so that
(A= p){z,y) = 0.
Since A\ # p, we have (z,y) = 0. O
4.3 Diagonalizability

‘We observe:

If V is a finite dimensional vector space and 7" be a linear operator on V such that there

is a basis F for V consisting of eigenvectors of T, then [T]|gg is a diagonal matrix.

In view of the above observation we have the following definition.
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Definition 4.11. Let V be a finite dimensional vector space and T' be a linear operator on V. Then
T is said to be diagonalizable if there is a basis E for V consisting of eigenvectors of T' such that

[T)gk is a diagonal matrix. ¢

THEOREM 4.12. Let V be a finite dimensional vector space and T be a linear operator on' V. Then
T is diagonalizable if and only if there are distinct A1, ..., g in F such that

V = N(T = MI)+ -+ N(T = M\ I).

Look at the following example.

Example 4.13. Consider the matrix
A =

0 1
0 of
We observe that A as a linear operator on R? has only one eigenvalue which is 0 and its geometric

multiplicity is 1. Hence there is no basis for R? consisting of eigenvectors of A. Hence, the above

operator is not diagonalizable. &

Remark 4.14. Let V be an n- dimensional vector space and T be a linear operator on V. Suppose

T is diagonalizable. Let {u1,...,u,} be a basis of V consisting of eigenvectors of T, and let A\; € F
be such that u; = A\ju; for j =1,...,n. Let use the notation U := [u,...,u,] for a map from F” to
V' defined by
aq
[ul, ... up] | 1| = arur + -+ o,
(679

Then we have
TU =T[uy,...,up] = [Tu, ..., Tup] = [Mu1, ..., Antn].

Thus, using the standard basis {eq,...,e,} of F", we have
TUej:)\jej, j:l,...,n.

Thus,
TU = UA,

equivalently,
U'TU = A,

where A := diag(A1,...,\,), the diagonal matrix with diagonal entries Ay,..., A,. If T itself is an
n X n-matrix, then the above relation shows that T is similar to a diagonal matrix. &
Under what condition on the space V' and operator T' can we say that T is diagonalizable?

THEOREM 4.15. Let V be a finite dimensional vector space, say dim(V) = n, and T be a linear

operator on V.
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(i) If T has n distinct eigenvalues, then T is diagonalizable.
(ii) If T has an eigenvalue X such that N(T — \I) is a proper subspace of N(T — \I)?, then T is not
diagonalizable.
Proof. (i) Follows from Theorem 4.8.

(ii) Assume for a moment that 7" is diagonalizable. Then by Theorem 4.12, there are distinct
Aly..., Ak in F such that
V=N(T—-MI) 4+ N(T = M\I).

Let x € N(T — A\1)?, and let ; € N(T — );) be such that
r=x1+ -+ Tk

Then
(T— )\1])37 = (T — /\1[)x1 4+ 4 (T— /\1[)xk.

We observe that (T'— A1)z € N(T' — M) and (T — M [I)x; € N(T — N\;I) for j =1,..., k. Hence,
(T — M\I)(z — z1) = 0. Consequently, z € N(T — A I). Since N(T — A1) € N(T — \1)?, we obtain
that N(T — A\ I)? = N(T — \1I). Similarly, we have N(T — X\;1)?> = N(T — \;I) for j=1,...,k. O

In view of the above theorem, we introduce the following definition.

Definition 4.16. An eigenvalue \ of a linear operator 7' : V — V is said to be defective if N(T'—\I)
is a proper subspace of N (T — A\I)2. &

THEOREM 4.17. Let T be a self-adjoint operator on an inner product space V. Then every eigen-

value of T is non-defective.
Proof. Since T is self-adjoint, for z € V,
(T — XD)?z,z) = (T — M)z, (T — \)z).

Hence, N(T — X\ )? = N(T — \I). O
Still it is not clear from whatever we have proved whether a self-adjoint operator on a finite
dimensional space is diagonalizable or not. We shall take up this issue in the next section. Before

that let us observe some facts:

e For any linear operator T': V — V,

{0} € N(T) € N(T?) C N(T)--- C N(T") C N(T)---
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e If there exists k € N such that
N(T*) = N(T*1)

then
N(T*) = N(T**7) VjeN.

e If V is finite dimensional and N(T') # {0}, then there exists £ € N such that
N(T*1) #£ N(T*) = N(T**) VjeN.
Definition 4.18. Let V be finite dimensional space and A be an eigenvalue of 7. Then the number
¢:=min{k : N(T — \XI)*71 4 N(T — \XI)¥ = N(T — A\I)**1}

is called the ascent or index of \. &
Note that:

e If / is the ascent of an eigenvalue A, then
N(T =AD" = | N(T = AD)¥.
k=1
Definition 4.19. Let V be finite dimensional space and A be an eigenvalue of T' with ascent ¢. Then

the space N(T — \I)* is called the generalized eigen-space of T corresponding to the eigenvalue .

Members of a generalized eigen-space are called generalized eigenvectors. &

4.4 Spectral representation of self adjoint operators

A natural question is whether every self-adjoint operator on a finite dimensional inner product space
is diagonalizable. The answer is in affirmative. In order to prove this, we shall make use of a definition

and a preparatory lemma.

Definition 4.20. Let V' be a vector space and T be a linear operator on V. A subspace Vj of V is
said to be invariant under T if T'(Vy) C Vp, that is, for every z € V|, & € Vo = Tz € Vp, and in that

case, we say that V[ is an invariant subspace of T &

LEMMA 4.21. Let T be a self-adjoint operator on an inner product space V. Let Vi of V' be an

invariant subspace of T. Then

(i) Vgt is invariant under T,

(i) Ty = T|V0 : Vo — W, the restriction of T' to Vy, in self-adjoint.
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Proof. (i) Suppose Vj is invariant under T. Then for every € V5- and u € Vj, we have Tu € Vj,
and hence,
(Tr,u) = (x,Tu) =0

so that Tz € VOJ-.

(ii) For every z,y € Vp, we have

(Tox,y) = (Tx,y) = (z,Ty) = (x, Toy).
This completes the proof. O]

THEOREM 4.22. (Spectral representation) Let T be a self-adjoint operator on a finite dimen-
sional inner product space V, say of dimension n. Let \i,...,\r be the distinct eigenvalues of T'.
Then

V:N(T—)\lf)—F"'-i-N(T—/\kI).
Further, there exists a linear operator U : F* — V such that U*U = I,,, UU* = Iy and [T)gg = U*TU

is a diagonal matriz with diagonal entries A1, ..., Ay such that \; repeated n; := dim(T — A\;I) times
forj=1,... k.

