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Another title for this article could be ‘ What makes a ma-
trix non-diagonalizable?” Of course, the question can be
posed not only for matrices, but also for linear transfor-
mations on any linear space.

Recall that an n xn matrix A is said to be diagonalizable
if there exists an n x n diagonal matrix D and ann x n
invertible matrix U such that

A=UDU.

We may observe that, if D is a diagonal matrix, say with
diagonal entries Ag, ..., A,, and U is an invertible matrix
with columns v, . . ., 4., then the relation A = UDU !,
i.e., AU=UD, is same as

Au; = Auy, je{l,...,n}

Thus, if A is diagonalizable, then A has n linearly in-
dependent eigenvectors. Conversely, if A has n linearly
independent eigenvectors uy, ..., u, and if Ay,..., A, are
the associated eigenvalues, possibly repeated, then tak-
ing U with columns u;,...,u,, and D as the diago-
nal matrix with diagonal entries A;,...,A\,, we have
AU =UD, ie., A= UDU™}. In fact, D is the matrix
representation of A with respect to the basis consisting
of columns of U.

From the above discussion we have the following char-
acterization for diagonalizability of A:

An n x n matrix A is diagonalizable if and
only if A has n linearly independent eigen-
vectors.
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A matrix is
diagonalizable if and
only if ascent of
every eigenvalue is
one, that is, if and
only if for each
eigenvalue, the
geometric multiplicity
and the algebraic
multiplicity are equal.

In view of the above characterization, the question of
diagonalizability can be posed for any linear transfor-
mation on a finite dimensional vector space.

Now let us look at the issue in a slightly different man-
ner. Suppose Aj,...,\; are the distinct eigenvalues of
an n X n matrix A. By the above discussion, we can
infer that A is diagonalizable if and only if for each
j =1,...,k, there are linearly independent eigenvectors
Ujt, - - -, Ujn; Of A associated with A; such that

ny+...+ng=mn,
and in that case, columns of U are the vectors

ul,l) v ,ul,nla' E auk,l) s 7uk,nk7

and diagonal elements of D are Aq,..., \; with each A;
repeated n; times.

Such a nice situation does not prevail if one of the eigen-
values, say Aj, is defective, in the sense that n; is not
large enough so as to satisfy the relation ny+.. .4n; = n.
A simple example of a matrix which is not diagonaliz-
able is the 2 x 2 matrix

- (11)

It is easily seen that A = 1 is the only eigenvalue of A
and there is only one linearly independent eigenvector
associated with this eigenvalue. In this example, A = 1
is a defective eigenvalue of A.

In this article we define certain quantities called geo-
metric multiplicity, algebraic multiplicity and ascent of
an eigenvalue, and then prove a generalized form of the
diagonalization theorem which, in particular, show that
a matrix is diagonalizable if and only if ascent of every
eigenvalue is one, that is, if and only if for each eigen-
value, the geometric multiplicity and the algebraic mul-
tiplicity are equal. We shall do this in the context of
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a linear transformation on a finite dimensional vector
space.

First some definitions:

Let X be a finite dimensional vector space over the field
C of complex numbers, and let T : X — X be a linear
transformation, i.e.,

T(azx + By) = oI (z) + BT (y)

for every xz,y € X and for every a,3 € C. An element
A € C is said to be an eigenvalue of T if there exists a
nonzero r € X such that

Tz = Az,

and in that case z is called an eigenvector of T. (Here,
and below, for £ € X, we may also use the notation 7'z
for the element T'(z) in X.)

Two of the important subspaces associated with 7: X —
X are its kernel and its range, defined by

ker(T) :={z € X : Tz = 0},

range(T) = {Tz: 2 € X},
respectively.

A subspace M of X is said to be invariant under T' if
Tx € M for every z € M.

Clearly, kernel and range of T are invariant under 7.

The following definition is motivated by our discussion
on diagonalizablity of a matrix: The linear transforma-
tion T : X — X is said to be diagonalizable if X has a
basis consisting of eigenvectors of T'.

