Chapter 8

Hyperbolic Equations

Consider the one dimensional wave equation

Pu 0%
2~ " o2
It has been shown in the earlier chapter that, two real characteristics exists for the
equation (8.1) along which the given differential equation takes a simpler form given

by

(8.1)

0%u
3%,
where £ = z+at and n = x —at. By integrating on both sides of (8.2), it can solved to

get u(&,n) = (&) +1(n) where ¢ and ¢ are two arbitrary functions (ug, =0 = ue =
F(&) = u=¢()+11(n)). Therefore, the solution of (8.1) can be written as

u=0(&) +9vn) = uz,y)= ¢ +at) +¢(r - at) (8.3)

-0 (8.2)

8.1 D’Alembert’s Solution

Include the initial conditions (for an initial value or Cauchy problem)

u(z,0) = f(x) and %hzg = g(x) (8.4)

and eliminate the arbitrary functions from (8.3) gives the solution of the wave equation

in the domain —oo < z < oo, t > 0 with initial conditions (8.4) at ¢ = 0. The
D’Alembert’s solution is given by

u(z,t) = ¢(z+at) +P(xr — at)
u(z,0) = ¢(z)+¢(x) = f(z)
ou , ,
5 ag’(x + at) — ay)’ (v — at)
ou

Zw.0) = adl() - av'(z) = g(a)
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Integrating the last equation in the limits xy to = gives

| @) - ar [ 9() da

xo

oa) —vla) = dlan)+ () + [ glo) da

zo

We also have

o(x) +9(x) = f(2)

Solving these two equations for ¢ and v gives

oa) = AIEIEID T g0 a

2  2a J,
Therefore
+ + +at 1 [etat
¢($+6Lt) _ ¢($0) ¢<3302) f($ a ) + %/ g(x) dr
)
xo) + U (xg) — flx — at I
Finally, the D’Alembert’s solution for the wave equation is
u(z,y) = oé(x+at) + (x — at)
flx+at)+ f(x —at 1 et
= ( ) 5 ( ) + % g(x) dx (8.5)
r—at

It is clear from the solution (8.5) that, the solution of the wave equation at any
point (z,t) depends on f at the two points (z — at,0) and (z + at,0) and also on g
between z — at and z + at, as shown in the Figure (8.1), which is called the domain
of dependence. That is, the region on which, the solution at any point say, P(x,y)
depends on is bounded by the lines © — at = 0, x + at = 0 and the z-axis. Therefore,
any changes in the initial conditions outside this region can’t influence the solution
at the point P. Similarly, the domain influence of the point P is the region bounded
by the extension of the lines x — at = 0 and = + at = 0 for all the later times of ¢.

8.1.1 Numerical Examples

1. Find the vertical displacement u(z,t) in a plane of an infinitely long elastic

string which is started from rest and having an initial displacement K sin 7z,

where K is a constant (Assume a? = % = 1, where 7' is the tension and p is the
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P(x,t)

Domain of
Dependence

Pl(x—at,o) P2 (x+at,0)

Figure 8.1: Domain of dependence

density).

Solution: By D’Alembert’s solution, we have f(z) = Ksinmz and g(z) = 0,
therefore, the solution is

K
u(z,t) = 5 (sinm(z +t) +sinm(x —t)) = K sinma cost

Find the vertical displacement u(x,t) in a plane of an infinitely long elastic
string which is started with a constant velocity ¢ and having an initial displace-
ment K sinmx, where K is a constant (Assume a? = % = 1, where T is the
tension and p is the density).

Solution: By D’Alembert’s solution, we have f(z) = Ksin7x and g(x) = g,
therefore, the solution is

T+t
/ g dx = K sin mx cosnt + gt

—t

u(z,t) = % (sinm(z +1t)+sinm(x —t)) + %

8.1.2 Problems to workout

Solve the wave equation using the following initial conditions x € (—o00, 00)

1.

f(z) = Kz(l —x) and g(x) =0

. f(x) =K(z —2?®) and g(z) =0
. f(z) = K(1 — cos2mz) and g(x) =0

. f(z) =0 and g(z) = —dae™
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8.2 Fourier Series based solutions for Hyperbolic
Equations

Hyperbolic equations defined in finite domains with boundary conditions, that is

initial-boundary value hyperbolic equations can be solved using a method called Sep-

aration of variables in which series solutions can be obtained with the help of Fourier

series. Before looking at such problems, in the next section, we look at some of the
important concepts, which we need in our discussion, from Fourier series.