Proof. Let Vo = N(T — MI)+ -+ N(T — \.I). By Projection Theorem,
V=V + V5

Its enough to show that V5= = {0}. Suppose Vi # {0}. By Lemma 4.21, V- is invariant under T

and the operator Ty := T} | : V5= — V5b, the restriction of T to Vj', is self-adjoint. By theorem 4.7,

V-
T has an eigenvalue A € R. Let z € V- be a corresponding eigenvector. Now, since \yz = Tyz = Tz,
A€ {\,..., \x}. Without loss of generality, assume that A = A\;. Then x € N(T — \I) C V. Thus,
x € VG- NVy = {0}, a contradiction. Hence, V5- = {0}, and

VZN(T—)\lj)—F"'—FN(T—/\kI).
To see the remaining part, for each j € {1,...,k}, let {u;j1,...,u;n,} be an ordered orthonormal

basis of N(T — A;I). Then we see that

E:{u117~-~7u1n17u217~-';u2n23--~7ukla--~7uknk}

is an ordered orthonormal basis for V. To simplify the notation, let us write the above ordered E as
{u,...,un}and pg, i =1,... ,nsuch that p,, ;= A fori=1,...,n; withng=0andj=1,...,k.
Let J : V — F™ be the canonical isomorphism defined by

Then, we have J* = J~! and U := J* satisfies

UU=JJ =1, UU*=J'J=1, UTU=JTJ '=A:=[Tgs.
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Further,
Ae; = JTJ ey = JTu; = J(pjuy) = pjJu; = pje;.

Thus, A := [T]gg is a diagonal matrix with diagonal entries py, ..., fp. O

Remark 4.23. Recall that the U introduced in the proof of Theorem 4.22 is same as the operator

introduced in Remark 4.14, namely,

U - [ulla" '7u1n13u217'"7u2n23"'7uk17"'7uknk .
¢
COROLLARY 4.24. (Spectral representation) Let T be a self-adjoint operator on a finite di-
mensional inner product space V', say of dimension n. Let A1, ..., A\, be the distinct eigenvalues of T.

For each i, let {u;1,..., Ui, } be an ordered orthonormal basis of N(T — \;I). Then

k  n;
Tx = ZZ/\i@:,uij)uij, zeV.

=1 i=1

COROLLARY 4.25. (Spectral representation) Let T be a self-adjoint operator on a finite di-
mensional inner product space V', say of dimension n. Let \1,..., \g be the distinct eigenvalues of T'.
For each i € {1,...,k}, let P; be the orthogonal projection onto N(T — A\;I). Then

COROLLARY 4.26. (Diagonal representation) Let A € F"*™ be a self adjoint matriz (i.e.,
hermitian if F = C and symmetric if F = R). Then there exists a unitary matriz U € F"*™ such that

U*TU 1is a diagonal matriz.

4.5 Singular value representation

Let T be a linear operator on a finite dimensional inner product space V. The we know that T*T is a
self adjoint operator. By spectral theorem, we know that V' has an orthonormal basis E; {u1,...,u,}
consisting of eigenvectors of T*T', and if T*Tu; = Aju; for j = 1,...,n (where \;’s need not be
distinct), then

T*Tx = Z)\j<x7uj)uj, zeV.

j=1
Note that

N = Njlug,ug) = (g, ug) = (T Tug, ug) = (Tuy, Tug) = | T | > 0.
Let Ay,...,A\; be the nonzero (positive) numbers among Ay,...,A,. For j € {1,... k}, let us write

Tu
s

_ 2 . o, . .. _ i .
Aj = sj, where s; is the positive square-root of A;. Thus, writing v; = =+, we obtain

J

Tu; = s;v5, TTv; = sju;.
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. k
Further, since v = Ej:1<x,Uj>Uj, we have

k k
Tr = Z(x, uj)Tu; = Zsj (@, uj)v;. (1)
j=1 j=1
Also,
k k k
(2, T*yy = (Tx,y) = <Z si{x, uj)v;,y > Zsj z,ui) (v, y) = <x,Zsj<y,vj>uj>.
Jj=1 j=1 j=1
Hence,

k
Z y, UJ (2)
Observe that

sj{vi, v5) = (i, s505) = (i, Tug) = (T4, uz) = (siui, uz) = si(ui, uy).

Therefore, {v; : j =1,...,k} is an orthonormal set. From the representations (1) and (2), it can be
seen that

e {uy,...,u} is an orthonormal basis of N(T')*, and

e {v1,...,vx} is an orthonormal basis of R(T).
Definition 4.27. The numbers s1,. .., s, are called the singular values of T" and the set {(s;, u;,v;) :

j=1,...,n} is called the singular system for T.

The representations (1) and (2) above are called the singular value representations of 7" and

T*, respectively. &
If we write
U():[ul,...,uk], V():[vl,...,vk}
as the operators on F* defied as in Remark 4.14, then, in view of the relations Tu; = s;jv; and

T*v; = s;uj, we have
TUy = Voo, T*Vo=UsS,

where Sy = diag(sy,...,sx). Suppose n > k. If we extend the orthonormal sets {ui,...,ur} and
{vi,..., v} to orthonormal bases {u1,...,u,} and {v1,...,v,}, then for j =k+1,...,n, u; € n(T)
and v; € R(T)* so that,since R(T)* = N(T*), we obtain

TU =VS, TV =US,

where
U=lui,...,un], Vo=/[v1,...,v,], S=diag(si,...,sn),

with s; = 0 for j > k. Thus, we have

V*IU =S, U*T*V =S.
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4.6 Spectral decomposition

Throughout this section we assume that V is a finite dimensional space over C and T : V — V is a

linear operator.

In the following, if V; and V5 are subspaces of V', then by Vi & V5 we mean Vi + V5, whenever
VinVy, ={0}.

The main theorem, in this section, is the following.

THEOREM 4.28. Let A1,..., A\, be the distinct eigenvalues of T with ascents £1,...,0; be the

ascents of A\1,..., A\g, respectively. Then
V=NT-MD"a- & NT - M)

where each N(T — X\;1)% is invariant under T. In particular, T is diagonalizable if and only if ascent

of each eigenvalue of T is 1.

e Since ascent of each eigenvalue of a self adjoint operator on an inner product space, an immediate

corollary of the above theorem is Theorem 4.22.

For proving Theorem 4.28, we shall make use of the following lemma.

LEMMA 4.29. Let V be a finite dimensional vector space and T :' V — V be a linear operator. Let
A be an eigenvalue of T with ascent £. Then the following hold.

1. For every j € N, N(T — X)? and R(T — NI )? are invariant under T.
2. V=N(T-X)"®R(T - ).

3. X is an eigenvalue of Ty = and X is the only eigenvalue of Tj.

L——
4. If p # X, then for each j € N, N(T — uI)? N N(T — \I)* = {0}.
Proof. 1. Let j € Nand € N(T — M\I)7. Then
(T —N)Tx =T(T — A\ )z =0=Tax € N(T — \I) .
Hence, Tz € N(T — M )’. Let y € R(T — AI)?. Then 3z € V such that (T — A)?x = y. Hence,
Ty=T(T — X'z = (T - X)Txz € R(T — \).
Hence, Ty € R(T — \I)7.

2. Since dim(V) < oo and since dim[N(T — AI)*] + dim[R(T — AI)*] = dim(V), it is enough to
show that N(T — M) N R(T — M)’ = {0}.
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Suppose x € N(T — M) N R(T — A\I)* = {0}. Then, (T — M )*x = 0 and there exists u € V such
that = (T — AI)*u. Then (T — A )z = (T — AI)*u = 0 so that u € N(T — \)* = N(T — \I)*.
Thus z = (T — M\ )*u = 0.

