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Another title for this article could be' What makes a ma- 

trix non-diagonalizable?' Of course, the question can be 

posed not only for matrices, but also for linear transfor- 

mations on any linear space. 

Recall that an n x n matrix A is said to be diagonalizable 

if there exists an n • n diagonal matrix D and an n • n 

invertible matrix U such that 

A = U D U  -1 .  

We may observe that,  if D is a diagonal matrix, say wi th  
diagonal entries A1, . . . ,  An, and U is an invertible matr ix  
with columns u l , . . . ,  un, then the relation A = UDU -~, 
i.e., AU = UD, is same as 

Auj  = Ajuj, j C { 1 , . . . , n } .  

Thus, if A is diagonalizable, then A has n linearly in- 
dependent  eigenvectors. Conversely, if A has n linearly 
independent  eigenvectors ul, �9 �9 un and if A1, �9 �9 An are 
the associated eigenvalues, possibly repeated, then tak- 
ing U with columns u l , . . . , u n ,  and D as the  diago- 
nal matr ix with diagonal entries A1,-.- ,An, we have 
AU = UD, i.e., A = U D U  -1. In fact, D is the  matr ix  
representation of A with respect to the basis consisting 
of columns of U. 

From the above discussion we have the following char- 
acterization for diagonalizability of A: 
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An n x n matrix  A is diagonalizable i f  and 
only i f  A has n linearly independent eigen- 
vectors. 
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A matrix is 
diagonalizable if and 

only if ascent of 
every eigenvalue is 

one, that is, if and 
only if for each 

eigenvalue, the 
geometric multiplicity 

and the algebraic 

multiplicity are equal. 

32 

In view of the  above characterization, the question of 
diagonalizability can be posed for any linear transfor- 
mation on a finite dimensional vector space. 

Now let us look at the issue in a slightly different man- 
ner. Suppose A1,-.-,  Ak are the distinct eigenvalues of 
an n • n matr ix  A. By the above discussion, we can 
infer that  A is diagonalizable if and only if for each 
j = 1 , . . . ,  k, there are linearly independent  eigenvectors 
uj,1,. . . ,  uj,,,~ of A associated with Aj such tha t  

nl  + . . .  + nk --- n, 

and in that  case, columns of U are the  vectors 

U l , 1 , . . . , U l , n l , - . . , U k , l , . . .  ,~tk,nk, 

and diagonal elements of D are A1,. - . ,  Ak with each Aj 
repeated ny times. 

Such a nice situation does not prevail if one of the eigen- 
values, say Aj, is defective, in the sense tha t  nj is not  
large enough so as to satisfy the relation nl+.. .~-nk : n. 
A simple example of a matrix which is not diagonaliz- 
able is the 2 • 2 matrix 

. 4 =  0 1 " 

It is easily seen that  )~ = 1 is the  only eigenvalue of .,4_ 
and there is only one linearly independent  eigenvector 
associated with this eigenvalue. In this example, )~ = 1 
is a defective eigenvalue of A. 

In this article we define certain quantities called geo- 
metric multiplicity, algebraic multiplicity and ascent of 
an eigenvalue, and then prove a generalized form of the  
diagonalization theorem which, in particular, show tha t  
a matr ix is diagonalizable if and only if ascent of every 
eigenvalue is one, that  is, if and only if for each eigen- 
value, the geometric multiplicity and the algebraic mul- 
tiplicity are equal. We shall do this in the context of 
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a linear t ransformat ion on a finite dimensional vector 
space. 

First  some definitions: 

Let X be a finite dimensional  vector space over the field 
C of complex numbers,  and let T : X -+ X be a linear 
t ransformation,  i.e., 

T(o~x + flY) : o~T(x) + jgT(y) 

for every x, y E X and for every ct, t3 E C. An element 
,k E C is said to be an eigenvalue of T if there exists a 
nonzero x E X such tha t  

T x  = /~X, 

and in that  case x is called an eigenvector of T. (Here, 
and below, for x E X ,  we may also use the notat ion Tx  
for the element T(x)  in X.)  

Two of the impor tan t  subspaces associated with T: X --+ 
X are its kernel and its range, defined by 

ker(T) := {x E X :  Tx = 0}, 

range(T)  := { T x : x  E X},  

respectively. 

A subspace M of X is said to be invamanf under T if 
Tx  E M tbr every x E M.  

Clearly, kernel and range of T are invariant under T. 

The  following definition is motivated by our discussion 
on diagonalizablity of a matrix: The  linear transforma- 
t ion T : X --> X is said to be diagonalizable if X has a 
basis consisting of eigenvectors of T. 

Clearly, )~ E C is an eigenvalue of T if and only if the 
t ransformat ion T - )ff is not injective, if and only if the 
kernel of T - A I ,  is not  the zero space. Thus, eigenvectors 
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of T corresponding to an eigenvalue A are the nonzero 
elements of ker(T - )if). 

The subspace ker(T - AI) is called the  eigenspace of T 
corresponding to the eigenvalue )~, and the dimension 
of the eigenspace ker(T - ,~I) is called the  geometric 
multiplicity of A. 