Clearly, A € C is an eigenvalue of T if and only if the
transformation T — AI is not injective, if and only if the
kernel of T'— A1, is not the zero space. Thus, eigenvectors
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of T' corresponding to an eigenvalue A are the nonzero
elements of ker(T' — \I).

The subspace ker(T' — M) is called the eigenspace of T
corresponding to the eigenvalue A, and the dimension
of the eigenspace ker(T — AI) is called the geometric
multiplicity of .

If \i,..., A\ are the distinct eigenvalues of T', then it
can be easily seen that T is diagonalizable if and only if

dim X = dim ker(T — MI) + ... + dim ker(T — A\ 1).
This is equivalent to saying that
X =ker(T = MI)+... +ker(T — N\J)
with
ker(T — \I) Nker(T — A\ I) = {0} for i#j.

For subsets M, N of X, we used the notation M + N for
the set
{z+y:zeM, ye N}

Now suppose that A € C is an eigenvalue of T', and for
j=1,2,..., let us denote

K; = ker(T — X ).
Then we observe the following :

(i) {0} CKiCK,...CX.

(i) There exists j such that K; = K3

(ii) If K; = K41 for some j, then K; = K, for every
i=1,2,...

Clearly (i) follows from the definition of K’s, and (ii) is
a consequence of the finite dimensionality of X. To see
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(iii), suppose K; = K, for some j. Now if z € K,
ie., if (T — A[)*2z = 0, then we have (T — M)z €
K1 = Kj, so that (T — M)tz =0, ie., z € Kjy1.
Thus we have proved that K, C K;;;. Now using (i),
we have K,y = K; ;. Continuing the above argument,
we obtain K; = K, for every i € {1,2,...}.

From the above observations, it is obvious that there
exists a positive integer £ such that

Ky 1 # Ky= Ky forevery :=1,2,....

This positive integer £ is called the ascent of A, the sub-
space K, is called the generalized eigenspace and ele-
ments of K, are called the generalized eigenvectors of T
corresponding to the eigenvalue A. The dimension of K,
is called the algebraic multiplicity of A.

Let gy, £» and my, respectively, be the geometric multi-
plicity, ascent and the algebraic multiplicity of an eigen-
value X\ of T'. Then, from the observations (i)—(iii) above,
it 1s clear that

g <my and £y < my.
Also, we observe that
g»=my ifand only if £, =1.
In fact, we have the following result ([1}):
Theorem 1 Suppose A is an eigenvalue of a‘linear trans-

formation T : X — X with geometric multiplicity g,
algebraic multiplicity m, and ascent £. Then

l4+g—1<m<{g.
Proof. For each i € N, let K; = ker(T — AI)* and
g; = dimK;. Then we know that
KiCKyC...CKy= Ky VieN
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From this, it is clear that
g+i—1<g¢g Vie{l,... ¢}

In particular, since g, = g and g, = m, we have g + ¢ +
1 < m. Next, we prove

i < gi-1+ 01 (1)

Once, this is proved, it follows that g, < 2¢g; = 2g,
g3 < g2+ g1 < 3g, etc., m =g, < {g.

For the proof of (1), write K; as

Hence, it is enough to show that dim Y; < g. So, suppose
that uq, ..., u be a basis of Y;. Then we notice that (T'—
M)y, ..., (T— M)y, are linearly independent. In-
deed, if ay,...,q are scalars such that Z;’zl a;(T —
AI)~lu; = 0, then, we have 25:1 aju; € K;_y. This
happens only if Z?zlajuj = (), since E;?:l aju; € Y;.
Thus, it follows that a; = 0 for j = 1,...,k. Thus,
(T — AI)"uy, ..., (T — M) 'uy are linearly indepen-
dent. Also, since u; € K;, (T — M) 'u; € K, for each
j=1,..., k. Thus, we have proved that k < g.