3. Note that, if 0 # z € N(T — M), then x € N(T — AI)¢ and hence Az = Tx = Toz so that A
is an eigenvalue of Ty. Next suppose that p € C such that p # A and p is an eigenvalue of T with a
corresponding eigenvector y € N(T — AI)’. Then we have

0=(T-AD'y=A—-p)y
which is a contradiction, since A # p and y # 0. Thus, A is the only eigenvalue of Tj.
4. By (2), it is enough to show that N (T — uI)? C R(T — AI)*. We shall prove this by induction.

Let j =1 and 2 € N(T — ul). By (2), there exists u € N(T — A )* and v € R(T — AI)* such that
x =u+v. Then
0=(T—plx =T —pHu+ (T — pl)v.
Since (T — pl)u € N(T — )¢ and (T — pl)v € R(T — XI)¥, by (2) we have (T — pl)u = 0. Now, if
u # 0, then it follows that, u is also an eigenvalue of Ty, which is a contradiction, due to (3). Thus,
u=0and z=1v € R(T — \)".

Next assume that N (T —ul)? C R(T —\)* for some j > 1. We have to show that N (T —pul)i+! C
R(T — \I)%. Solet x € N(T — uI)’*t. By (2), there exists u € N(T — A\I)* and v € R(T — M )* such
that * = v+ v. Then

0= (T — pl)t'e = (T — pI)? u+ (T — pI)y .

Since (T — pl)?*tu € N(T — X)* and (T — pI)?*1v € R(T — MI)*, by (2) we have (T — pul)?*tu = 0,
ie., (T —pul)u e N(T —puI)? C N(T —\I)¢. But, by induction hypothesis, N(T — uI)? C R(T — \)*.
Thus, (T — pl)u € N(T — XN R(T — XI)* = {0}. Thus, if u # 0, then y is also an eigenvalue of Tp.
which is a contradiction, due to (3). Thus, u =0 and z = v € R(T — X )*. O

Proof of Theorem 4.28. In view of Lemma 4.29, it is enough to prove that V' is spanned by gener-
alized eigenvectors of T. We shall prove this by induction on dimension of V. The case of dim(V) = 1
is obvious, for in this case, V' is spanned by the eigenspace of T', as there is only one eigenvalue and
the generalized eigenspace corresponding to that is the eigenspace which is the whole space. Next
assume that the result is true for all vector spaces of dimension less than n, and let dim(V') = n. Let
A be an eigenvalue of T with ascent ¢. Then, by Lemma 4.29, V = N (T — M)’ + R(T — \I)* where
dim[R(T — AI)*] < n. Let T =T e )
generalized eigenvectors of T'. But, generalized eigenvectors of T' are generalized eigenvectors of T as
well. Thus both N(T — AI)* and R(T — AI)* are spanned by the generalized eigenvectors of T. This
completes the proof. O

By induction assumption, R(T — AI)¢ is spanned by the

THEOREM 4.30. Let A1, ..., \x be the distinct eigenvalues of T with ascents of \1, ..., Ag, respec-
tively. Let
p(t) = (E=A)" o (=)
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Then,
p(T) =0.

Further, if q(t) is a polynomial satisfying q(T) = 0, then p(t) divides q(t).
Proof. Since (T — A1) and (T — \,I)* commute, it follows that
p(T)u=0

for every u € N(T — \I)%, i = 1,...,k. Hence, by Theorem 4.28, p(T)x = 0 for every = € V.
Consequently, p(T') = 0.

Next, let g(t) be a polynomial such that ¢(T) = 0. Let u1,..., 4, be the distinct zeros of ¢(t) so
that

q(t) = alt — pa)"™ -+ (E = pr)™"
for some 0 # a € C. Since ¢(T') = 0, for each j € {1,...,k}, we have
(T — )™ (T — p I)"u=0 Yue& N(T— N5, (%)

Now, if y; # Aj, then we know that (7' — p;I)™ is one-one on N (T — X\;I)%. Hence, it follows that
there exists ¢ such that p; = A; such that

(T —X\D)"u=0 Yuec N(T—NI5.

Taking u € N(T —\;I)% \ N(T — \;I)% 1, it follows that n; > £;. Thus, {A\1,..., A} C {1, pir}-
Without loss of generality, we can assume that
mj = \j so that n; > ¢, for j =1,..., k. Thus, p(¢) divides ¢(¢). O

Definition 4.31. A monic polynomial p(¢) is called a minimal polynomial for T if p(T") = 0 and

for any polynomial ¢(t) with ¢(T') = 0, p(¢) divides ¢(t). &

e Theorem 4.30 shows that if A1, ..., A\x are the distinct eigenvalues of T with ascents of A1, ..., Ag,

respectively, then
pt) = (t— M) (b= M)

is the minimal polynomial of T.

For the next definition we recall the concept of matrix representation:

Let V be a finite dimensional vector space, and let Ey := {uq,...,un} and Fy := {v1,...,v,} be
bases of V. Let T : V — V be a linear operator. Let Then

[T]ElEl = [J_l]EzEl [T]EzEz [J} E1Ex = [J]EQIEI [T}E2E2 [J]E1E27
where J : V — V is the isomorphism defined by

J(arur + ...+ apuy) = v + ..o+ @pUy.
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Hence, we have
det [T} E\E, = det [T] EsEs-

Thus, determinant of the matrix representation of an operator is independent of the basis with respect

to which it is represented.
Definition 4.32. Let E be a basis of V. The monic polynomial
qT(t) = det[tI — T]EE

is called the characteristic polynomial of 7', where E is any basis of V. &

4.7 Cayley-Hamilton theorem

We know that eigenvalues of T' are the zeros of the characteristic polynomial gz (). Thus, A1,..., Ak

are the distinct eigenvalues of T if and only if

qr(t) = (t = A0)"™ - (t = A)™
with ng,...,ng in N such that ny + -+ + ng = n = dim(V).
THEOREM 4.33. (Cayley—Hamilton theorem)

qr(T) = 0.

Proof. Recall that for operators T, 71,75 : V — V and « € C,
11+ Tolge = Tiee + T2)ee, [aT)ee = o[T)eE.
Hence, if qr(t) = t" + a1t" "t + ... + a,_1t + a,, then
lar(D)ee = [Tie +alllgg +...+ ana[Tlee + anll]ee
= ar([T)er).

Recall that, by the Cayley—Hamilton theorem for matrices, we have gr([T)gg) = 0. Therefore,

Definition 4.34. Let A\ be an eigenvalue of T' and A be an eigenvalue of T'. Then the order of A as a
zero of the characteristic polynomial ¢r(t) is called the algebraic multiplicity of . &

THEOREM 4.35. Let \ be an eigenvalue of T with ascent €. Then m := dim[N (T — \I)*] is the
algebraic multiplicity of \.

In order to prove the above theorem we make use of the following observation.

PROPOSITION 4.36. Suppose V1 and Va are invariant subspaces of a linear operator T :' V. — V
such that V. =V; ® V. Let Ty = T|V1 and Ty = T|V2. Then

det(T") = det(T1) det(T3).
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Proof. Writing x € V as
r=x1+x2 with x1 €V, 25 € V5,

we have
Tr = Tll‘l + TQIQ.
Define Ty, Ty : V — V by
Ty =Tizy + 22, Tox =z + Thxs.
Then we have

Tlfgl‘ = Tl(:cl + TQIQ) = Tll‘l + TQIQ =Tux.