If ,~l, .- . ,)~k are the distinct eigenvalues of T, then  it 
can be easily seen tha t  T is diagonalizable if and only if 

dim X = dim ker(T -/~1/r) -}- . . . q- dim ker(T - )~kI). 

This is equivalent to saying tha t  

X = k e r ( T - / ~ 1 I )  + . . .  + k e r ( T -  AkI) 

with 

k e r ( T -  AiI) Nker (T  - .~jI) = {0} for i ~ j .  

For subsets M, N of X,  we used the  notat ion M + N for 
the set 

{ x + y : x C M ,  yCN}.  

Now suppose tha t  A C C is an eigenvalue of T, and for 
j = 1, 2 , . . . ,  let us denote 

K s = ker(T - / ~ I )  j. 

34 

Then we observe the following �9 

(i) {0} C_ K1 C_ K2. . .  C_ X. 

(ii) There exists j such tha t  Kj = Kj+I  

(iii) If Kj = Kj+I for some j ,  then  K s = Kj+i for every 
i = 1,2, . . . .  

Clearly (i) follows from the definition of Kj ' s ,  and (ii) is 
a consequence of the finite dimensionali ty of X.  To see 
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(iii), suppose Kj = Kj+ 1 for some j .  Now if x e Kj+2, 
i.e., if ( T -  AI)J+2x = 0, then we have ( T - ) ~ I ) x  C 
Kj+I = Kj, so tha t  (T - M)J+lx = 0, i.e., x C Ka.+l. 
Thus we have proved that  Kj+2 C_/(j+~. Now using (i), 
we have Kj+2 = Kj+I. Continuing the  above argument, 
we obtain Ky = Kj+i for every i C {1 ,2 , . . . } .  

From the above observations, it is obvious that  there 
exists a positive integer g such that  

ME_ 1 r  ~- Kg+i for every i = 1, 2, . . . .  

This positive integer g is called the ascent of ,~, the sub- 
space Ke is called the generalized eigenspace and ele- 
ments  of Ke are called the generalized eigenveetors of T 
corresponding to the eigenvalue ,~. The dimension of K~ 
is called the algebraic multiplicity of ,~. 

Let g~, ga and m~, respectively, be the geometric multi- 
plicity, ascent and the algebraic multiplicity Of an eigen- 
value ,~ of T. Then, from the observations (i)-(iii) above, 
it is clear that  

g ~ < m ~  and ga_<m~. 

Also, we observe that  

g ~ = m a  if and only if g a = l .  

In fact, we have the following result ([1]): 

T h e o r e m  1 Suppose )~ is an eigenvalue of a linear trans- 
formation T �9 X --+ X with geometric multiplicity 9, 
algebraic multiplicity m, and ascent ~. Then 

g + g - l < m < g g .  

P r o o f .  For each i C N, let Kg = k e r ( T - M )  i and 
9i = dimKi.  Then we know that  

K~ c K2 c . . .  c Ke = K~+j V j  e N. 
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From this, it is clear that  

gl -~- i - 1 < gi V i E { 1 , . . . ,  e}. 

In particular, since gl = g and g~ = m, we have g + t? + 
1 <_ m. Next, we prove 

gi ~_ gi-1 q- gl.  

Once, this is proved, it follows tha t  g2 

g3 <_ g2 + gl ~ 3g, etc., m = ge _< gg- 

For the proof of (1), write Ki as 

(1) 

_< 2gl = 2g, 

Hence, it is enough to shov~ that  d im Y~ _< g. So, suppose 
that  U l , . . . ,  uk be a basis of Y~. Then  we notice that  ( T -  
AI ) i - lUl , . . .  , ( T -  AI)i-lUk are linearly independent.  In- 
deed, if a l , . . . ,  ak are scalars such that Ejk__l o ~ j ( T  - 

AI)i-luj = 0, then, we have Y'~Y=I ayUy C Ki-1. This 

happens only if ~Y=I aju5 = 0, since ~jk=l ajuj e Yi. 
Thus, it follows that  aj  = 0 for j = 1 , . . . , k .  Thus, 
( T - ) , I ) i - l u l , . . . ,  ( T -  AI)~-luk are linearly indepen- 
dent. Also, since uj E Ki, ( T -  AI)i-luj E K1 for each 
j = 1 , . . . ,  k. Thus, we have proved tha t  k < g. 
This completes the proof. [] 

Our a t tempt  is to prove that,  if A1,.-- ,  ),k are the  dis- 
tinct eigenvalues of T with algebraic multiplicities m l , . . . ,  
mk and ascents g l , - - . ,  G respectively, then 

ml  + . . .  + m k  = dimX,  (2) 

so that  T is diagonalizable if and only if fj = 1 for every 
j = 1 , . . . ,  k. For showing this, it is enough to prove 
that  

with 

k e r ( T  - n k e r ( T  - = {0} for  i # j .  

' ~ ~  RESONANCE J December 2002 
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All this discussion would be in vain if T has no eigen- 

values. So first let us prove 

T h e o r e m  2 E v e r y  l inear  t r a n s f o r m a t i o n  T : X -+ X 

has  at least one  e igenvalue .  