This completes the proof. QO

Our attempt is to prove that, if Ay, ..., \x are the dis-
tinct eigenvalues of T' with algebraic multiplicities m,, . ..
my, and ascents ¢4, ..., £, respectively, then

my + ...+ my = dimX, (2)

so that T is diagonalizable if and only if £; = 1 for every
j =1,...,k. For showing this, it is enough to prove
that

X =ker(T — M) + ... + ker(T — M\)%
with
ker(T — D)% Nker(T — \;1)% = {0} for i#j.

36

JW RESONANCE | December 2002



GENERAL | ARTICLE

All this discussion would be in vain if 7' has no eigen-
values. So first let us prove

Theorem 2 Fvery linear transformation T : X — X
has at least one eigenvalue.

Usually this result is proved by invoking the concept of
determinant of a linear transformation or matrix. The
following simple and elegant proof which does not de-
pend on the concept of determinant is due to Sheldon

Axler [2].

Proof of Theorem 2. Suppose dim X =n, and z € X
is a nonzero element. Since the set {z,T(z),...,T"(z)}
consisting of n + 1 elements is linearly dependent, there
exists complex numbers ay, a1, . . ., @, with at least one
of them nonzero, such that '

aor + o T(z) + ... + &, T(z) = 0.
Writing
p(t) = aotant+. . .+ant™, p(T) = apl+enT+. . +anT™,

we have
p(T)(z) =0.
Suppose k = max{i : @; # 0}. Then, by Fundamental
Theorem of Algebra, there exists Aj,...,Ax in C such
that
p(t) = ap(t — A1) ... (E = M)

Thus we see that
(T—MI)...(T = MI)(z) = p(T)(z) = 0.

The above relation shows that at least one of T—\1,. ..,
T — A1 is not injective, so that at least one of Aq,..., Ax
is an eigenvalue of T'. |

As a first step towards the proof of (2) we prove:

One can prove the
existence of an
eigenvalue without
using the concept
of the determinant.
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Theorem 3 Let A be an eigenvalue of T with ascent £.
Let K = ker(T — M )¢ and R = range(T — AI)®. Then

(i) K and R are invariant under T, and
(i) X =K+ R with KN R = {0}.
(i) X is spanned by generalized eigenvectors of T

(iv) X is the only eigenviaue of T|k.

Proof. It is easy to see that

T(T — M) =(T - XIYT VjeN.
Hence, if £ € K, then

(T — A\ (Tz) = T(T — M\)!(z) = 0,

so that Tz € K showing that K is invariant under T'.
To see that R is invariant under 7', let y € R, and let
z € X such that y = (T'— M )*z. Then we have

Ty =T(T — X)!(z) = (T — \)(Tz) € R,

showing that R is invariant under T'. Thus, proofs of (i)
and (ii) are over.

Next suppose that x € K N R. Then we have
(T—M)fx=0 and z=(T -
for some u € X, so that
0= (T~ M)z = (T - \)*u.

Thus u € ker(T — A)?» = ker(T — M)*. Hence z =
(T — MI)fu = 0. Thus we have proved that KN R = {0}.
This, together with the relation dimX = dimK + dimR
implies that X = K + R, proving (ii).
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We show (iii) by induction on the dimension of X. Clearly

the result is true if » = 1. Next suppose n > 1 and that
the result is true for all vector spaces of dimension less
than n. Since K # {0}, we see from (ii) that R # X,
so that dimR < n, and by induction assumption R is
spanned by the generalized eigenvectors of T'|g. Since
generalized eigenvectors of T'|g are generalized eigenvec-
tors of T as well, and elements of K are already gener-
alized eigenvectors of T, it follows that X is spanned by
the generalized eigenvectors of T'.