Thus, with respect to any basis E of V', we have

Tee = TileeIb)EE

and hence
det(T) = det(T1) det(Ts).
Next we show that
det(Tl) = det(Tl), det(TQ) = det(Tg)

For this, let Fy = {us,...,u,} and Ey = {uy41,...,u,} be bases of V; and V5 respectively. Consider
the basis £ = F1 U Ey for V. Then, we have

~ Tiu;, j=1,...,7 ~ B =1,...,m,
Ty, = 1Uj ] r and Tyu, = U ] r
Us s J=r+1,...s. T2Uj, j=r+1,...,s.
Hence, we obtain,
det(T}) = det(Ty), det(Ty) = det(T3).

This completes the proof. O

Proof of Theorem 4.35. Let K = N(T — M)’ and R = R(T — M\I)*. We know that K and R are
invariant under 7" and V = K @ R. Let T} = T and Ty = Ti,. We know that A is the only
eigenvalue of T7. Also, observe that A is not an eigenvalue of T5. Indeed, if z € R such that Thx = Az,
then € N(T — M) C K so that = 0. By Proposition 4.36,

det(tI — T) = det(tI; — Ty) det(tI, — Tp),

where I; and I, are identity operators on K and R respectively. Since det(Aly — T») # 0, it is clear
that the algebraic multiplicity of A as an eigenvalue of T' is same as the algebraic multiplicity of A\ as
an eigenvalue of T;. Since A is the only eigenvalue of T, we obtain that m := dim(K) is the algebraic
multiplicity of \. O

Remark 4.37. Recall that if T is a self-adjoint operator on a finite dimensional inner product space,

then we have

k
T=> AP
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where A1, ..., \; are the distinct eigenvalues of T" and Py, ..., Py are the orthogonal projections onto
the eigenspaces N(T — Ap),..., N(T — A\ I), respectively.

Next suppose that V' is a finite dimensional vector space and T is a diagonalizable operator. Again
let A1,..., \; be the distinct eigenvalues of T. We know that

V=NT-M\)® - NT = N\JI).
Hence, every x € V can be written uniquely as
r=x1+ - +x with z; € N(T - N\I).
Fori=1,...,k, let P,:V — V be defined by
Px=x;, xeV.
The, it can be easily seen that P? = P; so that P; is a projection onto N(T — \;I). Hence,

I=P+- -+ P

and
k
T=TP +-+TP, =Y AP
i=1
Next, consider any linear operator finite dimensional vector space over C and let Aq,..., A\ be the
distinct eigenvalues of T" with ascents £ ..., i, respectively. Then, by spectral decomposition theorem,
we have

V=NT-A)&---N(T — \I).
Hence, every x € V can be written uniquely as
T=a1+ - +xp with xz; € N(T — N5,
Again, for i =1,...,k, let P, : V — V be defined by
Px=ux;, xeV.

Then we have
I=P+-+P

and i i
T=TP + - +TP,=Y MNP+ Y (T - NP,
=1 =1
Let D; = (T — \;I)P;. Then we see that
D=0 and D%!#0.

Thus, D; is a nilpotent operator of index ¢; for i =1,..., k. &
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4.8 Triangulization and Jordan representation

As in last section, we assume that V is a finite dimensional space over C and T : V' — V is a linear
operator.
THEOREM 4.38. (Triangulization) There exists a basis E for V such that [T|gg is a triangular

matriz.

Proof. First let us assume that T has only one eigenvalue \ with ascent £. Then V = N (T — \I)%. If
¢ =1, then the result is obvious. In fact, in this case T is diagonalizable. So, assume that ¢ > 1. Let

K;=N(T-X) and g;=dim(K;), j=1,...,¢

Then, we have Ky = V and K is a proper subspace of K;4q for j =1,...,0—1. Let E = {u1,...,u,}
be a basis of V' such that {uy,...,u,,} is a basis of K; for j =1,...,£. Then, {us,...,uy, } is a basis
of Kj := N(T — \I) and

{ugj+1,...,ugj}§Kj+1\Kj, jE{l,...,g—l}.
Further,
span({ug, 11, -, ug,,, }) N K; = {0}.
Note that for each k € {1,...,n},

Tup = Aug + (T - )\I)uk.

Clearly, Tuy = Ay for k=1,...,91. If k € {g1 + 1,...,n}, then there exists j € {1,...,¢ — 1} such
that k € {g;+1,...,gj41}, i.e., k is such that ug € {ug,41,...,ug,,,}. Then we have (T'—A)uy, € K;
so that T'uy takes the form

9;j
Tup, = Aug + Zagk)ul
i=1
Thus, [T]gg is a triangular matrix with every diagonal entry A.

Next assume that the distinct eigenvalues of T are Aq1,..., A, with #q,...,£,, respectively. Let
Vii=N(T—-XD%, j=1,...,r

Let T : V; — Vj be the restriction of 1" to V;. Then we know that A; is the only eigenvalue of 7. Let

E; be a basis for V; such that A; := [T}]g, g, is a triangular diagonal matrix with diagonal entries
Aj. Now, taking ' = U}_, E;, we it follows that £ is a basis of V and [T]gg has block diagonal form
with blocks Ay, ..., A,. O

THEOREM 4.39. (Jordan form) There exists a basis E such that [T = (a;;), where

0 ifj <tandj>i+1,

@is € 1A, Ak a“:{ Oorl ifj=i+1
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Proof. In view of the fact that each N(T — \;I)% is invariant under T and the spectral decomposition

theorem (Theorem 4.28), it is enough to consider the case of T' having only one eigenvalue.

So, let A be the only eigenvalue of T' with ascent £. Then V = N(T — M )*. If £ = 1, then we are

done. In fact, in this case T is diagonalizable. So, assume that ¢ > 1, and let
K;j=N(T—-X) and g;:=dim(K;) for je{l,...,0}.

Then for j € {1,. — 1}, Kj is a proper subspace of K;;1. Let K;11 = K; & Y;11, where Yj 14
is spanned by Kjiq \K Let hy = g1 and for j = 1,...,¢ — 1, let hj11 = gj+1 — g; . Thus,
hjp1 =dim(Yjq), j=1,...,4—1,and hy +--- 4+ hy = g¢ = dim(V).

The idea is to identify linearly independent vectors u( ), j=1,...,h; in K; \ K;_1 for each

1 =1,...,¢ so that their union is the basis of V' with respect to which T" has a the required form.
Now, let uﬁ‘), e ,ugi) be a basis of Y;. Let us observe that following:
1. (T — )J)ul ooy (T — )\I)ugf) are linearly independent, and

2. (T—X)u ()EK( 1\ Ky_o for j =1,..., hy, whenever £ > 2.
Let aq,...,an, € C be such that Zf”il a; (T — )\I)uz(-z) = 0. Then

Zal eN(T — ) C Ky_y.

Hence, Z gLt u(e) € K;—1NYy = {0} so that a; = 0 for ¢ = 1,...,hp. Thus, (1) is proved. To
see (2), first we observe that (T — )\I)ugz) € Ky_1. Suppose (T — )\I)uy) € Ky_o for some j. Then
uy) € Ky—1 NY; = {0}, which is not possible. This proves (2).