8.2.1 Fourier Series

Due to the orthogonal nature of sin = and cos 7=, in the interval 0 to L, given by

L L
L
. NTT . MTT B 0 m#n
/0 sin —— sin —— de = { L m=n (8.6)
L nma mmx 2 m#n
cos —— cos — der = 5 m=n (8.7)
0 L m=n=0

any piecewise smooth function f on the interval —L < x < L can be expressed as

- NTE . onwx
f(z) ~ ag +;an co8 —— + ;bn sin —— (8.8)
where
1 (F
ag = — f(x) dx 8.9
o = 35/ 1@ (39)
1 [E nwx
_ 1 T 1
ap L/_Lf(x) cos — dx (8.10)
1 L
b, = z/_L f(z) sin? dx (8.11)
form=1,2,....

Some Convergence Results
1. The, fourier series, (right hand side of (8.8)), converges to

(a) the periodic extension of f(x) if f is continuous at x

(b) the average of the two limits, that is 3(f(z+) + f(z—)) at the points of

jump discontinuity

2. The Fourier series of f(x) is continuous and converge to f(x) for —L < x < L
if and only if f(x) is continuous and f(—L) = f(L). The corresponding results
for cosine and sine series (the series obtained with even and odd extensions of
f(x)in 0 <z < L, respectively) are
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(a) The Fourier cosine series of f(x) is continuous and converge to f(z) for
0 <z < Lif and only if f(z) is continuous

(b) The Fourier sine series of f(x) is continuous and converge to f(z) for
0 <z < L if and only if f(z) is continuous and f(0) = f(L) =0

3. A Fourier series that is continuous can be differentiated term by term if f’(x)
is piecewise smooth. Therefore, if f(z) is piecewise smooth then f(z) can be
differentiated term by term if f(—L) = f(L).

Counter Example: 2> -L(—1)""sin 22 is the Fourier sine series of x

in the interval 0 < x < L however, the series with its termwise derivatives

2 (=1)"*! cos XL is not a cosine series of f(x) = 1 (the cosine series of 1

is 1 itself).

4. If f'(z) is piecewise smooth, then the Fourier cosine series of a continuous
function f(x) can be differentiated term by term.

5. If f/(x) is piecewise smooth, then the Fourier sine series of a continuous function
f(x) can be differentiated term by term if f(0) = f(L) = 0.

From the results given above, since the solutions of the wave equation are twice
differentiable (space direction), therefore, Fourier series along with term by term
differentiation exists for the solutions of Hyperbolic equations with homogeneous
boundary conditions.

8.2.2 Fixed Oscillations of a Thin Homogeneous String

A thin perfectly flexible homogenous string under uniform tension is tied at the ends
x = 0and x = L. The string is pulled in a planar region and released. In the absence
of any external forces, the problem is modeled by

PDE wuy = a’uy, O<z<L,t>0
Initial Conditions wu(z,0) = f(x), u(x,0) =g(z) 0<x <L (8.12)
Boundary Conditions u(0,t) =u(L,t) =0 t>0

Computation of u : To separate the variables, assume
u(z, t) = X(x)T(t)
Substituting in the differential equation gives
1 T 1d°X
a?T dt2 X da?
Since the left hand side of the above equation is a function of ¢ alone and similarly,
the right hand side is function of x alone, therefore, the equality of these two enforces
the constant nature of these two. That is
1 T  1d°X
2T dt2 X da?
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where k is a constant. Equivalently, we have

&T X
kT =0 L2 —px =
ae " T a2

Further, the boundary conditions on v at x = 0 and x = L gives
X(0)T'(t) = X(L)T(t) =0

that is, either X is zero at x = 0 and x = L or T = 0. Since the latter condition
makes u = 0 for all times, for a possibility of any non-zero solution choose X is zero
at x =0 and x = L.

1. Case it k= \? (a positive constant)
Solving the ODE for X gives X (z) = c1e™ + cpe ™, which gives X = 0 for the
boundary conditions X is zero at x = 0 and z = L.

2. Caseii: k=0
Once again solving for X gives X (x) = ¢; + coz, which again gives X = 0 for
the boundary conditions X is zero at x+ =0 and z = L.

3. Case iii: k= —\? (a negative constant)
Solving the ODE for X gives X () = ¢; cos Az + casin Az
X0)=0 = ¢, =0
X(L)=0 = cesin AL =0

If ¢co = 0, then once again X = 0, therefore, sin A\LL = 0 must be zero. That is,
nw
AL = = A=—
n L

forn=0,£1,£2,---.

