
Chapter 10

Elliptic Equations

10.1 Introduction

The mathematical modeling of steady state or equilibrium phenomena generally result
in to elliptic equations. The best example is the steady diffusion of heat in any two-
domain Ω bounded by ∂Ω. In the absence of any sources, the governing equation is
the Laplace’s equation given by

∂2u

∂x2
+

∂2u

∂y2
= 0, (x, y) ∈ Ω (10.1)

Due to the absence of time derivative terms in the equation (10.1), unlike the problems
given in the earlier two chapters, these are pure boundary value problems. Therefore,
boundary conditions alone (no initial conditions) have to be prescribed over the entire
boundary ∂Ω.

Depending on the nature of these boundary conditions, forced, natural or mixed
type, the elliptic problems are classified as

1. Dirichelt problem : The differential equation along with fixed (forced) bound-
ary conditions on the boundary, that is, u = f(x, y) over ∂Ω.

2. Neumann problem : The differential equation and derivative boundary con-
ditions given by ∂u

∂xn
= f(x, y) over ∂Ω, where xn is the normal to ∂Ω.

3. Robin or Mixed problem : The differential equation along with a combina-
tion of forced and natural boundary conditions given by αu + β ∂u

∂xn
= f(x, y)

over ∂Ω, where α, β are constants.
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10.2 Separation of Variables

Decomposing u(x, y) = X(x)Y (y) result in to ordinary differential equations

d2X

dx2
− kX = 0 (10.2)

d2Y

dy2
+ kY = 0 (10.3)

where k is a constant. The solution u can be written as

Case i: k is positive, that is k = λ2.

u(x, y) = (c1e
λx + c2e

−λx)× (c3 cos λy + c4 sin λy) (10.4)

Case ii: k is negative, that is k = −λ2.

u(x, y) = (c1 cos λx + c2 sin λx)× (c3e
λy + c4e

−λy) (10.5)

Case iii: k = 0
u(x, y) = (c1x + c2)× (c3y + c4) (10.6)

10.3 Dirichlet Problem in a Rectangular Domain

Solve ∂2u
∂x2 + ∂2u

∂y2 = 0, (x, y) ∈ Ω where Ω = (0, a)× (0, b) with boundary conditions

u(x, 0) = u(x, b) = 0, u(0, y) = 0 and u(a, y) = f(y).

Solution : Due to the homogenous nature of boundary conditions, in the y di-
rection, that is, at y = 0 and y = b, non-trivial solution exists only for the case (prove
that for the other two cases, the solution is identically zero)

u(x, y) = (c1e
λx + c2e

−λx)× (c3 cos λy + c4 sin λy)

Now, applying the boundary conditions at y = 0 and y = b on (c3 cos λy + c4 sin λy)
gives c3 = 0 and sin λb = 0.

Therefore λn = nπ
b

, n = 1, 2, · · · . ( the other n are omitted because, n = 0 gives triv-
ial solution and negative n only repeats the existing eigenfunctions with a minus sign).

Similarly, using the zero boundary condition at x = 0 on (c1e
λx + c2e

−λx) gives
c1 = −c2. Now, using the superposition principle, the solution can be written as

u(x, y) =
∞∑

n=1

A′n(eλnx − e−λnx) sin λny =
∞∑

n=1

An sinh λnx sin λny

where An = 2A′n.
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Finally, the values of An can be computed using the non-zero boundary condition
at x = a in the following way:

At x = a we have

u(a, y) =

∞∑
n=1

An sinh λna sin λny = f(y)

The above is a Fourier sine series, therefore,

An sinh λna =
2

b

∫ b

0

f(y) sin λny dy or

An =
2

b sinh λna

∫ b

0

f(y) sin λny dy

The solution of the given problem, after substituting the values of λn, is

u(x, y) =

∞∑
n=1

An sinh
nπx

b
sin

nπy

b
(10.7)

An =
2

b sinh nπa
b

∫ b

0

f(y) sin
nπy

b
dy (10.8)

Note :

1. The convergence of the series in the final solution, under certain conditions on
f and f ′, is not included in the present Lecture notes.