Now, let us denote
WV = (@ -ADul?, =1, ke

(e-1)

Find u;z-1) € Ky 1\ Ky_o for j = hg+1,...,hy_1 so that u; ,j = 1,...,hy_q are linearly

independent. Continuing this procedure to the next level downwards, we obtain a basis for V as
E=EUE_ U--UE, E={":j=1..h} (%)

Note that
hi+ho+---+hr=g1+(g2—91)+ -+ (9 — ge—1) = ge-

Also, Tug-l) = /\ugl), j=1,...,h; = g1 and for i > 1,

Tul” = 2l + (T = Al = aal? + a7V =1,

Reordering the basis vectors in E appropriately, we obtain the required form of the matrix represen-
tation of T'. Note that at the upper off-diagonal of [T]g there are g — 1 number of 0’s and g, — ¢1

number of 1’s. O
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5 Problems

5.1 (On Section 1: Vector spaces)

In the following, V' denotes a vector space over a filed F.
L, 1=y,

Fori,jGN,wedenoteéij{ 0. isti
) 7 .]7

1. Prove that Oz = 0y and (—1)az = —z for all z € V.
2. Prove that for z € V and a € F, if ax = 0, then either « =0 or z = 0.
3. Verify (prove) the following:
(a) R™ with coordinate-wise addition and scalar multiplication is a vector space over R and

over Q, but not a vector space over C.

(b) F™ with coordinate-wise addition and scalar multiplication is a vector space over F but not
a vector space over a field F DO F with F #£F.

(¢) R™*™  the set of all real m x n matrices is a vector space over R under usual matrix

multiplication and scalar multiplication.

(d) Let £ be a nonempty set. Then the set F(£2,F), the set of all F-valued functions defined
on {2, is a vector space over F with respect to the pointwise addition and pointwise scalar

multiplication.

Is the set of all scalar sequences a special case of the above?.
4. Which of the following subset of C? a subspace of C3?

(a) {(a1,2,a3) € C?: a1 € R}.
(b) {(041,%7&3) € C3?: either ag =0 or ag = 0},

(C) {(051,042,0(3) eC?: aptag=1¢€ R}

5. Which of the following subset of P a subspace of P?

{z € P:22(0) = 2(1)}.
{reP:x(t)>0forte|0,1]}.
(d) {zeP:z(t)=z(1—-1t)Vt}.

6. Prove the following:

(a) The spaces P, (F) and F**! are isomorphic, and find an isomorphism.

(b) The space R" := R™*!  the space of all column n-vectors is isomorphic with R™, and find

an isomorphism.
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(¢) The space R™*"™ is isomorphic with R™" and find an isomorphism.
7. Prove the assertions in the following:
(a) S={(a1,2) € R? : a1 + a3 = 0} is a subspace of R?.
(b
(c

(d) For n € N with n > 2 and each k € {1,...,n — 1},
Sk ={(aq,...,an) € F" : o; = 0Vi > k} is a subspace of F™.

)
) S ={(a1,a2,a3) € R? : a1 + az — az = 0} is a subspace of R3.

) Foreach k € {1,...,n}, Sk = {(aa,...,an) € F" : o, = 0} is a subspace of F.
)

(e) For each n € N, P, is a subspace of P.

(f) For each n € N, V,, := {& € F(N,F) : x(j) = 0Vj > n} is a subspace of F(N,F), and
coo := U, Vi is a subspace of F(N,F).

(Note that elements of W are sequences having only a finite number of nonzero entries.)
(g) For an interval  := [a,b] C R,

i. R(£2), the set of all Riemann integrable real valued continuous functions defined on €
is a subspace of F(Q,R).
ii. C(Q) is a subspace of R(Q2)
iii. C(2), the set of all real valued continuous functions defined on € and having contin-

uous derivative in (2 is a subspace of C(£2).

iv. S={zeC(Q): ffx(t)dt =0} is a subspace of C'(Q).

v. S={z € C(Q):z(a) =0} is a subspace of C(1).

vi. S={z e C(Q):z(a) =0=2x(b)} is a subspace of C(2).
(h) Let A € R™*". Then

i. {x € R": Az = 0} is a subspace of R",

ii. {Az:x € R"} is a subspace of R™,
(i) {(a1,2) : a1 + az = 0} is a subspace of R?.
() {(a1,a2) : a1 + az — az = 0} is a subspace of R?.

(k) For i € {1,...,n}, let e¢; = (0;1,...,0in). Let V.=R". Then {(aq,...,a,) € R" : o; =
0 for i > k} is a subspace of R™.

(1) If V1 and V4 are subspaces of V, then V; 4+ V5 = span(V; U V3).
(m) If V; and V, are subspaces of V and if V; C V;, then V; U V4 is a subspace of V.
(n) If V4 and V4 are subspaces of V, then V3 NV is a subspace of V; but, V4 UV, need not be
a subspace of V.

8. Let V be a vector space and S C V. Prove the following:

(a) span(S) is a subspace of V.
(b) If V; is a subspace of V such that S C Vj, then span(S) C ;.
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(¢) S = span(9S) if and only if S is a subspace of V.
9. Prove the assertions in the following:
(a) If V = R2?, then span({(1,—1)} = {(a1,a2) : a1 + as = 0}.
(b) If V. =R3, then span({(1,—1,0), (1,0,1)} = {(a1,a2) : @1 + ag — az = 0}
(c) Forie{l,...,n}, let e = (§i1,...,0in). Let V. =R". Then
i. span({e1,...,ex}) = {(a1,...,an) ER" : a; =0 for i > k}.
ii. span({ey,...,en}) =R".
(d) If V =P, then span({1,t,...,t"}) = P, and span({1,¢,¢,...}) = P.
(e) For each 7 € N, let e; = (5117(52'2, ey ) Then span({el, €9,.. }) = Coo-

10. Prove that a set of vectors z1,...,x, in a vector space V are linearly dependent if and only if

there exists k € {2,...,n} such that zj is a linear combination of x1,...,Tk_1.
11. Prove that any three of the polynomials 1,¢,t2,1 + ¢ + ¢? are linearly independent
12. Give vectors z1, T3, T2, 24 in C? such that any three of them are linearly independent.
13. Find conditions on « such that the vectors
(a) (14+a,1—a), (1 —a, 1+ a) are linearly dependent C2,
(b) (a,1,0), (1,a,1), (0,1, ) are linearly dependent in R3.

14. Suppose x,y, z are linearly independent. Is it true that = + y,y + 2,z + = are also linearly

independent?
15. Prove the assertions in the following;:
(a) {e1,...,en} is a basis of R™ and C™.
(b
(
(

)

) {1,t,...,t"} is a basis of P,.
)
d) {1,t,#2,...} is a basis of P.
)
)

c) {L,1+t,1+t+t% ..., 1+t+---+t"} is a basis of P,,.
(e) For each i € N, let e; = (0;1,0;2,...,). Then {ej,es,...} is a basis of cgo.
(f) If E is linearly independent in a vector space, then E is a basis for V) := span(FE).
16. Prove:
(a) If E is linearly independent and if x € V with = ¢ span(E), then F U {z} is linearly
independent.
(b) Every vector space having a finite spanning set has a finite basis.

(c) If a vector space V has a finite basis, then any two basis of V' contains the same number

of vectors.
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17.