One can prove the 

existence of an 

eigenvalue without 

using the concept 

of the determinant. 

Usually this result is proved by invoking the concept of 
deteT~minant of a linear t ransformation or matrix. The 
following simple and elegant proof which does not de- 
pend  on the concept  of determinant  is due to Sheldon 

Axler [2]. 

P r o o f  o f  T h e o r e m  2. Suppose d i m X  = n, and x c X 
is a nonzero element.  Since the set { x , T ( x ) , . . . ,  Tn(x)} 
consisting of n + 1 elements is linearly dependent ,  there 
exists complex numbers  a0, a l , .  �9 �9 an with  at least one 
of t hem nonzero, such tha t  

ol0x + oqT(x) + . . .  + (XnTn(x) = O. 

Writ ing 

p ( t )  = a o + a l t + .  . .+a,~t  '~, p ( T )  = a o I + a l T + .  . . + a n t  ~, 

we have 
p(T)(x)  = 0. 

Suppose k = max{/  : cq ~ 0}. Then,  by Fundamenta l  
Theorem of Algebra, there exists A1,--- ,  Ak in C such 
tha t  

p ( t )  = ~ k ( t  -- ~1) . . . ( t  -- ~k) .  

Thus  we see tha t  

(T - / ~ 1 1 ) . . .  ( T  - -  ) ~ k I ) ( X )  = p ( T ) ( x )  : O. 

The above relation shows tha t  at least one of T - ) q I , . . . ,  

T -  l k I  is not injective, so tha t  at least one of ~1, �9 �9 -, lk  
is an eigenvalue of T. [] 

As a first step towards the proof of (2) we prove: 
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T h e o r e m  3 Let ,~ be an eigenvalue of T with ascent 2. 
Let K = ker(T - M)  e and R = range(T - ~I)  e. Then 

(i) 

(ii) 

(iii) 

(iv) 

P r o o f .  It is easy to see tha t  

K and R are invariant under T, and 

X = K + R with K N R  = (0}. 

X is spanned by generalized eigenvectors of T.  

A is the only eigenvlaue of TIK. 

T ( T -   I)J = ( T -   I)JT Vj e N. 

Hence, if x C K ,  then 

( T -  AI)~(Tx) = T ( T -  AI)~(x) = O, 

so tha t  T x  E K showing tha t  K is invariant under  T. 
To see tha t  R is invariant under  T, let y C R, and let 
x E X such tha t  y = (T - AI)~x. Then  we have 

Ty = T ( T -  AI)~(x) = ( T -  M)~(Tx) e R, 

showing tha t  R is invariant under  T. Thus, proofs of (i) 
and (ii) are over. 

Next suppose tha t  x C K M R. Then  we have 

( T -  )~I)~x=O and x =  ( T -  ~I)eu 

for some u C X,  so tha t  

0 = ( T -  M)ex = ( T -  M)2eu. 

Thus u c k e r ( T -  )~I) 2e = k e r ( T -  M )  e. Hence x = 
( T - A I ) ~ u  = 0. Thus we have proved tha t  K A R  = {0}. 
This, together  with the relation d i m X  = d i m K  + d i m R  
implies tha t  X = K + R, proving (ii). 
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We show (iii) by induction on the dimension of X. Clearly 
the result is true if n = 1. Next suppose n > 1 and that  
the result is true for all vector spaces of dimension less 
than n. Since K ~ {0}, we see from (ii) that  R :fi X,  
so that  dimR < n, and by induction assumption R is 
spanned by the generalized eigenvectors of TJR. Since 
generalized eigenvectors of TIR are generalized eigenvec- 
tors of T as well, and elements of K are already gener- 
alized eigenvectors of T, it follows that  X is spanned by 
the generalized eigenvectors of T. 

To see (iv), first observe by Theorem 2 that  TJK has at 
least one eigenvalue. Suppose # is an eigenvalue of T[K 
and x # 0 is a corresponding eigenvector. Then we have 
( T -  AI)x = ( # -  A)x so that 

o = ( T -  = 

This shows that  # = A, as desired. [] 

T h e o r e m  4 If A and # are distinct eigenvalues of T 
with corresponding ascents gx and ~ respectively, then 

k e r ( T -  AI) e~ N k e r ( T -  #I)  e" = {0}. 

P roof .  Suppose A and # are distinct eigenvalues of T 
with corresponding ascents g~ and l , ,  respectively. Let 
us denote ~?~ by 6, and 

K := ker(T - AI) e, R := range(T - AI) e. 

Since, by Theorem 3 (ii), K N R = {0}, it is enough to 
show that 

k e r ( T -  #I) e" C_ R. 

We shall, in fact, show by induction that  

k e r ( T - # I )  jC_R,  j = 1 , 2 , . . .  (3). 

For proving (3), first let j = I and a C ke r (T-# I ) .  Since 
X = K +  R, by Theorem 3 (ii), there exists al  E K and 
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x2 C R such that  x = Xl + x2. