

MA2030: Linear Algebra and Numerical Analysis
Assignment-5

January – May 2012

1. Recall the notation:

$\mathcal{P}_n([0, 1], \mathbb{R})$ is the space of all polynomial functions from $[0, 1]$ to \mathbb{R} .

$\mathcal{R}([0, 1], \mathbb{R})$ is the space of all Riemann integrable functions from $[0, 1]$ to \mathbb{R} .

$C^1([0, 1], \mathbb{R})$ is the space of all continuously differentiable functions from $[0, 1]$ to \mathbb{R} .

Check whether each of the following is an inner product on the given vector space V :

(a) $\langle x, y \rangle = x_1 y_1$ for $x = (x_1, x_2)$, $y = (y_1, y_2)$ in $V = \mathbb{R}^2$.

(b) $\langle x, y \rangle = x_1 y_1$ for $x = (x_1, x_2)$, $y = (y_1, y_2)$ in $V = \mathbb{C}^2$.

(c) $\langle x, y \rangle = \sum_{j=0}^n x(t_j) y(t_j)$ for x, y in $V = \mathcal{P}_n([0, 1], \mathbb{R})$, where t_1, \dots, t_n are distinct points in $[0, 1]$.

(d) $\langle x, y \rangle = \int_0^1 x(t) y(t) dt$ for x, y in $V = \mathcal{R}([0, 1], \mathbb{R})$.

(e) $\langle A, B \rangle = \text{trace}(A + B)$ for A, B in $V = \mathbb{R}^{2 \times 2}$.

(f) $\langle A, B \rangle = \text{trace}(A^T B)$ for A, B in $V = \mathbb{R}^{3 \times 3}$.

(g) $\langle x, y \rangle = \int_0^1 x'(t) y'(t) dt$ for x, y in $V = C^1([0, 1], \mathbb{R})$.

(h) $\langle x, y \rangle = x(0) y(0) + \int_0^1 x'(t) y'(t) dt$ for x, y in $V = C^1([0, 1], \mathbb{R})$.

2. Let V_1 and V_2 be inner product spaces with inner products $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$ respectively. On $V = V_1 \times V_2$, define

$$\langle (x_1, x_2), (y_1, y_2) \rangle_V := \langle x_1, y_1 \rangle_1 + \langle x_2, y_2 \rangle_2 \quad \text{for all } (x_1, x_2), (y_1, y_2) \in V.$$

Show that $\langle \cdot, \cdot \rangle_V$ is an inner product on V .

3. Let $\langle \cdot, \cdot \rangle_1$ and $\langle \cdot, \cdot \rangle_2$ be inner products on a vector space V . Show that

$$\langle x, y \rangle := \langle x, y \rangle_1 + \langle x, y \rangle_2 \quad \text{for all } x, y \in V$$

defines another inner product on V .

4. Let $T : V \rightarrow \mathbb{F}^n$ be a linear isomorphism (bijective linear transformation). Show that

$$\langle x, y \rangle_T := \langle Tx, Ty \rangle_{\mathbb{F}^n} \quad \text{for all } x, y \in V,$$

defines an inner product on V . Here, $\langle \cdot, \cdot \rangle_{\mathbb{F}^n}$ is the standard inner product on \mathbb{F}^n .

5. Let V be an inner product space over \mathbb{C} . Prove that for all $x, y \in V$, $\text{Re}\langle ix, y \rangle = -\text{Im}\langle x, y \rangle$.

6. Let V_1 and V_2 be inner product spaces. Let $T : V_1 \rightarrow V_2$ be a linear transformation. Prove that for all $(x, y) \in V_1 \times V_2$,

$$\langle Tx, Ty \rangle = \langle x, y \rangle \text{ if and only if } \|Tx\| = \|x\|.$$

[Notice that both the inner products are denoted by $\langle \cdot, \cdot \rangle$.

Hint: For the only if part, use $\langle T(x + y), T(x + y) \rangle = \langle x + y, x + y \rangle$ and Problem 5.]

7. (a) If the scalar field is \mathbb{R} , then show that the converse of the Pythagoras theorem holds, that is, if $\|x + y\|^2 = \|x\|^2 + \|y\|^2$, then $x \perp y$.

(b) If the scalar field is \mathbb{C} , then show that the converse of Pythagoras theorem need not be true. [Hint: Take $V = \mathbb{C}$ with standard inner product and $x = \alpha$, $y = i\beta$ for nonzero real numbers $\alpha, \beta \in \mathbb{R}$.]

8. Prove that every orthonormal set in an inner product space is linearly independent.

9. Let $\{u_1, \dots, u_n\}$ be an orthonormal basis of an inner product space V . Prove the following:

(a) For every $x \in V$,

$$x = \sum_{j=1}^n \langle x, u_j \rangle u_j, \quad \|x\|^2 = \sum_{j=1}^n |\langle x, u_j \rangle|^2.$$

(b) For every $x, y \in V$,

$$\langle x, y \rangle = \sum_{i=1}^n \langle x, u_i \rangle \langle u_i, y \rangle.$$

10. Let V be an inner product space over \mathbb{F} with $\dim(V) = n$. Consider the inner product space \mathbb{F}^n with the standard inner product. Prove that there exists a linear isometry from V onto \mathbb{F}^n , i.e., a surjective linear operator $T : V \rightarrow \mathbb{F}^n$ with $\|T(x)\| = \|x\|$, for all $x \in V$.
 [Notice that both the norms are denoted by $\|\cdot\|$.]

11. For x, y in an inner product space V , show that $x + y \perp x - y$ if and only if $\|x\| = \|y\|$.

12. Let S be a nonempty subset of an inner product space V . Show that

(a) S^\perp is a subspace of V .

(b) $V^\perp = \{0\}$, $\{0\}^\perp = V$.

(c) $S \subset S^{\perp\perp}$.

(d) If S is a basis of V , then $S^\perp = \{0\}$.

(e) If V is finite dimensional and V_0 is a subspace of V , then $V_0^{\perp\perp} = V_0$.

13. Let $\{u_1, \dots, u_n\}$ be an orthonormal basis of an inner product space V . Define the linear functionals f_1, \dots, f_n by $f_j(x) = \langle x, u_j \rangle$, for $x \in V$. Show that every linear functional $f : V \rightarrow \mathbb{F}$ can be written as

$$f = \sum_{j=1}^n f(u_j) f_j.$$

14. Let $\{u_1, \dots, u_n\}$ be an orthonormal basis of an inner product space V . Show that for every linear functional $f : V \rightarrow \mathbb{F}$, there exists a unique $y \in V$ such that

$$f(x) = \langle x, y \rangle \quad \forall x \in V.$$

[Hint: Use Problem 13]