DEPARTMENT OF MATHEMATICS IIT MADRAS

MA1010: Calculus I : Functions of one variable¹

Problem Sheet III

- 1. Find $\lim_{x\to 0^-} \frac{|x|}{x}$ and $\lim_{x\to 0^+} \frac{|x|}{x}$.
- 2. Let $f : \mathbb{R} \to \mathbb{R}$ be such that $\lim_{x \to \infty} f(x) = \ell$. Prove that $f(n) \to \ell$ as $n \to \infty$.
- 3. Let [x] denote the greatest integer not exceeding x. Prove that for $n \in \mathbb{N}$, $\lim_{x \to n^+} [x] = n$ and $\lim_{x \to n^-} [x] = n 1$.
- 4. Use the sequential characterization, show that if $\lim_{x\to a} f(x) = A$ and $\lim_{y\to A} g(y) = B$, then $\lim_{x\to a} (g \circ f)(x) = B$, provided $g \circ f)(x) := g(f(x))$ is well defined and f does not attain A in a deleted neighbourhood of A.
- 5. Let $f: (0, \infty) \to \mathbb{R}$. Show that $\lim_{x \to 0} f(x) = b$ if and only if $\lim_{x \to \infty} f(x^{-1}) = b$.
- 6. Find all the values of b such that $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} \frac{x^3-1}{x-1}, & x \neq 1, \\ b, & x = 1 \end{cases}$ is continuous at $x_0 = 1$.
- 7. Find all the values of b such that $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = \begin{cases} \frac{\sin x}{x}, & x \neq 0, \\ b, & x = 0 \end{cases}$ is continuous at $x_0 = 0$.
- 8. Use the definition of continuity and the properties of limits to show that each of the following functions is continuous (at the given number a or the given interval):
 - (a) $f(x) = (x + 2x3)4; \quad a = -1.$ (b) $f(x) = \frac{(2x - 3x)^2}{1 + x^3}; \quad a = 1.$ (c) $2\sqrt{3 - x}; \quad a \in (-\infty, 3].$
- 9. There exists $x \in \mathbb{R}$ such that $\sin x = x^2 x$. Why?
- 10. Suppose $f : [a,b] \to \mathbb{R}$ is continuous. If $c \in (a,b)$ is such that f(c) > 0, and if $0 < \beta < f(c)$, then show that there exists $\delta > 0$ such that $f(x) > \beta$ for all $x \in (c - \delta, c + \delta) \cap [a, b]$.
- 11. Let $f : \mathbb{R} \to \mathbb{R}$ satisfy the relation f(x+y) = f(x) + f(y) for every $x, y \in \mathbb{R}$. If f is continuous at 0, then show that f is continuous at every $x \in \mathbb{R}$, and in that case f(x) = xf(1) for every $x \in \mathbb{R}$.
- 12. There does not exist a continuous function f from [0,1] onto \mathbb{R} . Why?

¹Some of the problems are taken from the book *Calculus of One Variable* by M.T. Nair.

- 13. Prove that if $f : [a, b] \to \mathbb{R}$ is continuous on the intervals [a, c] and [c, b] for some $c \in (a, b)$, then f is continuous on [a, b].
- 14. Suppose $f : [a, b] \to [a, b]$ is continuous. Show that there exists $c \in [a, b]$ such that f(c) = c.
- 15. Suppose $f : [a, b] \to \mathbb{R}$ satisfies $|f(x) f(y)| \le K|x y|$ for all $x, y \in [a, b]$ for some $K \ge 0$. Then f is a continuous function. Why?
- 16. Suppose $f : [a,b] \to [a,b]$ is such that there exists r satisfying 0 < r < 1 and $|f(x) f(y)| \leq r|x y|$ for all $x, y \in [a,b]$. Let $x_1 \in [a,b]$ and for $n \in \mathbb{N}$, let $x_{n+1} := f(x_n)$. Prove that $x_n \to c$ for some c and f(c) = c.
- 17. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 1 + x + x^2$. Without solving a quadratic equation, can you assert that there is some x_0 such that $f(x_0) = 2$?
- 18. If p(x) is a polynomial of odd degree, then there exists at least one $x_0 \in \mathbb{R}$ such that $p(x_0) = 0$. Why?
- 19. Suppose $f : \mathbb{R} \to \mathbb{R}$ is continuous such that $f(x) \to 0$ as $|x| \to \infty$. Prove that f attains either a maximum or a minimum.
- 20. Let $f : [a, b] \to [a, b]$ be such that $|f(x) f(y)| \le |x y|/2$ for all $x, y \in [a, b]$. Show that there exists $x_0 \in [a, b]$ such that $f(x_0) = x_0$.
- 21. Prove the following.
 - (a) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. If $\lim_{x \to -\infty} f(x) = c$ and $\lim_{x \to \infty} f(x) = d$, where c < d, then for every $y \in (c, d)$, there exists $x \in \mathbb{R}$ such that f(x) = y.
 - (b) Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function. If $\lim_{x \to -\infty} f(x) \to c$ and $\lim_{x \to \infty} f(x) = \infty$, where c < d, then for every $y \in (c, \infty)$, there exists $x \in \mathbb{R}$ such that f(x) = y.
 - (c) From (b) above, deduce that for every $y \in (0, \infty)$, there exists $x \in \mathbb{R}$ such that $e^x = y$.
- 22. Prove that if f is strictly monotonic on an interval I, then f is injective on I.
- 23. Let $n \in \mathbb{N}$. Prove that for every $y \ge 0$, there exists a unique $x \ge 0$ such that $x^n = y$.
- 24. Suppose f is a continuous function defined on an interval I and x_0 is an interior point of I. Prove the following.
 - (a) If f is increasing on $(x_0 h, x_0)$ and decreasing on $(x_0, x_0 + h)$ for some h > 0, then f attains local maximum at x_0 .
 - (b) If "increasing" and "decreasing" in (a) above are interchanged, then in the conclusion "maximum" can be replaced by "minimum".
 - (c) If "increasing" and "decreasing" in (a) are replaced by "strictly increasing" and "strictly decreasing", respectively, then we obtain "strict local maximum".
- 25. Let f be a continuous function defined on an interval I. Show that, if f is injective, then it is strictly monotonic on I [Hint: Use Intermediate Value Theorem].