2. If the boundary conditions in the above problem are modified to u(0, y) =
u(a, y) = 0, u(x, 0) = 0 and u(x, b) = f(x) then the solution of the corresponding
problem is

u(x, y) =
∞∑

n=1

An sin
nπx

a
sinh

nπy

a
(10.9)

An =
2

a sinh nπb
a

∫ a

0

f(x) sin
nπx

a
dx (10.10)

10.3.1 Numerical Example

The faces of a thin square plate of length 24cm are perfectly insulated (to avoid any
atmospherical effects). Find the temperature distribution on the plate if the side at
y = 24 is kept at 20oC and all the other three sides are kept 0oC.

The solution of the problem, from the discussion given above, is

u(x, y) =

∞∑
n=1

An sin
nπx

24
sinh

nπy

24

An =
2

24 sinh nπ

∫ 24

0

20 sin
nπx

24
dx =

40

nπ sinh nπ
(1− cos nπ)
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⇒ u(x, y) =
80

π

∞∑
n=1

1

(2n− 1)π sinh (2n− 1)π
sin

(2n− 1)πx

24
sinh

(2n− 1)πy

24

10.3.2 Problems to Workout

1. The faces of a thin square plate of length 2cm are perfectly insulated. Find the
temperature distribution on the plate if the side at y = 2 is kept at sin πx and
all the other three sides are kept 0oC.

2. Solve ∂2u
∂x2 + ∂2u

∂y2 = 0, (x, y) ∈ Ω where Ω = (0, π)×(0, π) satisfying the boundary

conditions u(x, 0) = u(x, π) = 0 along 0 ≤ x ≤ π and u(0, y) = 0, u(π, y) = 10
along 0 < y < π.

3. The faces of a thin square plate of length 2cm are perfectly insulated. Find the
temperature distribution on the plate if u = 0 at x = 0 and x = a, and the
other two sides are insulated.

4. The faces of a thin square plate of unit length are perfectly insulated. Find the
temperature distribution on the plate if the upper and lower sides of the plate
are insulated, left side is kept at 0oC and the right side is kept at f(y)oC

5. Find the steady state temperature in a rectangular plate bounded x = 0, x = 1,
y=0 and y = π. The edges x = 0 and x = 1 are insulated and the temperature
along y = 0 is cosπx and along y = π is 0.

6. Neumann problem : Solve ∂2u
∂x2 + ∂2u

∂y2 = 0, (x, y) ∈ Ω where Ω = (0, a)×(0, b)

with boundary conditions uy(x, 0) = uy(x, b) = 0, ux(0, y) = 0 and ux(a, y) =
f(y)

10.4 Laplacian in Polar Coordinates

Taking the transformation

x = r cos θ, y = r sin θ

we have

r2 = x2 + y2, θ = tan−1 y

x

Therefore,

rx = cos θ, ry = sin θ, θx = −sin θ

r
, θy =

cos θ

r
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∂

∂x
= cos θ

∂

∂r
− sin θ

r

∂

∂θ
∂

∂y
= sin θ

∂

∂r
+

cos θ

r

∂

∂θ

∂2

∂x2
= cos θ

(
cos θ

∂2

∂r2
− sin θ

r

∂2

∂r∂θ
+

sin θ

r2

∂

∂θ

)

+

(
−sin θ

r

) (
cos θ

∂2

∂r∂θ
− sin θ

∂

∂r
− sin θ

r

∂2

∂θ2
− cos θ

r

∂

∂θ

)

∂2

∂y2
= sin θ

(
sin θ

∂2

∂r2
+

cos θ

r

∂2

∂r∂θ
− cos θ

r2

∂

∂θ

)

+

(
cos θ

r

) (
sin θ

∂2

∂r∂θ
+ cos θ

∂

∂r
+

cos θ

r

∂2

∂θ2
− sin θ

r

∂

∂θ

)

∂2u

∂x2
+

∂2u

∂y2
=

∂2u

∂r2
+

1

r

∂2u

∂r∂θ
+

1

r2

∂2u

∂θ2
= 0 (10.11)

Taking u(r, θ) = R(r)T (θ) and substituting in the polar form of the Laplace equation
gives the ordinary differential equations

r2d2R

dr2
+ r

dR

dr
− kR = 0

d2R

dθ2
+ kT 0

For k = −λ2, 0, λ2 (k is negative, zero and positive), the solution u is

u(r, θ) = (c1 cos λ log r + c2 sin λ log r)× (c3e
λθ + c4e

−λθ)

= (c1 log r + c2)× (c3θ + c4)

= (c1r
λ + c2r

−λ)× (c3 cos λθ + c4 sin λθ)

respectively.