Now using the facts that sine function is odd and sin 0 = 0, we have
nm

\ =
L

for n=1,2,---

Now, solving for T" gives (after replacing A with “* )

t t
nmwa + Bsin m;a

where A and B are constants. Now, using the superposition principle, the solution
for u(x,t) can be written as

- t t
u(z,t) = Zsin ? (An cos % + B, sin m;a )

T(t) = Acos

for n=1,2,---
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where A, and B,, for n = 0,41, 42, - are constants. Finally, the initial conditions
must be applied to find the remaining constants in the solution. That is,

. nmx nma(0) . nma(0)\
u(z,0) = SlnT<Ancos 7 + B, sin 7 = f(x)

n=1

nmx
ZA” sin— = f(x)
The last equation is a Fourier sine series, therefore, A, can obtained as

/ f(x sin@ dx

forn=1,2,---

The second initial condition is u:(x,0) = g(x), that is

me sin@ (—An sin nﬂz( )+Bn cos nma( >> = g(x)

—~ L L L
g n—za sin ? B, = g(x)
g B, nza sin n_zx = g(z)
g B sin n_z:x = g¢g(z), where B; =B, ?

Bl = ? B, = %/OLg(x)Sln@ dx
forn=1,2,---
The required solution is
Z sin 12 ( n COS nmat + B, sin mrat) (8.13)
L L
A, = / f(z)sin @ dx (8.14)
B, = % i g(x) sin ? dx (8.15)
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8.2.3 Problems to Workout

1. Show that the above solution satisfies the given initial and boundary conditions.

2. Solve the wave equation with homogeneous boundary conditions and the fol-
lowing initial conditions f(z) = sin® Z and g(z) = 0 (take a = 1 in the PDE).

3. Assuming ¢g(z) = 0, show that the above solution gives the D’Alemberts solution
of a suitable problem

4. Solve the wave equation with homogeneous boundary condltlons and the fol-

2%k
7T Zf0<1:< 0 (take

lowing initial conditions f(z) = { 2% (7 _ ) zf e L , g(z) =

I
a =1 in the PDE).

5. Solve the wave equation with homogeneous boundary conditions, L = 7, a = 1,
and with the following initial deflection and velocities

(a) f(z) = k(sinz — sin2z), g(z) =0
(b) f(z) = La(x® — %), g(z) = 0

B B 0.0z if0<z<?
(¢) f(z) =0, g(z) —{ 0.0L(n—a) ifT<z<L’
8.2.4 Forced Vibrations
PDE uy — a®uy, = F(x,t) O<x<L,t>0
Initial Conditions wu(z,0) = f(z), u(z,0)=g(z) 0<z <L (8.16)
Boundary Conditions u(0,t) = u(L,t) =0 t>0

Define u = uy + ug such that u, is the solution of (8.12) and wy is the solution of the
problem

PDE  wuy — auy, = F(x,t) O<zx<L,t>0
Initial Conditions u(z,0) =0, u(z,0)=0 0<x <L (8.17)
Boundary Conditions u(0,t) = u(L,t) =0 t>0

then wu satisfies the given equation and also the initial and boundary conditions. Since
uy is already known from the earlier problem (problem of free vibrations of the string),
it is complete if we compute us. Let assume (from the understanding of the problem
of the free vibrations)

Z () sin @ (8.18)
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(8.17) already satisfies the boundary conditions of (8.16) and it will satisfy the initial
conditions if, ¢,(0) = ¢/ (0) =0, n =1,2,---. Substituting (8.17) in the differential
equation gives

i (d%n(t) +n27r2a2¢n <t>> @ _ e

2o\ "ar [E L
L (dPp, (1) 5 . nmx nra
Z ( I + wnqﬁn(t)) sin —— = F(z,t), w,= -

n=1
kmx

Multiplying with sin 7% on both sides and then integrating in the limits x € (0, L)
gives (using the orthogonal property)

2 L
(d j;:;t) +w,§¢k(t)) % = /0 F(xz,t) sinlme dx

d*¢(t)
dt?

+wigr(t) = Fi(t)

where F(t) = %fOL F(z,t)sin 2% dz subject to the boundary conditions ¢x(0) =

#.(0) =0 for k = 1,2,---. Solving this problem with variation of parameters gives
the solution
1 [t
or(t) = — Fi(s) sin(wg(t —s)) ds
Wk Jo

Therefore, by superposition principle, the solution us is given by

alat) = S [ RGo) sntente =) ds poin ™2

n=1

Finally, the solution of the given forced vibrations problem is given by

u(z,t) =up +uy = Z {A, cosw,t + B, sinw,t} sin nfzx
n=1

+ i{:k/ot Fy(s) sin(wp(t — s)) dS}Sinnzx

n=1

where
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