DEPARTMENT OF MATHEMATICS IIT MADRAS

MA1010: Calculus I : Functions of one variable¹

Problem Sheet IV

- 1. Let x_0 be an interior point of an interval I. Prove that $f: I \to \mathbb{R}$ is differentiable at x_0 if and only if $f'_+(x_0)$ and $f'_-(x_0)$ exist and $f'_-(x_0) = f'_+(x_0)$, and in that case $f'(x_0) = f'_-(x_0) = f'_+(x_0)$.
- 2. Consider a polynomial $p(x) = a_0 + a_1 x^2 + \ldots + a_n x^n$ with real coefficients a_0, a_1, \ldots, a_n such that $a_0 + \frac{a_1}{2} + \frac{a_2}{3} + \ldots + \frac{a_n}{n+1} = 0$. Show that there exists $x_0 \in \mathbb{R}$ such that $p(x_0) = 0$.

[Note that the conclusion need not hold if the condition imposed on the coefficients is dropped. To see this, consider $p(x) = 1 + x^2$.]

- 3. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x^2, & x \text{ rational,} \\ 0, & x \text{ irrational.} \end{cases}$ Show that f is differentiable at 0 and f'(0) = 0.
- 4. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x^2 \sin(1/x), & x \neq 0, \\ 0, & x = 0. \end{cases}$ Show that f is differentiable at every $x \in \mathbb{R}$. Is f' continuous?
- 5. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x^2, & x \ge 0, \\ 0, & x < 0. \end{cases}$ Show that f is differentiable at every $x \in \mathbb{R}$. Is f' continuous?
- 6. The function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 1 + x + x^3$ has neither maximum nor minimum at any point. Why?
- 7. Find the points at which the function $f : \mathbb{R} \to \mathbb{R}$ defined by $f(x) = 1 = x x^3$ attain local maxima and local minima.
- 8. Using Taylor's theorem, show that

$$(1+x)^n = 1 + nx + \frac{n(n-1)}{2!}x^2 + \frac{n(n-1)(n-2)}{3!}x^3 + \dots + x^n.$$

- 9. Suppose f is differentiable on $(0, \infty)$ and $\lim_{x \to \infty} f'(x) = 0$. Prove that $\lim_{x \to \infty} [f(x+1) - f(x)] = 0$.
- 10. Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 1 + x + x^3$. Prove that f is a bijection. [*Hint:* Use Intermediate value theorem and mean value theorem.]
- 11. Let $f : [a, b] \to \mathbb{R}$ be a continuous function which is differentiable on (a, b). Prove the following.

¹Problems are taken from the book *Calculus of One Variable* by M.T. Nair.

- (a) If $f'(x) \ge 0$ (respectively, f'(x) > 0) for all $x \in (a, b)$, then f is monotonically increasing (respectively, strictly increasing) on [a, b].
- (b) If $\lim_{x \to a} f'(x)$ exists, then f'(a) exists and $f'(a) = \lim_{x \to a} f'(x)$.

[*Hint:* Use mean value theorem.]

- 12. Let $f : [a, b] \to \mathbb{R}$ be a continuous function which is differentiable on (a, b). Prove that if f' is strictly positive or strictly negative on (a, b), then it is a one-one function.
- 13. Let $f : [a, b] \to \mathbb{R}$ be a continuous function which is differentiable on (a, b). Prove that if $f'(x) \neq 0$ for all $x \in (a, b)$, then f is either strictly increasing or strictly decreasing on [a, b].
- 14. Let $f : [0,1] \to \mathbb{R}$ be a continuous function which is differentiable on (0,1). Prove that, if f(0) = 0 and f(1) = 1, then there exists $c \in (0,1)$ such that f'(c) = 1.
- 15. Using MVT, prove the following:
 - (a) $e^x \ge 1 + x$ for all $x \in \mathbb{R}$.
 - (b) $|\sin x \sin y| \le |x y|$ for all $x \in \mathbb{R}$.
 - (c) $\frac{x-1}{x} \le \ln x \le x-1$ for all $x \in \mathbb{R}$.
- 16. Let $f(x) = x^2 + 1$ and g(x) = x + 2 for all $x \in \mathbb{R}$. What is wrong with the following statement?

Since
$$g'(0) \neq 0$$
, $\lim_{x \to 0} \frac{f(x)}{g(x)} = \frac{f'(0)}{g'(0)} = 0$

17. Prove that $\lim_{x\to\infty} x \ln(1+\frac{1}{x})$ exists and it is equal to 1. [*Hint*: L'Hospital's rule]

18. Find the following limits.

$$\lim_{x \to \pi/2} \frac{\cos x}{x - \pi/2}, \quad \lim_{x \to 0} \frac{1}{x(\ln x)^2}, \quad \lim_{x \to \infty} \frac{\ln x}{x^2}, \quad \lim_{x \to \infty} \frac{\ln x}{\sqrt{x}}$$

- 19. Let f be a function defined on an interval I. Prove the following.
 - (a) f is convex (i.e., convex downwards) if and only if the line segment joining any tow points on the graph of f lies in the region $\{(x, y) : f(x) \le y, x \in I\}$.
 - (b) f is concave (i.e., concave upwards) if and only if the line segment joining any tow points on the graph of f lies in the region $\{(x, y) : y \leq f(x), x \in I\}$.
- 20. Find approximate values of $\sin x$, $\cos x$, $\tan^{-1} x$ at the point x = 1/2 using Taylor's formula and find the estimates for the errors for different values of n.