To see (iv), first observe by Theorem 2 that T'|x has at
least one eigenvalue. Suppose u is an eigenvalue of T'|x
and z # 0 is a corresponding eigenvector. Then we have
(T — M)z = (. — M)z so that

0= (T - M)’z = (u— Nz
This shows that u = A, as desired. a
Theorem 4 If A\ and p are distinct eigenvalues of T
with corresponding ascents £ and £, respectively, then
ker(T — AI)® Nker(T — pl)® = {0}.
Proof. Suppose A and p are distinct eigenvalues of T'

with corresponding ascents £, and £, respectively. Let
us denote ¢, by ¢, and

K :=ker(T — MXI)!,  R:=range(T — AI)".

Since, by Theorem 3 (ii), K N R = {0}, it is enough to
show that
ker(T — uI)®* C R.

We shall, in fact, show by induction that
ker(T —pul)) CR, j=1,2,... (3).

For proving (3), first let 7 = 1 and z € ker(T'—uI). Since
X = K+ R, by Theorem 3 (ii), there exists z; € K and

-
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zy € R such that z = z; + z5. Now, by Theorem 3(i),
K and R are invariant under T, so that (T — pl)z =
0 implies (T — ul)z; = 0 and (T — pl)zs = 0. In
particular, if z; # 0, then p is an eigenvalue of T'|,
a contradiction to the fact (ref. Theorem 3(iv)) that A
is the only eigenvalue of T|kx. Hence z; = 0, so that
r=1x9 € R. :

Next suppose that the result (3) is true for some j > 1.
Let x € ker(T —uI)y*!, and z; € K and z, € R are such
that £ = z; + z,. Again, using the invariance of K and
Runder T, (T — pI)**z; =0 and (T — pl) iz, = 0.
In particular, using the induction hypothesis, we have

(T — pl)z; C K Nker(T — pI)Y C KN R={0}.
Since A is the only eigenvalue of T'|g, it then follows that

z, = 0, and hence z = x5 € R. Thus (3) is proved, and
the proof of the theorem is complete. a

Now the following theorem is obvious from Theorem 3
(iii) and Theorem 4.

Theorem 5 Let Aq,..., A\ be distinct eigenvalues of T
with ascents {1, ..., ¢ respectively. Then

X =ker(T — M) + ... + ker(T — M )™
with
ker(T — AI)% Nker(T — \I)% = {0} for i#j.
In particular,

dimX = dim[ker(T — A\ 1)*] +. .. +dim[ker(T — A1) *].

Note that the above theorem includes the relation (2).

As a corollary to the above theorem we have
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Theorem 6 Let A, ..., be distinct eigenvalues of T
with ascents 41, ..., ¢ respectively. Then T is diagonal-
izable if and only if £; =1 for every j € {1,...,k}.

Finally we would like to mention a class of linear trans-
formations on finite dimensional inner product spaces,
the so called self-adjoint operators, which can be diago-
nalized.

Suppose that X is a finite dimensional inner product
space with (positive definite, hermitian) inner product
(-,-). Recall that a linear transformation transformation
T : X = X is called a self-adjoint operator if

(Tz,y) = (z,Ty) Vz,y€X.

Suppose T : X — X is a self-adjoint operator. If z € X
and ) € C are such that Tz = Az, then we have

Mz, z) = (\r,z) = (Tz,7) = (z,Tz) = (7, z) = Mz, z),

where X denotes the complex conjugate of A. From this
it follows that every eigenvalue of T is a real number.
We also obtain that if z € ker(T — AI)?, then

(T = M)z, (T = M)z) = ((T — M)*z,z) = 0.

so that ker(T — AI)? C ker(T' — AI). We already know
that ker(T — AI) C ker(T'— AI)%. Hence, ker(T — M )? =
ker(T'— AI'), and consequently, ascent of every eigenvalue
of T'is 1. Thus we have proved the following diagonal-
ization theorem for self-adjoint operators.

Theorem 7 Suppose T : X — X is a self-adjoint op-
erator on a finite dimensional inner product space X.
Then every eigenvalue of T s real and has ascent 1.
In particular, if Ay, .. ., Ay are distinct eigenvalues of T,
then

X =ker(T — MI) + ... +ker(T — M)
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