DEPARTMENT OF MATHEMATICS IIT MADRAS

MA1010: Calculus I : Functions of one variable¹

Problem Sheet VI

- 1. Suppose (a_n) in \mathbb{R} is such that $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. Show that $\sum_{n=1}^{\infty} \frac{a_n x^{2n}}{1+x^{2n}}$ is a dominated series on \mathbb{R} .
- 2. Show that for every r with 0 < r < 1, the series $\sum_{n=0}^{\infty} x^n$ and $\sum_{n=0}^{\infty} nx^n$ are dominated series on [-r, r].
- 3. Show that $\sum_{n=1}^{\infty} \frac{x}{n(1+nx^2)}$ is a dominated series on \mathbb{R} .
- 4. Show that $\sum_{n=1}^{\infty} \frac{x}{1+nx^2}$ is a dominated series on $[c, \infty)$ for any c > 0.
- 5. Show that $\sum_{n=1}^{\infty} (xe^{-x})^n$ is a dominated series on $[0,\infty)$ for any c > 0.
- 6. Show that $\sum_{n=1}^{\infty} (1-x)x^{n-1}$ is not a dominated series on [0,1].
- 7. Show that the series $\sum_{n=1}^{\infty} \frac{x^n}{n!}$ is dominated on any closed interval [a, b]. Is it dominated on \mathbb{R} ?
- 8. Justify the statement: For each p > 1, the series $\sum_{n=1}^{\infty} \frac{x^n}{n^p}$ is convergent on [-1, 1] and the limit function is continuous.
- 9. Show that the series $\sum_{n=1}^{\infty} \{(n+1)^2 x^{n+1} n^2 x^n\}(1-x)$ converges to a continuous function on [0, 1], but it is not dominated.
- 10. Show that the series $\sum_{n=1}^{\infty} \left[\frac{1}{1+(k+1)x} \frac{1}{1+kx} \right]$ is convergent on [0,1], but it is not a dominated series. Show also that the series can be integrated term by term over the interval [0, 1].
- 11. Suppose $\sum_{n=0}^{\infty} a_n x^n$ converges at a point x_0 . Prove that it converges at every $x \in (-|x_0|, |x_0|)$ and diverges at every $x \notin [-|x_0|, |x_0|]$.
- 12. Show that the series $\sum_{n=1}^{\infty} nx^{n-1}$ converges pointwise. Is it dominated on (-1, 1)? Why?
- 13. Find the radius of convergence of the following power series.

(i)
$$\sum_{n=1}^{\infty} \frac{x^n}{2n-1}$$
 (ii) $\sum_{n=1}^{\infty} \frac{x^n}{n4^n}$
(iii) $\sum_{n=1}^{\infty} x^{n^2}$ (iv) $\sum_{n=0}^{\infty} \frac{(n-1)!}{n^n} x^n$

¹Problems are taken from the book *Calculus of One Variable* by M.T. Nair.

14. Find the interval of convergence of the following power series.

(i)
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{nx^n}$$
 (ii) $\sum_{n=1}^{\infty} \frac{(-1)^n 3^n}{(4n-1)x^n}$
(iii) $\sum_{n=1}^{\infty} \frac{n(x+5)^n}{(2n+1)^3}$ (iv) $\sum_{n=1}^{\infty} \frac{2^n \sin^n x}{n^2}$

[Answers: (i): $(-\infty, -1) \cup [1, \infty)$; (ii): $(-\infty, -3) \cup [3, \infty)$; (iii): [-6, -4]; (iv): $[-\frac{\pi}{6} + k\pi, \frac{\pi}{6} + k\pi], k \in \mathbb{Z}$.]

15. Find the radius of convergence and interval of convergence of the following series:

(i)
$$\sum_{n=0}^{\infty} \alpha^n x^n \quad \text{for } \alpha > 0$$
(ii)
$$\sum_{n=0}^{\infty} \alpha^{n^2} x^n \quad \text{for } \alpha > 0$$
(iii)
$$\sum_{n=0}^{\infty} x^{n!}$$
(iv)
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{n} x^{n(n+1)}$$
(v)
$$\sum_{n=0}^{\infty} \frac{\sin(n\pi/6)}{2^n} (x-1)^n$$
(vi)
$$\sum_{n=0}^{\infty} \frac{(-i)^n}{4^n n^{\alpha}} x^{2n}$$

16. Show that

(i)
$$\log(1+x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$$
 for $-1 < x \le 1$,
(ii) $\tan^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$ for $-1 < x \le 1$, and derive $\frac{\pi}{4} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{2n+1}$.
(iii) $\frac{1}{(1+x)^2} = \sum_{n=1}^{\infty} (-1)^{n+1} n x^{n-1}$ for $-1 < x < 1$.