

MA-5340: Measure and Integration

Assignment Sheet - II

In the following, (X, \mathcal{A}) is a measurable space.

1. Suppose (X, \mathcal{A}) is a measurable space and $X_0 \in \mathcal{A}$. Then show that
 - (i) $\mathcal{A}_0 := \{E \subseteq X_0 : E \in \mathcal{A}\}$ is a σ -algebra on X_0 , and
 - (ii) $\mathcal{A}_0 = \{A \cap X_0 : A \in \mathcal{A}\}$.
2. Suppose $\{\mathcal{A}_\alpha : \alpha \in \Lambda\}$ is a family of σ -algebras on a set X . Prove that $\bigcap_{\alpha \in \Lambda} \mathcal{A}_\alpha$ is also a σ -algebra.
3. Every Borel subset of \mathbb{R} is Lebesgue measurable - Why?
4. Let (X, \mathcal{A}, μ) is a measure space. Prove that, if α is a non-negative real number, then $E \mapsto \alpha\mu(E)$, $E \in \mathcal{A}$ is a also measure on (X, \mathcal{A}) .

More, generally, if μ_1, \dots, μ_k are measures on a measurable space (X, \mathcal{A}) and if $\alpha_1, \dots, \alpha_k$ are non-negative real numbers, then prove that $E \mapsto \sum_{i=1}^k \alpha_i \mu_i(E)$ is a measure on (X, \mathcal{A}) .

5. Let X be a set. A function $\mu^* : 2^X \rightarrow [0, \infty]$ is called an **outer measure** on X if
 - (i) $\mu^*(\emptyset) = 0$,
 - (ii) $A \subseteq B \implies \mu^*(A) \leq \mu^*(B)$, and
 - (iii) for every countable family $\{A_n\}$ in 2^X , $\mu^*\left(\bigcup_n A_n\right) \leq \sum_n \mu^*(A_n)$.

Prove that $\mathcal{A} := \{E \subseteq X : \forall A \subseteq X, \mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)\}$ is a σ -algebra on X , and $\mu := \mu^*|_{\mathcal{A}}$ is a measure on \mathcal{A} .
6. Lebesgue measure on \mathbb{R} is complete - Why?
7. Prove that \mathfrak{M} is the completion of the Borel σ -algebra \mathfrak{B}_1 .
8. Let X be an uncountable set and $\mathcal{A} \subseteq 2^X$ such that $A \in \mathcal{A}$ if and only if either A or A^c is atmost countable. Define $\mu : \mathcal{A} \rightarrow [0, \infty]$ such that $\mu(A) = 0$ if A is countable and $\mu(A) = 1$ if A is uncountable. Show that \mathcal{A} is a σ -algebra and μ is a measure.
9. Prove that for $E \subseteq X$, $E \in \mathcal{A}$ if and only if χ_E is a measurable function.
10. Let X be a measurable space, and Y and Z be topological spaces. If $f : X \rightarrow Y$ is measurable and $g : Y \rightarrow Z$ is continuous, then prove that $g \circ f : X \rightarrow Z$ is measurable.

11. Let X be a measurable space and Y be a set and $f : X \rightarrow Y$. Prove:

- (i) $\mathcal{S} := \{E \subseteq Y : f^{-1}(E) \in \mathcal{A}\}$ is a σ -algebra on Y .
- (ii) If Y is a topological space and f is measurable, then \mathcal{S} contains the Borel σ -algebra on Y .

12. Let f be a real valued function on a measurable space X . Prove that f is Borel (resp. Lebesgue) measurable if and only if $\{x \in X : f(x) > a\}$ is a Borel (resp. Lebesgue) measurable set for every $a \in \mathbb{R}$.

13. Prove that if f is a real function on (X, \mathcal{A}) such that $\{x : f(x) \geq r\}$ is measurable for every rational number r , then f is measurable.

14. Let X be a measurable space and Y be a topological space. Prove that $f : X \rightarrow Y$ is measurable if and only if for every Borel set A in Y , $f^{-1}(A)$ is measurable in X .

15. Prove that if f and g are measurable on (X, \mathcal{A}) , then the sets $\{x : f(x) < g(x)\}$ and $\{x : f(x) = g(x)\}$ are measurable.

16. Prove that if (f_n) is a sequence of measurable functions on (X, \mathcal{A}) , then the set $\{x : \lim_{n \rightarrow \infty} f_n(x) \text{ exists}\}$ is a measurable set.

17. Let (X, \mathcal{A}) be a measurable space and $f : X \rightarrow [-\infty, \infty]$. Prove:

- (i) If f is measurable, then f^+ and f^- are measurable.
- (ii) In case f is real valued, then f is measurable iff f^+ and f^- are measurable, and in that case $|f|$ is also measurable.

18. Let (X, \mathcal{A}, μ) be as in Problem 8. Describe measurable functions on (X, \mathcal{A}) and their integrals w.r.t. μ .

19. Let (X, \mathcal{A}, μ) be a measurable space and $f_n : X \rightarrow [-\infty, \infty]$ be measurable for each $n \in \mathbb{N}$. Then prove that the functions $\sup_n f_n$, $\inf_n f_n$, $\limsup_n f_n$, $\liminf_n f_n$ are measurable functions.

20. Let (X, \mathcal{A}, μ) be a measurable space and (f_n) be a sequence of real valued measurable functions on X . Prove that if $\sum_{n=1}^{\infty} f_n(x)$ converges for each $x \in X$ and if $f(x) = \sum_{n=1}^{\infty} f_n(x)$, $x \in X$, then f is measurable.