10.5 Dirichlet Interior Problem

Find u satisfying

∂2u

∂r2
+

1

r

∂2u

∂r∂θ
+

1

r2

∂2u

∂θ2
= 0, 0 ≤ θ ≤ 2π, r < a

subjected to the boundary conditions u(a, θ) = f(θ) for 0 ≤ θ ≤ 2π.

Solution : Since for Dirichlet interior problem, r = 0 is also a part of the do-
main at which log r is not defines, therefore, the required solution can be obtained
only from k = λ2, that is,

u(r, θ) = (c1r
λ + c2r

−λ)× (c3 cos λθ + c4 sin λθ)
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Further, the solution must be periodic with period 2π, therefore

c3 cos λθ + c4 sin λθ = c3 cos λ(θ + 2π) + c4 sin λ(θ + 2π)

c3(cosλθ − cos λ(θ + 2π)) + c4(sin λθ − sin λ(θ + 2π)) = 0

2 sin λπ (c3 sin(λθ + λπ) + c4 cos(λθ + λπ)) = 0

Therefore, sin λπ = 0, λπ = nπ ⇒ λ = n, n = 0, 1, 2, · · · .

Using the superposition principle, the solution can be written as

u(r, θ) =

∞∑
n=0

(anrn + bnr−n)× (cn cos nθ + dn sin nθ)

Further since the solution must be finite at r = 0 implies dn must be zero (for outer
problem wherein the domain is defined over r > 1, cn has to be zero to make the
solution finite).

Using dn = 0 and renaming the constants will give

u(r, θ) =

∞∑
n=0

rn(An cos nθ + Bn sin nθ)

Now using the given boundary condition gives

f(θ) =

∞∑
n=0

an(An cos nθ + Bn sin nθ)

which is a full Fourier series hence the coefficients are

A0 =
1

2π

∫ 2π

0

f(θ) dθ

An =
1

an

2

2π

∫ 2π

0

f(θ) cos nθ dθ

Bn =
1

an

2

2π

∫ 2π

0

f(θ) sin nθ dθ

10.5.1 Numerical Example

Find u satisfying

∂2u

∂r2
+

1

r

∂2u

∂r∂θ
+

1

r2

∂2u

∂θ2
= 0, 0 ≤ θ ≤ 2π, r < 1

subjected to the boundary conditions u(1, θ) = 10 cos2 θ for 0 ≤ θ ≤ 2π.

Solution : The solution is

u(r, θ) =

∞∑
n=0

rn(An cos nθ + Bn sin nθ)



Lecture Notes MA2020 Differential Equations 117

with the coefficients

A0 =
1

2π

∫ 2π

0

5(1 + cos 2θ) dθ = 5

An =
2

2π

∫ 2π

0

5(1 + cos 2θ) cosnθ dθ = 0 (n �= 2) & A2 = 5

Bn =
2

2π

∫ 2π

0

5(1 + cos 2θ) sin nθ dθ = 0

Therefore, u(r, θ) = 5 + 5r2 cos 2θ = 5(1 + r2 cos 2θ).

10.5.2 Problems to Workout

Find u satisfying ∂2u
∂r2 + 1

r
∂2u
∂r∂θ

+ 1
r2

∂2u
∂θ2 = 0, 0 ≤ θ ≤ 2π, r < 1 subjected to the boundary

conditions

1. f(θ) = sin3 θ

2. f(θ) =

{
θ −π

2
< θ < π

2

0 π
2

< θ < 3π
2

3. f(θ) =

{ −θ −π < θ < 0
θ 0 < θ < π

10.6 Neumann Interior Problem

Find u satisfying

∂2u

∂r2
+

1

r

∂2u

∂r∂θ
+

1

r2

∂2u

∂θ2
= 0, 0 ≤ θ ≤ 2π, r < a

subjected to the boundary conditions ∂u
∂n

(a, θ) = ∂u
∂r

(a, θ) = f(θ) for 0 ≤ θ ≤ 2π.

