

MA2030: Linear Algebra and Numerical Analysis
Assignment-4

January – May 2012

In the following V, W, V_1, V_2 denote finite dimensional vector spaces over \mathbb{F} , which is \mathbb{R} or \mathbb{C} .

1. Let $E_1 = \{u_1, \dots, u_n\}$ and $E_2 = \{v_1, \dots, v_m\}$ be bases of V_1 and V_2 , respectively.
 Let $F_1 = \{f_1, \dots, f_n\}$ be the dual basis of $\mathcal{L}(V_1, \mathbb{F})$ with respect to E_1 .
 For $i = 1, \dots, n; j = 1, \dots, m$, let $T_{ij} : V_1 \rightarrow V_2$ be defined by $T_{ij}(x) = f_j(x)v_i$ for $x \in V_1$.
 Show that $\{T_{ij} : i = 1, \dots, n; j = 1, \dots, m\}$ is a basis of $\mathcal{L}(V_1, V_2)$.
2. Let $E_1 = \{u_1, \dots, u_n\}$ and $E_2 = \{v_1, \dots, v_m\}$ be bases of V_1 and V_2 , respectively. Show the following:
 - (a) If $T \in \mathcal{L}(V_1, V_2)$, then T is one-one iff columns of $[T]_{E_1, E_2}$ are linearly independent.
 - (b) If $T \in \mathcal{L}(V_1, V_2)$, then T is not one-one iff $\det[T]_{E_1, E_2} = 0$.
 - (c) If $\{g_1, \dots, g_m\}$ is the ordered dual basis of $\mathcal{L}(V_2, \mathbb{F})$ with respect to the basis E_2 of V_2 , then for every $T \in \mathcal{L}(V_1, V_2)$, $[T]_{E_1, E_2} = (g_i(Tu_j))$.
 - (d) If $T_1, T_2, T \in \mathcal{L}(V_1, V_2)$ and $\alpha \in \mathbb{F}$, then

$$[T_1 + T_2]_{E_1, E_2} = [T_1]_{E_1, E_2} + [T_2]_{E_1, E_2} \quad \text{and} \quad [\alpha T]_{E_1, E_2} = \alpha [T]_{E_1, E_2}.$$

- (e) Suppose $\{M_{ij} : i = 1, \dots, m; j = 1, \dots, n\}$ is a basis of $\mathbb{F}^{m \times n}$. Let $T_{ij} \in \mathcal{L}(V_1, V_2)$ be the linear transformation with $[T_{ij}]_{E_1, E_2} = M_{ij}$. Then
 $\{T_{ij} : i = 1, \dots, m; j = 1, \dots, n\}$ is a basis of $\mathcal{L}(V_1, V_2)$.
3. Let V_1 and V_2 be finite dimensional vector spaces and $T : V_1 \rightarrow V_2$ be a linear transformation. Give reasons for the following:
 - (a) $\text{rank}(T) \leq \dim V_1$.
 - (b) T is onto implies $\dim V_2 \leq \dim V_1$.
 - (c) T is one-one implies $\dim V_1 \leq \dim V_2$.
 - (d) T is one-one if and only if T is onto.
 - (e) $\dim(V_1) > \dim(V_2)$ implies T is not one-one.
 - (f) $\dim(V_1) < \dim(V_2)$ implies T is not onto.
4. Let V be the vector space of real valued functions on \mathbb{R} which have derivatives of all orders. Let $T : V \rightarrow V$ be the differential operator: $Tx = x'$. What is $N(T)$?

5. Let $T : V \rightarrow V$ be a linear operator such that $T^2 = T$. Let I denote the identity operator. Prove that $R(T) = N(I - T)$ and $N(T) = R(I - T)$.
6. Find bases for the null space $N(T)$ and the range space $R(T)$ of the linear transformation T in each of the following:

- (a) $T : \mathbb{R}^2 \rightarrow \mathbb{R}^2$ defined by $T(x_1, x_2) = (x_1 - x_2, 2x_2)$,
- (b) $T : \mathbb{R}^2 \rightarrow \mathbb{R}^3$ defined by $T(x_1, x_2) = (x_1 + x_2, 0, 2x_3 - x_2)$,
- (c) $T : \mathbb{R}^{n \times n} \rightarrow \mathbb{R}$ defined by $T(A) = \text{tr}(A)$.
 (Recall: $\text{tr}(A)$, the trace of a square matrix A , is the sum of its diagonal elements.)