18.

19.

20.

21.

22.

23.

Find bases Ej, E5 for C* such that £y N E; = @ and {(1,0,0,0), (1,1,0,0)} € E; and
{(1) 17170)a (15 17 17 1)} c EQ-

Prove the assertions in the following;:
(a) F™ and P, are finite dimensional spaces, and dim(F") =n, dim(P,)=n+ 1.
(

b) dim({a1,...,an) ER": a1+ -+ a, =0} =n—1.

)
)

(¢) P, Cla,b], coo are infinite dimensional spaces.

(d) Every vector space containing an infinite linearly independent set is infinite dimensional.
)

(e) If A € R™*"™ with n > m, then there exists z € R" such that Az = 0.
Prove:

(a) If V4 and V4 are subspaces of a vector space V such that V3 NV, = {0}, and if By and F»
are bases of V] and V5, respectively, then E7 U Es is a basis of V| + V5; and in particular,

dim(V; + V2) = dim(V7) 4 dim(V%).
(b) If V1 and V5 are subspaces of a vector space V, then
dim(V; + V2) = dim(V}) + dim(V2) — dim(V;, N V3).

(¢) Let V7 and V3 be vector spaces and let T' be an isomorphism from V; onto Va. Let E C V;.
Then E is a basis of Vi if and only if {T'(u) : u € E} is a basis of V5.

Suppose V1 and V; are subspaces of a vector space V. Prove:

(a) If V5 and V4 are finite dimensional such that dim(V;) = dim(V3) and V4 C V3, then V} = V5.
(b) If V = V1 U Vs, then either Vi =V or Vo = V.
Prove that, if Vj is a subspace of a vector space V, then there exists a subspace V; of V' such

that
V=VW+V: and VonV; ={0}.

If V is the set of all odd polynomials (i.e., x(—t) = —z(t) for all ¢), and if V3 is the set of all
even polynomials (i.e., z(—t) = z(t) for all ¢), prove that V; and V5 are subspaces of P such that
V=Vi+V,and V1 NV, = {0}.

Let V4 and V4, be vector spaces over the same field F. For z := (z1,z2), y := (y1,y2) in V1 x Va,
and o € F, define

x+y=(r1+y1, T2+ Y2), ar = (axy, axs).

Prove:

(a) V1 x V4 is a vector space over F with respect to the above operations with its zero as (0,0)

and —x := (—x1, —x2).
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(b) If ¥} and V5 are finite dimensional, then
dim(V; x V) = dim(Vy) + dim(V3).

(c) If ‘71 = {(x1,29) € V1 X Vo : 29 = 0} and 172 = {(x1,29) € V1 x Vo : &1 = 0}, then ‘71 and
‘72 are subspaces of V; x V5 and

Vi x Vo =Vy + Va, ‘710‘72:{(0,0)}-
In view of the above, the space V; x V5 is called the direct sum of V7 and V5.

24. Let V; and V5 be subspaces of a finite dimensional vector space V such that V = V; + V5 and
V1 N Va = {0}. Prove that V is isomorphic with V; x V5.

25. Let V be a subspaces of a finite dimensional vector space V. Prove that V is isomorphic with
(V/Vo) x Va.

5.2 (On Section 2: Linear Transformations)

In the following, V; and V5 are vector spaces over a filed F.
1, i=y,

For i,j € N, we denote §;; = 0 i
y ¢ Js

1. Let T : Vi — V5 be a linear transformation. Prove that
(a) T(0) = 0.
(b) T is one-one iff N(T') = {0}.

2. Verify the assertion in each of the following:
(a) Let A € R™*™ and let T : R" — R™ be defined by

Tx = Az, zeR"

Then T is a linear transformation.

(b) For z € Cla,b], define

Then T : Cla,b] — R is a linear transformation.
(c) For z € C'[a,b], define
(Tz)(t) ='(t), te€]a,b].

Then T : C[a,b] — C[a,b] is a linear transformation.
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(d) For 7 € [a,b] and = € Ct[a, b], define
T(z) =2'(1).

Then T : C'[a,b] — R is a linear transformation.

(e) Let IF be either R or C and V' be any of the spaces cgo, 1, £>. Recall that

coo = {z € F(N,F) : Ik € N with 2(j) =0V j > k},

' ={r e F(N,F): Z |z(j)| converges},
j=1
0> ={zx e F(N,F) : (z(n)) bounded}.
i. T:V — V defined by
T(Ozl,OLQ,...,) = (0,0[1,0&2,...7)
is a linear transformation, called the right shift operator.
ii. T:V — V defined by
T(al,ag,...,) = (a27a3,...,)
is a linear transformation, called the left shift operator.
3. Let T : V7 — V5 be a linear transformation. Prove:
(a) Ifuy,...,u, arein Vi such that Tuy, ..., Tu, are linearly independent in Vo, then uy, ..., uy,
are linearly independent in V.
(b) If T is one-one and uy, . .., u, are linearly independent in V3, then Tuy, . .., Tu, are linearly
independent in Va.

Let T : Vi — V5 be a linear transformation. Prove:

a) If E; is a basis of Vi, then R(T) = span(T(E1)).

b) dim R(T) < dim(V4).

(¢) If T is one-one, then dim R(T) = dim(V}).

(d) If V; and V4 are finite dimensional such that dim(V;) = dim(V3), then T is one-one if and

only if T' is onto.

(
(

4. Find the following subspaces of the space Py:
(a) Vi ={p(t) € Pn: p(1) =0},
(b) Vi = {p(t) € P, : p(0) =0, p(1)},
(¢) Vi = {p(t) € Pn: [, pl(t)dt = 0}.
5. Let A € R™*™ and let T : R™ — R™ be the linear transformation defined by

Tx = Az, zecR"™

Prove:
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(a) T is one-one if and only if the columns of A are linearly independent.

(b) R(T) is the space spanned by the columns of A, and rank(T’) is the dimension of the space
spanned by the columns of A.

6. Let V4 and V4 be finite dimensional vector spaces over the same field F and let {uq,...,u,} be
a basis of V4. Let {vy,...,v,} C V5. Define T : V3 — V3 be

T(iaiui) = iaiu (a1,...,a,) €F™
i=1 i=1

(a) Show that T is a linear transformation such that T'(u;) = v; for j € {1,...,n}.
(b) T is one-one if and only if {vy,...,v,} is linearly independent.
(¢) T is onto if and only if span({vy,...,v,}) = Va.
7. Let V; and V; be finite dimensional vector spaces over the same field F and let F := {u1,...,u,}

be a linearly independent subset of V;. Let {v1,...,v,} C V5. Show that there exists a linear
transformation T : Vi3 — V4 such that T'(u;) = v; for j € {1,...,n}.

Let V be a finite dimensional space and E = {uy,...,u,} be an order basis of V. For each
je{l,...,n}, let f; : V — F be defined by

fi(z)=a; for z:= Zaiui.
i=1

Prove:
(a) fi,...,fn arein V' and they satisfy f;(u;) = d;; for 4,5 € {1,...,n},
(b) {f1,--., fn} is a basis of V’.
8. Prove: Let V be a finite dimensional space. Then V and V' are linearly isomorphic.