Solution : Following the same computations given in Dirichlet interior problem,
we get (since no change in any of the conditions until the application of the boundary
conditions at r = a)

u(r, θ) =

∞∑
n=0

rn(An cos nθ + Bn sin nθ)

∂u

∂n
=

∂u

∂r
=

∞∑
n=0

nrn−1(An cos nθ + Bn sin nθ)

Now using the given boundary condition gives

f(θ) =

∞∑
n=1

∞∑
n=1

nan−1(An cos nθ + Bn sin nθ)



118 Sanyasiraju V S S Yedida sryedida@iitm.ac.in

which is once again a full Fourier series hence the coefficients can be written as

An =
1

nan−1

2

2π

∫ 2π

0

f(θ) cos nθ dθ

Bn =
1

nan−1

2

2π

∫ 2π

0

f(θ) sin nθ dθ

Therefore, the solution of the Neumann interior problem is

u(r, θ) = A0 +

∞∑
n=1

rn(An cos nθ + Bn sin nθ) (10.12)

where

An =
1

nan−1

1

π

∫ 2π

0

f(θ) cos nθ dθ (10.13)

Bn =
1

nan−1

1

π

∫ 2π

0

f(θ) sin nθ dθ (10.14)

Notice that, in this case, the solution can differ by an arbitrary constant A0.

10.7 Semicircular Domain

Find u satisfying

∂2u

∂r2
+

1

r

∂2u

∂r∂θ
+

1

r2

∂2u

∂θ2
= 0, 0 ≤ θ ≤ π, r < a

subjected to the boundary conditions u(a, θ) = f(θ) for 0 ≤ θ ≤ π, u(r, 0) = u(r, π) =
0.

Solution : We have

u(r, θ) = (c1r
λ + c2r

−λ)× (c3 cos λθ + c4 sin λθ)

Applying the conditions at θ = 0 and π gives c3 = 0 and λ = n for n = 1, 2, · · · .
Using the superposition principle, the solution can be written as

u(r, θ) =
∞∑

n=1

(anrn + bnr−n) sin nθ

Further since the solution must be finite at r = 0 implies dn must be zero. Using
dn = 0 and renaming the constants will give

u(r, θ) =

∞∑
n=1

Anrn sin nθ
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Now using the given boundary condition gives

f(θ) =
∞∑

n=0

Anan sin nθ

which is a full Fourier sine series hence the coefficients are

An =
1

an

2

π

∫ π

0

f(θ) sin nθ dθ

10.7.1 Numerical Example

Find u satisfying

∂2u

∂r2
+

1

r

∂2u

∂r∂θ
+

1

r2

∂2u

∂θ2
= 0, 0 ≤ θ ≤ π, r < 1

satisfying the boundary conditions u(r, 0) = u(r, π) = 0, u(1, θ) = 10θ(π − θ) for
0 ≤ θ ≤ 2π.

Solution : The solution is

u(r, θ) =
∞∑

n=1

Anrn sin nθ

An =
1

an

2

π

∫ π

0

10θ(π − θ) sin nθ dθ =
40

πn2an
(cosnπ − 1)

10.7.2 Problems to Workout

1. Find u satisfying

∂2u

∂r2
+

1

r

∂2u

∂r∂θ
+

1

r2

∂2u

∂θ2
= 0, 0 ≤ θ ≤ π, r < 1

satisfying the conditions u(r, 0) = u(r, π) = 0 and

(a) f(θ) = 100 sin3 θ

(b) f(θ) = T0, where T0 is a constant

2. u(r, θ) is a function satisfying

∂2u

∂r2
+

1

r

∂2u

∂r∂θ
+

1

r2

∂2u

∂θ2
= 0

in an semicircular annulus defined by 0 ≤ θ ≤ π, a < r < b. If its value
along the boundary r = a is θ(π

2
− θ) and is zero on the remaining part of the

boundary then prove that

u(r, θ) =
2

π

∞∑
n=1

( r
b
)4n−2 − ( b

r
)4n−2

(a
b
)4n−2 − ( b

a
)4n−2

sin(4n− 2)θ

(2n− 1)3


