DEPARTMENT OF MATHEMATICS IIT MADRAS

MA1010: Calculus I : Functions of one variable¹

Problem Sheet VII

- 1. Justify the following statements:
 - (a) If $\int_a^{\infty} f(x) dx$ exists, then $\int_c^{\infty} f(x) dx$ exists for any c > a.
 - (b) If $\int_{-\infty}^{b} f(x) dx$ exists, then $\int_{-\infty}^{c} f(x) dx$ exists for any c < b.
 - (c) If f is defined on $(-\infty, \infty)$ and integrable on every closed and bounded interval, and if $\int_{-\infty}^{c} f(x) dx$ and $\int_{c}^{\infty} f(x) dx$ exist for some $c \in \mathbb{R}$, then $\int_{-\infty}^{d} f(x) dx$ and $\int_{d}^{\infty} f(x) dx$ exist for any $d \in \mathbb{R}$.
- 2. Suppose $f : \mathbb{R} \to \mathbb{R}$ is an even function, that is, f(-x) = f(x) for every $x \in \mathbb{R}$. Prove that $\int_{-\infty}^{\infty} f(x) dx$ exists if and only if $\int_{0}^{\infty} f(x) dx$ exists, and in that case

$$\int_{-\infty}^{\infty} f(x)dx = 2\int_{0}^{\infty} f(x)dx.$$

3. Suppose $f : \mathbb{R} \to \mathbb{R}$ is an odd function, that is, f(-x) = -f(x) for every $x \in \mathbb{R}$. Prove that $\int_{-\infty}^{0} f(x) dx$ exists if and only if $\int_{0}^{\infty} f(x) dx$ exists, and in that case

$$\int_{-\infty}^{\infty} f(x)dx = 0.$$

- 4. Justify the following statements:
 - (a) Suppose f is defined on $[a, \infty)$ with values in $[0, \infty)$. Then $\int_a^{\infty} f(x) dx$ converges if and only if $\lim_{n\to\infty} \int_a^n f(x) dx$ exists.
 - (b) Suppose f is defined on $(-\infty, b]$ with values in $[0, \infty)$. Then $\int_{-\infty}^{b} f(x) dx$ converges if and only if $\lim_{n\to\infty} \int_{-n}^{b} f(x) dx$ exists.
- 5. Justify the following statements:
 - (a) Suppose f is defined on $[a, \infty)$. Then $\int_a^{\infty} f(x) dx$ converges if and only if for any sequence (b_n) in \mathbb{R} , $b_n \to \infty$ implies $\lim_{n\to\infty} \int_a^{b_n} f(x) dx$ exists.
 - (b) Suppose f is defined in $(-\infty, b]$. Then $\int_{-\infty}^{b} f(x) dx$ converges if and only if for any sequence (a_n) in \mathbb{R} , $a_n \to -\infty$ implies $\lim_{n\to\infty} \int_{a_n}^{b} f(x) dx$ exists.
- 6. Suppose f is absolutely integrable over $(-\infty, \infty)$. Show that

$$\int_{-\infty}^{\infty} f(x)dx = \lim_{t \to \infty} \int_{-t}^{t} f(x)dx.$$

¹Problems are taken from the book *Calculus of One Variable* by M.T. Nair.

- 7. Suppose $f \ge 0$ on [a, b) and the integral $\int_a^t f(x) dx$ exists for every $t \in [a, b)$. If $\lim_{x \to b} (b-x)^{\alpha} f(x)$ converges for some $\alpha < 1$, then show that $\int_a^b f(x) dx$ also converges. [*Hint:* Observe that for any $\varepsilon > 0$, there exists $x_0 \in [a, b)$ such that the number $\beta := \lim_{x \to b} (b-x)^{\alpha} f(x)$ satisfies $0 \le f(x) \le \frac{\beta + \varepsilon}{(b-x)^{\alpha}}$ for all $x \in [x_0, b)$.]
- 8. For a < b and p < 1, show that the improper integral $\int_a^b \frac{dx}{(x-a)^p}$ converges.
- 9. Show that the improper integral $\int_1^\infty \frac{\cos x}{x^p} dx$ converges for all p > 0.
- 10. Show that, for p > 1, $\int_0^1 \frac{dx}{x^{1/p}} = \frac{p}{p-1}$.
- 11. Show that, for p > 1, $\int_0^1 \frac{dx}{x^{1/p}} \int_1^\infty \frac{dx}{x^{1/p}} = 1$.
- 12. Show that $\int_1^\infty \frac{dx}{x^p} \to 0$ as $p \to \infty$ and $\int_0^1 \frac{dx}{x^p} \to 1$ as $p \to 0$.
- 13. Show that $\lim_{p\to 1^-} \int_0^1 \frac{dx}{x^p} = \infty$.
- 14. Does $\int_1^\infty \sin\left(\frac{1}{x^2}\right) dx$ converge? [*Hint*: Note that $\left|\sin\left(\frac{1}{x^2}\right)\right| \le \frac{1}{x^2}$.]
- 15. Does $\int_2^\infty \frac{\cos x}{x(\log x)^2} dx$ converge? [*Hint*: Observe $\left|\frac{\cos x}{x(\log x)^2}\right| \le \frac{1}{x(\log x)^2}$ and use the change of variable $t = \log x$.]
- 16. Does $\int_0^\infty \frac{\sin^2 x}{x^2} dx$ converge? [*Hint*: Observe $\frac{\sin^2 x}{x^2} \leq \frac{1}{x^2}$ for $x \geq 1$ and $\frac{\sin^2 x}{x^2}$, $0 < x \leq 1$ has a continuous extension on [0, 1].]
- 17. Does $\int_0^1 \frac{\sin x}{x^2} dx$ converge? [*Hint*: Observe $\frac{\sin x}{x^2} = \left(\frac{\sin x}{x}\right) \frac{1}{x} \ge \frac{\sin 1}{1}$.]
- 18. Suppose $f \ge 0$ on [a, b) and the integral $\int_a^t f(x)dx$ exists for every $t \in [a, b)$. If $\lim_{x \to b} (b-x)^{\alpha} f(x)$ converges for some $\alpha < 1$, then show that $\int_a^b f(x)dx$ also converges. [*Hint:* Observe that for any $\varepsilon > 0$, there exists $x_0 \in [a, b)$ such that the number $\beta := \lim_{x \to b} (b-x)^{\alpha} f(x)$ satisfies $0 \le f(x) \le \frac{\beta + \varepsilon}{(b-x)^{\alpha}}$ for all $x \in [x_0, b)$.]
- 19. Does $\int_0^\infty e^{-x^2} dx$ converge? [*Hint*: $e^{-x^2} \leq \frac{1}{x^2}$ for $1 \leq x \leq \infty$.]
- 20. Does $\int_{2}^{\infty} \frac{\sin(\log x)}{x} dx$ converge? [*Hint*: Change of variable $t = \log x$, and the fact that $\int_{\log 2}^{\infty} \sin t \, dt$ diverges.]