7. Let $T : V_1 \rightarrow V_2$ be a linear transformation, where $\dim(V_1) < \infty, \dim(V_2) < \infty$. Prove the following:

- There exists a subspace V_0 of V_1 such that $V_1 = N(T) + V_0$ and $V_0 \cap N(T) = \{0\}$.
- If V_0 is as in (a) and $\{v_1, \dots, v_k\}$ is a basis of V_0 , then $R(T) = \text{span}\{Tv_1, \dots, Tv_k\}$.

8. Let $T : V \rightarrow V$ be a linear transformation. Prove the following:

- If T is a bijection and $0 \neq \lambda \in \mathbb{F}$, then λ is an eigenvalue of T if and only if $1/\lambda$ is an eigenvalue of T^{-1} .
- If λ is an eigenvalue of T then λ^k is an eigenvalue of T^k .
- If λ is an eigenvalue of T and $\alpha \in \mathbb{F}$, then $\lambda + \alpha$ is an eigenvalue of $T + \alpha I$.
- If $p(t) = a_0 + a_1t + \dots + a_k t^k$ for some a_0, a_1, \dots, a_k in \mathbb{F} , and if λ is an eigenvalue of T then $p(\lambda)$ is an eigenvalue of $p(T) := a_0 I + a_1 T + \dots + a_k T^k$.

9. Let T_1 and T_2 be linear operators on V , λ is an eigenvalue of T_1 and μ is an eigenvalue of T_2 . Is it necessary that $\lambda\mu$ an eigenvalue of T_1T_2 ? Why? What is wrong with the following statement?

$\lambda\mu$ an eigenvalue of T_1T_2 because, if $T_1x = \lambda x$ and $T_2x = \mu x$, then
 $T_1T_2x = T_1\mu x = \mu T_1x = \mu\lambda x$.

10. Let A be an $n \times n$ matrix and α be a scalar such that each row (or each column) sums to α . Show that α is an eigenvalue of A .

11. Let V be finite dimensional, $T \in \mathcal{L}(V)$ and E be a basis of V . Suppose $[T]_{E,E}$ is a an upper triangular, or a lower triangular, or a diagonal matrix. Prove that the diagonal entries of $[T]_{E,E}$ are the eigenvalues of T .

12. Let V be a finite dimensional vector space with $\dim(V) = n$ and $T \in \mathcal{L}(V)$. Prove that T is a diagonalizable if and only if T has a basis consisting of eigenvectors.

13. Which of the following linear transformation T is diagonalizable? If it is diagonalizable, find the basis E and the matrix $[T]_{E,E}$.

- $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ such that $T(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_1 + x_2 - x_3, x_1 - x_2 + x_3)$.
- $T : \mathcal{P}_3 \rightarrow \mathcal{P}_3$ such that $T(a_0 + a_1t + a_2t^2 + a_3t^3) = a_1 + 2a_2t + 3a_3t^2$.
- $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ such that $Te_1 = 0, Te_2 = e_1, Te_3 = e_2$.
- $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ such that $Te_1 = e_2, Te_2 = e_3, Te_3 = 0$.
- $T : \mathbb{R}^3 \rightarrow \mathbb{R}^3$ such that $Te_1 = e_3, Te_2 = e_2, Te_3 = e_1$.

14. Show that the linear transformation $T : \underline{\mathbb{R}}^3 \rightarrow \underline{\mathbb{R}}^3$ corresponding to each of the following matrix is diagonalizable. Also find a basis of eigenvectors of T for $\underline{\mathbb{R}}^3$.

$$(a) \begin{bmatrix} 3/2 & -1/2 & 0 \\ -1/2 & 3/2 & 0 \\ 1/2 & -1/2 & 1 \end{bmatrix} \quad (b) \begin{bmatrix} 3 & -1/2 & -3/2 \\ 1 & 3/2 & 3/2 \\ -1 & -1/2 & 5/2 \end{bmatrix}$$

15. Check whether the linear transformation $T : \underline{\mathbb{R}}^3 \rightarrow \underline{\mathbb{R}}^3$ corresponding to each of the following matrix is diagonalizable. If diagonalizable, find a basis of eigenvectors for the space $\underline{\mathbb{R}}^3$:

$$(a) \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{bmatrix} \quad (b) \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad (c) \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$