

MA-5340: Measure and Integration

Assignment Sheet - I

1. Let (a_n) and (b_n) be sequences in $[-\infty, \infty]$. Prove the following:
 - (i) $\limsup_{n \rightarrow \infty} (-a_n) = -\liminf_{n \rightarrow \infty} (a_n)$
 - (ii) $a_n \leq b_n \forall n \in \mathbb{N} \implies \liminf_{n \rightarrow \infty} a_n \leq \liminf_{n \rightarrow \infty} b_n$.
2. Let $f : [a, b] \rightarrow \mathbb{R}$ be a bounded function. Corresponding to a partition P of $[a, b]$ let $L(P, f)$ and $U(P, f)$ denote the lower sum and upper sum. Show that for any two partitions P and Q of $[a, b]$, $L(P, f) \leq U(Q, f)$.
3. Prove the following:
 - (a) Every continuous function $f : [a, b] \rightarrow \mathbb{R}$ is Riemann integrable.
 - (b) Every bounded function $f : [a, b] \rightarrow \mathbb{R}$ having atmost a finite number of discontinuities is Riemann integrable.
 - (c) Every monotonic function $f : [a, b] \rightarrow \mathbb{R}$ is Riemann integrable.
4. Show the following:
 - (a) If (f_n) is a sequence of Riemann integrable functions on $[a, b]$ and if $f_n(x) \rightarrow f(x)$ as $n \rightarrow \infty$ for every $x \in [a, b]$, then it is *not necessary* that f is Riemann integrable.
 - (b) Even if f in (a) is Riemann integrable, it is *not necessary* to have the convergence $\int_a^b f_n(x) dx \rightarrow \int_a^b f(x) dx$ as $n \rightarrow \infty$.
5. Show that if (I_n) is a sequence of open intervals, then $m^*(\bigcup I_n) \leq \sum_n \ell(I_n)$.
6. Show that every non-degenerate interval is an uncountable set.
7. There exist disjoint subsets A_1 and A_2 of \mathbb{R} such that $m^*(A_1 \cup A_2) \neq m^*(A_1) + m^*(A_2)$ – Why?
8. Show that, for any any denumerable disjoint family $\{A_n\}_{n=1}^{\infty}$ of subsets of \mathbb{R} , the equality $m^*\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} m^*(A_n)$ need not hold.
9. Show that there exists $E \subseteq \mathbb{R}$ such that $E \notin \mathfrak{M}$.
10. Assuming that for any $a \in \mathbb{R}$, $(a, \infty) \in \mathfrak{M}$, show that every G_{δ} subset of \mathbb{R} and every F_{σ} subset of \mathbb{R} belongs to \mathfrak{M} .

11. Prove that, in the definition of $m^*(E)$, \mathcal{I}_E can be taken be the collection of all

- (a) countable family $\{I_n\}$ of intervals of the form $J_n = (a_n, b_n)$,
- (b) countable family $\{I_n\}$ of intervals of the form $J_n = [a_n, b_n)$,
- (c) countable family $\{I_n\}$ of intervals of the form $J_n = (a_n, b_n]$,
- (d) countable family $\{I_n\}$ of intervals of the form $J_n = [a_n, b_n]$,
- (e) sequences (I_n) of intervals of the form $J_n = (a_n, b_n)$,
- (f) sequences (I_n) of intervals of the form $J_n = [a_n, b_n)$,
- (g) sequences (I_n) of intervals of the form $J_n = (a_n, b_n]$,
- (h) sequences (I_n) of intervals of the form $J_n = [a_n, b_n]$,

where with $a_n, b_n \in \mathbb{R}$.

- 12. Show that, if $E \subseteq A$ and $m^*(E) = 0$, then $m^*(A \cup E) = m^*(A)$.
- 13. From countable subadditivity of m^* , deduce that outer measure of every countable set is 0.
- 14. If E is a subset of an interval I such that $m^*(E) = 0$, then prove that E^c is dense in I .
- 15. Suppose $\{A_1, \dots, A_n\}$ is a disjoint family of subsets of \mathbb{R} such that A_1, \dots, A_{n-1} belong to \mathfrak{M} . Then show that $m^*\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n m^*(A_i)$.
- 16. Show that if $E \in \mathfrak{M}$, then show that $m(E) = \inf\{m(G) : G \text{ open } E \subseteq G\}$.
- 17. If $A, B \in \mathfrak{M}$ with $A \subseteq B$ and if $m(B) < \infty$, then show that $m(B \setminus A) = m(B) - m(A)$.
- 18. If $A, B \in \mathfrak{M}$, prove that $m(A \cup B) + m(A \cap B) = m(A) + m(B)$.
- 19. Let $E \subseteq \mathbb{R}$ be such that $m^*(E) < \infty$. Prove that the following are equivalent:
 - (a) $E \in \mathfrak{M}$.
 - (b) For every $\epsilon > 0$, there exists an open set $G \subseteq \mathbb{R}$ such that $G \supseteq E$ and $m(G \setminus E) < \epsilon$.
 - (c) For every $\epsilon > 0$, there exists a closed set $F \subseteq \mathbb{R}$ such that $F \subseteq E$ and $m(E \setminus F) < \epsilon$.
 - (d) There exists a G_δ -set $G \supseteq E$ such that $m(G \setminus E) = 0$.
 - (e) There exists an F_σ -set $F \subseteq E$ such that $m(E \setminus F) = 0$.
- 20. If $E \subseteq \mathbb{R}$ such that with $m^*(E) < \infty$. Prove that the following are equivalent:
 - (a) $E \in \mathfrak{M}$.
 - (b) There exists a G_δ set $G \supseteq E$ such that $E = G \setminus E_0$, where $m^*(E_0) = 0$.
 - (c) There exists an F_σ set $F \subseteq E$ such that $E = F \cup E_0$, where $m^*(E_0) = 0$.