9. Let £ = {uq,...,un} be an order basis of V. If fi,..., f, are in V' such that f;(u;) = d;;.
Prove {f1,..., fn} is the dual basis of V.

10. Let Ty € L(V1,V3) and Ty € L(V3, V3). Show that
(a) ToTy one-one implies T} one-one.
(b) ToTy onto implies T onto.

11. Prove: Let V be a vector space and W be a subspace of V. Then the map n: V — V/W defined
by
n@)=z+W, zeV,

is a linear transformation.

12. Let V4 and V; be finite dimensional vector spaces over the same field F and let By := {uq,...,u,}
and Fy := {v1,...,vy,} be ordered bases of V7 and Va, respectively. Let T : V4 — V4 be a linear

transformation. Prove that for each j, [Tu;]g, is the j' column of [T, g,
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13.

14.

15.

16.

17.

18.

Let A € R™*™ and let T : R™ — R™ be defined by Tx = Az, z € R". If E; and FE, are the
standard bases for R" and R™, respectively, then prove that [T]g, g, = A.

Prove: Let V4 and V5 be finite dimensional vector spaces over the same field F with dim(V;) =n
and dim(V3) = m and let E; and Es be ordered bases of V; and Vs, respectively. Let T : Vi — V5
be a linear transformation. Then the following hold:
(a) [Tz)g, = [T)g, B, |2, for all z € V7.
(b) T is one-one (respectively, onto) if and only if [T]g, g, : R" — R™ is one-one (respectively,
onto).

(¢c) For A e Rm™*",
A:[T]E1E2 < [Tl‘]EQZA[$]E1 Vae V.

(d) T = J{l[T]E1E2 J1, where J; : Vi — R"™ and J, : Vo — R™ are the canonical isomorphisms,

Let Vi, Vs, V3 be finite dimensional vector spaces over the same field F, and let E1, Fs, F;5 be
ordered bases of Vi, Vs, Vs, respectively. If Ty € L(Vy,Vs) and Ty € L(V3, V3). Then the

(T>T1 B By = [12] B, 55 [T1] By Es -
Forne N, let D: P, = P,_1 and T : P,, = P,+1 be defined by
D(ag + art + - -+ + apt™) = a1t + 2aot + - - + na,t" ',
n ai o an  pn41
T td -t ant") = apt + —t2 4+ 4 — gL
(ao + a1t + - + ant™) = apt + SR
Let By, = {1,t,...,t*} for k € N. Find

Dle,E,» [TEsEns» TDle.E,., [PTE,E,-

Let V4 and V5 be finite dimensional vector spaces over the same field F and let T : V7 — V,
be a linear transformation. Let Fy = {uq,...,u,} and E, = {@1,...,U,} be two bases of V}
and Fy = {v1,...,v,} and Ey = {01,...,0m} be two bases of V5. Let ®; : V; — V] and
®, : V5 — V5 be the linear transformations such that

P (ui) = Uy, P2(vj) =7,
fori=1,...,n;j=1,...,m. Prove that

[T} E1E; — [QQ]E‘;E2 [T]ElEz [q)l]ElEl .

Let Py be the vector space (over R) of all polynomials of degree at most 2 with real coefficients.
Let T : Py — R2%2 be the linear transformation defined by

p(1) p<o>] .
p(0) = p(1) p(0)

(a) Find a basis for N(T') and a basis for R(T).

(b) If W is the space of all symmetric matrices in R?*2, then find a basis for W N R(T).

T(p(t)) =
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5.3 (On Section 3: Inner product spaces)

In the following, V' is an inner product over F € {R, C}.
1, i=y,

Fori,jGN,wedenote@j{ 0. isi
) 7 .]7

1. Verify:

oo

(a) On the vector space coo, (z,y) == >_;_; #(j)y(j) defines an inner product.
(b) On the vector space Cla,b], (,y) := fb x(t)y(t)dt defines an inner product.

a

(¢) Let 71,...,7h+1 be distinct real numbers. On the vector space Py,

(p,q) := Z?:Jrll p(7:)q(7;) defines an inner product.
2. Prove the following:
(a) Forz €V, (z,u) =0Vu € V=12 =0.
(b) Foru e V,if f:V — F is defined by f(z) = (x,u) for all x € V, then f € V'.
(¢) Let uy,us,...,u, be linearly independent vectors in V' and let € V. Then

(x,u;) =0 Vie{l,...,n} <= (z,y) =0 Vyespan{uy,...,u,}.

In particular, if {uy,us,...,uy} is a basis of V, and if (z,u;) = 0 for all 4 € {1,...,n},
then z = 0.

(d) For S C V, [span(9)]* = S+.
3. Let V; and V; be subspaces of an inner product space V. Prove that (V; + Vo)t = Vit N Vit

4. Recall that d : V x V' — R defined by d(z,y) = || — y|| is a metric on V, called the metric

induced by the inner product. Then, with respect to the above metric, prove the following:

(a) The map = — ||z| is continuous on V.

(b) For each u € V, the linear functional f : V — F defined by f(z) = (z,u),x € V, is

continuous.

(c) For every S C V, the set St is closed in V.

5. Consider the standard inner product on F*. For each j € {1,...,n}, let
e; = (51j,52j, R 6n]) Show that (61‘ + Bj) 1 (ei - ej) for every i, € {1, S ,n}.

6. Using Gram-Schmidt orthogonalization process, orthonormalise the sets S in the following:

(a) S = {1,t,t2,t3} with respect to the usual inner product on Ps.
(b) S ={(1,1,1,1), (1,1,1,0), (1,1,0,0)} with respect to the usual inner product on R*.
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10.

11.

Consider the vector space C[0,27] with inner product defined by
(f,g) = 0277 f(t)g(t)dt for f,g € C[0,27]. For n € N, let

un(t) :=sin(nt), v, (t) = cos(nt), 0<t<2rm.
Let wa,—2 = v, and wa,—1 = u,, for n € N.Show that the sets
{un :n €N}, {v,:neN}, {w,:neN}
are orthogonal sets.

Suppose {u1,...,u,} is an orthonormal set in an inner product space V' and z € V. Then

n

x— Z(I,u&uz L span{uy, ..., up,}

i=1

and
n

Dl ) < lalf?.

i=1
Further, the following are equivalent:
(a) x € span{uy,...,u,}
(b) & =320 (w, ui)u
() llll? = 220y [, ua) .

Let V = F3 with standard inner product. Form the given vectors z,y,z € F3 in the fol-

lowing Construct orthonormal vectors u,v,w in F3 such that span{u,v} = span{z,y} and
span{u, v, w} = span{z,y, z}.

(a) x=(1,0,0),
(b) z = (1,1,0),

(1,1,0), z = (1,1,1);

Yy s
Y= (07171)7 z = (1a071)'

For (a1,...,ay) € ™ and (f4,...,0,) € F"*, show that

Slasssl < (S las) (S 18)
Jj=1 j=1 j=1

Nl

For z,y € F(N) prove that

oo oo 1 oo

> leisil < (X lasl?) (D181

j=1 j=1 j=1

SIS

Hint: Use Exercise 10.
Let -
C={zeFN):> |z@)]® < oo}
j=1

Prove that
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12.

13.

14.

15.

16.

17.

18.

(a) £? is a subspace F(N).

