

MA2030: Linear Algebra and Numerical Analysis
Assignment-3

January – May 2012

In the following V, W, V_1, V_2, V_3 denote vector spaces over \mathbb{F} , which is \mathbb{R} or \mathbb{C} .

1. State with reason whether $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ in each of the following is a linear transformation:
 - (a) $T(x_1, x_2) = (1, x_2)$,
 - (b) $T(x_1, x_2) = (x_1, x_2^2)$
 - (c) $T(x_1, x_2) = (\sin(x_1), x_2)$
 - (d) $T(x_1, x_2) = (x_1, 2 + x_2)$
2. Check whether the functions T in the following are linear transformations:
 - (a) $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by $T(x, y) = (2x + y, x + y^2)$.
 - (b) $T : C^1[0, 1] \rightarrow \mathbb{R}$ defined by $T(u) = \int_0^1 [u(t)]^2 dt$.
 - (c) $T : C^1[-1, 1] \rightarrow \mathbb{R}^2$ defined by $T(u) = (\int_{-1}^1 u(t) dt, u'(0))$.
 - (d) $T : C^1[0, 1] \rightarrow \mathbb{R}$ defined by $T(u) = \int_0^1 u'(t) dt$.
3. Let $T_1 : V_1 \rightarrow V_2$ and $T_2 : V_2 \rightarrow V_3$ be linear transformations. Show that the function $T : V_1 \rightarrow V_3$ defined by $Tx = T_2(T_1x)$, $x \in V_1$, is a linear transformation.
 [T is called the *composition* of T_2 and T_1 , and is usually denoted by T_2T_1 .]
4. If $T_1 : C^1[0, 1] \rightarrow C[0, 1]$ is defined by $T_1(u) = u'$, and $T_2 : C[0, 1] \rightarrow \mathbb{R}$ is defined by $T_2(v) = \int_0^1 v(t) dt$, then find T_2T_1 .
5. Let V_1, V_2, V_3 be finite dimensional vector spaces, and let E_1, E_2, E_3 be bases of V_1, V_2, V_3 respectively. If $T_1 : V_1 \rightarrow V_2$ and $T_2 : V_2 \rightarrow V_3$ are linear transformations. Show that $[T_2T_1]_{E_1, E_3} = [T_2]_{E_2, E_3}[T_1]_{E_1, E_2}$.
6. If $T_1 : \mathcal{P}_n[0, 1] \rightarrow \mathcal{P}_n[0, 1]$ is defined by $T_1(u) = u'$, and $T_2 : \mathcal{P}_n[0, 1] \rightarrow \mathbb{R}$ is defined by $T_2(v) = \int_0^1 v(t) dt$, then find $[T_1]_{E_1, E_2}$, $[T_2]_{E_2, E_3}$, and $[T_2T_1]_{E_1, E_3}$, where $E_1 = E_2 = \{1, t, t^2, \dots, t^n\}$ and $E_3 = \{1\}$.
7. Justify the statement: A linear transformation $T_1 : V_1 \rightarrow V_2$ is bijective iff there exists a linear transformation $T_2 : V_2 \rightarrow V_1$ such that $T_1T_2 : V_2 \rightarrow V_2$ is the identity transformation on V_2 and $T_2T_1 : V_1 \rightarrow V_1$ is the identity transformation on V_1 .
8. Let $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ be the linear transformation with $T(1, 0) = (1, 4)$ and $T(1, 1) = (2, 5)$. Find $T(2, 3)$.
9. Does there exist a linear transformation $T : \mathbb{R}^3 \rightarrow \mathbb{R}^2$ such that $T(1, 0, 2) = (1, 1)$ and $T(1/2, 0, 1) = (0, 1)$?

10. Let V_1 and V_2 be vector spaces with $\dim V_1 = n < \infty$. Let $\{u_1, \dots, u_n\}$ be a basis of V_1 and $\{v_1, \dots, v_n\} \subset V_2$. Let $T : V_1 \rightarrow V_2$ be the linear transformation with $T(u_j) = v_j$ for $j = 1, \dots, n$. Show that

- (a) T is one-one if and only if $\{v_1, \dots, v_n\}$ is linearly independent.
- (b) T is onto if and only if $\text{Span}(\{v_1, \dots, v_n\}) = V_2$.

11. Show that if V_1 and V_2 are finite dimensional vector spaces of the same dimension, then there exists a bijective linear transformation from V_1 to V_2 .

12. Let $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ be defined by

$$T(x_1, x_2, x_3) = (x_2 + x_3, x_3 + x_1, x_1 + x_2), \quad (x_1, x_2, x_3) \in \mathbb{R}^3.$$

Find the matrix representation of T with respect to the basis given in each of the following.

- (a) $E_1 = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$, $E_2 = \{(1, 0, 0), (1, 1, 0), (1, 1, 1)\}$
- (b) $E_1 = \{(1, 0, 0), (1, 1, 0), (1, 1, 1)\}$, $E_2 = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$
- (c) $E_1 = \{(1, 1, -1), (-1, 1, 1), (1, -1, 1)\}$, $E_2 = \{(-1, 1, 1), (1, -1, 1), (1, 1, -1)\}$

13. Let $T : \mathcal{P}^3 \rightarrow \mathcal{P}^2$ be defined by $T(a_0 + a_1t + a_2t^2 + a_3t^3) = a_1 + 2a_2t + 3a_3t^2$. Find the matrix representation of T with respect to the basis given in each of the following.

- (a) $E_1 = \{1, t, t^2, t^3\}$, $E_2 = \{1 + t, 1 - t, t^2\}$
- (b) $E_1 = \{1, 1 + t, 1 + t + t^2, t^3\}$, $E_2 = \{1, 1 + t, 1 + t + t^2\}$
- (c) $E_1 = \{1, 1 + t, 1 + t + t^2, 1 + t + t^2 + t^3\}$, $E_2 = \{t^2, t, 1\}$

14. Let $T : \mathcal{P}^2 \rightarrow \mathcal{P}^3$ be defined by $T(a_0 + a_1t + a_2t^2) = (a_0t + \frac{a_1}{2}t^2 + \frac{a_2}{3}t^3)$. Find the matrix representation of T with respect to the basis given in each of the following.

- (a) $E_1 = \{1 + t, 1 - t, t^2\}$, $E_2 = \{1, t, t^2, t^3\}$,
- (b) $E_1 = \{1, 1 + t, 1 + t + t^2\}$, $E_2 = \{1, 1 + t, 1 + t + t^2, t^3\}$,
- (c) $E_1 = \{t^2, t, 1\}$, $E_2 = \{1, 1 + t, 1 + t + t^2, 1 + t + t^2 + t^3\}$,

Teachers: Dr. R. Balaji, Dr. S. Misra, Dr. M.T. Nair (Co-ordinator), Dr. Ch. S. Rao,
 Dr. Y.V.S.S. Sanyasi Raju, Dr. A. Singh, Dr. P. Veeramani