

MA-5340: Measure and Integration

Assignment Sheet - IV

In the following, (X, \mathcal{A}, μ) is a measure space.

1. Suppose E is a Lebesgue measurable subset of \mathbb{R}^1 . Show that there exists a Borel subset A of \mathbb{R}^1 such that $\chi_A = \chi_E$ a.e.
2. Suppose f is a real valued Lebesgue measurable function on \mathbb{R}^1 . Show that there exists a Borel measurable function g on \mathbb{R}^1 such that $f = g$ a.e.
3. For complex valued measurable functions f on a measure space (X, \mathcal{A}, μ) and for $1 \leq p \leq \infty$, let

$$\|f\|_p := \begin{cases} \left(\int_X |f|^p d\mu \right)^{1/p} & \text{if } 1 \leq p < \infty \\ \inf\{c > 0 : |f| \leq c \text{ a.e.}\} & \text{if } p = \infty. \end{cases}$$

Let $\mathcal{L}^p(\mu)$ be the set of all complex valued measurable functions f on (X, \mathcal{A}, μ) such that $\|f\|_p < \infty$. Show that

- (i) $\mathcal{L}^p(\mu)$ is a vector space,
- (ii) $f \mapsto \|f\|_p$ is a semi-norm on $\mathcal{L}^p(\mu)$.
- (iii) $\mathcal{N} := \{f \in \mathcal{L}^p(\mu) : \int_X |f| = 0\}$ is subspace of the vector space $\mathcal{L}^p(\mu)$,
- (iv) $[f] \mapsto \int_X |f|$ is a norm on the quotient space $L^p(\mu) := \mathcal{L}^p(\mu)/\mathcal{N}$.
- (v) $L^p(\mu)$ is a Banach space w.r.t. $\|\cdot\|_p$.
4. Realize the spaces $\mathcal{L}^p(\mu)$ and $L^p(\mu)$ in the following cases:
 - (a) $X = \mathbb{N}$, $X = \mathbb{Z}$ with counting measure on 2^X .
 - (b) $X = \{1, \dots, k\}$ with counting measure on 2^X .
 - (c) $X = [0, 1]$ with Lebesgue measure.
5. If $\mu(X) < \infty$, then show that for $1 \leq p \leq r \leq \infty$, $L^\infty(\mu) \subseteq L^r(\mu) \subseteq L^p(\mu) \subseteq L^1(\mu)$, and if $X = \mathbb{N}$ or \mathbb{Z} , then $L^\infty(\mu) \supseteq L^r(\mu) \supseteq L^p(\mu) \supseteq L^1(\mu)$.
6. Show that every Cauchy sequence in $L^p(\mu)$ for $1 \leq p < \infty$ has a subsequence which converges a.e. to a function in $L^p(\mu)$.
7. Let \mathcal{S} be the set of all step functions on \mathbb{R}^1 . Show that \mathcal{S} is dense in $L^p(\mathbb{R}^1)$ for $1 \leq p < \infty$.

8. Let $\mathcal{S}_{a,b}$ be the set of all step functions on $[a, b]$. Show that $\mathcal{S}_{a,b}$ is dense in $L^p[a, b]$ for $1 \leq p < \infty$.

9. Prove that $C[a, b]$ is dense in $L^p[a, b]$ (with respect to $\|\cdot\|_p$).

10. Suppose $f : [a, b] \rightarrow \mathbb{R}$ is absolutely continuous. Prove that

- (a) f is continuous,
- (b) f is of bounded variation.

11. Give an example of a function which is

- (a) continuous, but not absolutely continuous,
- (b) of bounded variation, but not absolutely continuous,

12. Let $f \in \mathcal{L}^1[a, b]$ and $g : [a, b] \rightarrow \mathbb{F}$ be defined by $g(x) = \int_a^x f dm$, $x \in [a, b]$. Prove that g is absolutely continuous,

13. Quoting relevant results, prove: A function $g : [a, b] \rightarrow \mathbb{F}$ is absolutely continuous if and only if there exists an integrable function $f : [a, b] \rightarrow \mathbb{F}$ such that $g(x) - g(a) = \int_a^x f dm$ $x \in [a, b]$, and in that case $g' = f$ a.e.

In the following: $(X_1, \mathcal{A}_1, \mu_1)$ and $(X_2, \mathcal{A}_2, \mu_2)$ measure spaces.

14. Prove that for every $(x, y) \in X_1 \times X_2$, $E_x \in \mathcal{A}_2$ and $E^y \in \mathcal{A}_1$.

15. Let \mathcal{S} be the class of all $E \in \mathcal{A}_1 \otimes \mathcal{A}_2$ such that the functions $x \mapsto \mu_2(E_x)$ and $y \mapsto \mu_1(E^y)$ are measurable with respect to \mathcal{A}_1 and \mathcal{A}_2 , respectively, and

$$\int_{X_1} \mu_2(E_x) d\mu_1 = \int_{X_2} \mu_1(E^y) d\mu_2.$$

Prove:

- (a) \mathcal{S} contains all elementary sets, and
- (b) \mathcal{S} is closed under finite disjoint unions of its members.
- (c) If μ_1 and μ_2 are finite measures, then \mathcal{S} is a monotone class.

16. Let μ_1 and μ_2 be finite measures. prove:

- (a) For every $E \in \mathcal{A}_1 \otimes \mathcal{A}_2$, the functions $x \mapsto \mu_2(E_x)$ and $y \mapsto \mu_1(E^y)$ are measurable with respect to \mathcal{A}_1 and \mathcal{A}_2 , respectively, and

$$\int_{X_1} \mu_2(E_x) d\mu_1 = \int_{X_2} \mu_1(E^y) d\mu_2.$$

(b) $(\mu_1 \times \mu_2)(E) := \int_{X_1} \mu_2(E_x) d\mu_1$ defines a measure on $\mathcal{A}_1 \otimes \mathcal{A}_2$.

17. Show that if μ_1 and μ_2 are complete measures, then $\mu_1 \times \mu_2$ need not be complete.

18. Is $m \times m$ on $(\mathbb{R} \times \mathbb{R}, \mathfrak{M} \otimes \mathfrak{M})$ complete? Why?

19. Is $m \times m$ on $(\mathbb{R} \times \mathbb{R}, \mathfrak{M} \otimes \mathfrak{M})$ same as the Lebesgue measure m_2 on \mathbb{R}^2 ?

20. Let $X_1 = X_2 = \mathbb{R}$ and $\mathcal{A}_1 = \mathcal{A}_2 = \mathfrak{M}$ and $\mu_1 = \mu_2 = m$, the Lebesgue measure. Corresponding to a measurable function $f : \mathbb{R} \rightarrow [0, \infty)$, let

$$E_f := \{(x, y) \in \mathbb{R} \times \mathbb{R} : 0 \leq y \leq f(x)\}.$$

Prove the following¹:

- (a) E_f is measurable with respect to $\mathfrak{M} \otimes \mathfrak{M}$.
- (b) $(m \times m)(E_f) = \int_{\mathbb{R} \times \mathbb{R}} f d(m \times m)$.
- (c) Graph of f is measurable and has zero measure.

¹See de Barra, Page 184.