(b) For z,y € 2, Z |z(j)y(y)| converges.
j=1

(c) (z,y) := Z |z(5)y(7)| defines an inner product on £2.
j=1

For (a1,...,ay) € F* and (B4,...,08,) € F*, show that

(o +85) < (X losk?)
j=1 j=1

n

+ (X 1812)

1
2

(NI

j=1
For z,y € F(N) prove that
(M las+812)" < (Xlesl?) " + (X 18:)
j=1 j=1 j=1
Hint: Use Exercise 12.
Let dim(V) =n and let E = {uy,...,u,} be an ordered orthonormal set which is a basis of V.

Let A:V — V be a linear transformation.
(a) Show that [A]g g = ((Auj,u;)). [Hint: Use Fourier expansion.]

(b) Define B : V — V such that (Ax,y) = (x, By) for all x,y € V.

Let dim(V) = n and let E = {us,...,u,} be an ordered orthonormal set which is a basis of
V. Let A,B:V — V be a linear transformations satisfying (Ax,y) = (x, By) for all z,y € V.
Show that [Blg g = W;E, conjugate transpose of [A]g g.

Let V be finite dimensional and Vj is a subspace of V. Prove that every x € V' can be written
uniquely as x = y + 2z with y € Vj and z € V5. [ Hint: Obtain a basis of V{, extend it to a basis

of V, and consider the orthonormalization of that basis.]

Let V be an inner product space and V{, be a finite dimensional subspace of V. Then for every

x € V, there exists a unique pair y € V{ such that

—yl|| = inf — ul|.
Iz~ yll = inf [}zl

Let V be an inner product space and V) be a subspace of V and let z € V and y € V. Prove
the following;:
(a) f{x—y,u)y=0 Yuely = |z—y|= in‘f/ |z — wl|.
ueVop

(b) If span(S)=Vp and (z —y,u) =0 YueS = |z—y| = 1g‘f/ |z — ull.
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19.

20.

21.

22.

23.

5.4

Let V be an inner product space, Vy be a finite dimensional subspace of V and x € V. Let

{u1,...,ur} be a basis of V. Prove that for y = Zk 1 oy,

k
(x—y,u) =0 Yuey, < Z(uj,ui)ozj =(x,u;), 1=1,...,k.
j=1
Further, prove that there exists a unique (as, ..., a;) € F¥ such that
k

Zuj,ul = (z,u), i=1,... Kk,

j=1
and in that case ||z —y|| = inf ||z —wul.

ueVy

Let V = C[0,1] with inner product: (f,g / f(t)g(t)dt. Let z(t) = t°. Find best approxi-

mation for x from the space Vp, where

(i) Vo = Pu, (i1) Vo = Po, (ii1) Vo = Ps, (iv) Vo = P, (v) Vo = Ps.

2w

Let V = C[0,2n] with inner product: (f,g) := f(t)g(t)dt. Let x(t) = t>. Find best
0

approximation for x from the space Vj, where

Vo = span{1,sint, cost,sin 2t, cos 2t}.

Let V be finite dimensional and V is a subspace of V. For € V| let y,z be as in the last
problem. Define P,@Q : V — V by P(z) = y and Q(z) = z. Prove that P and @ are liner

transformations satisfying the following:
R(P)=Vy, R(Q) =V, P*=P @Q=Q, P+Q=I,
(Pu,v) = (u, Pv) Vu,veV, |z—Pzx|<|z—ul| Yuel.
Prove the following:

(a) If A is self adjoint, the (Az,z) € R for every z € X.
(b) If A is normal, then |Ax| = ||A*x| for every z € X.

(c) If Ais unitary, then (Az, Ay) = (x,y) for every x,y € X. In particular, images of orthogonal

vectors are orthogonal.

(On Section 4: Eigenvalues and eigenvectors)

In the following V is a vector space over F which is either R or C, and T': V' — T is a linear operator.

1.

Let A € R"™", and consider it as a linear operator from R" to itself. Prove that A € oeig(A) <=
det(A — AI) =0.
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10.

11.

12.

13.

14.

15.

Show that oeig(T) = @ in the following cases:

(a) Let V = P, the space of all polynomials over F and let Tp(t) = tp(t), p(t) € P.
(b) Let V = ¢go and T be the right shift operator on V.

Find the eigenvalues and some corresponding eigenvectors for the following cases:

(a) V=Pand Tf = f".
(b) V=C(R)) and Tf = f".

Let V = P,. Using a matrix representation of T', find eigenvalues of 71 f = f’ and Tof = f”.
Find eigenspectrum of T if 7% = T.

Prove that eigenvectors corresponding to distinct eigenvalues of T are linearly independent.
Prove that, for every polynomial p(t) and A € F and x € V, Ta = \e = p(T)x = p(\)z.

Let T : R? — R? be the linear transformation defined by
T(a,B,7) = (@, 2a +36, 3a+47), (o, B,7) € R,

Find a basis for R? consisting of eigenvectors of T.

. Suppose V is an inner product space and T is a normal operator, i.e., T*T = TT*. Prove that

vector x is an eigenvector of T' corresponding to an eigenvalue A if and only if x is an eigenvector

of T corresponding to the eigenvalue .

Prove that every symmetric matrix with real entries has a (real) eigenvalue.

-1 1 1
Let A= |1 —1 1 |. Find an orthogonal matrix U such that UT AU is a diagonal matrix.
1 1 -1

Prove that, if V' is a finite dimensional inner product space and T is a self adjoint operator, then
O'eig(T) 75 .

Let V be a finite dimensional vector space.

(a) Prove that T is diagonalizable if and only if there are distinct Aq,...,A; in F such that
V=NT-MD)+---+NT - XNI).
(b) Prove that, if T has an eigenvalue A such that N (T —\I) is a proper subspace of N (T —\I)?,

then T is not diagonalizable. Is the converse true?

(c) Give an example of a non-diagonalizable operator on a finite dimensional vector space.

Let V be a finite dimensional vector space and T be diagonalizable. If p(t) is a polynomial which

vanishes at the eigenvalues of T', then prove that p(T) = 0.

Let V be a finite dimensional vector space.
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16.

17.

18.

(a) Let X\ # p. Prove that N(T — X )* N N(T — pl)? = {0} for every i,j € N.

(b) Prove that generalized eigenvectors associated with distinct eigenvalues are linearly inde-

pendent.

(¢) Prove Cayley-Hamilton theorem for operators.

Let V be finite dimensional over C and A be an eigenvalue of 7" with ascent ¢. Prove that
m := dim[N (T — M )?] is the algebraic multiplicity of \.

Let V finite dimensional, k¥ € N be such that {0} # N(T*) # N(T**1), and let Y} be a subspace
of N(T**1) such that N(T**!) = N(T*) ® Y}. Prove that dim(Y},) < dim[N(T%)].

Let V be a finite dimensional vector space and T be diagonalizable. Let uq,...,u, be eigen-
vectors of T" which for a basis of T, and let Ay,..., A, be such that Tu; = Aju;, j =1,...,n.
Let f be an F-valued function defined on an opens set @ C F such that Q D 0 (T). For
x =30 aju; €V, define

FD)z =" a; f(N)u;.
j=1

Prove that there is a polynomial p(t) such that f(7') = p(T) [Hint: Lagrange interpolation].
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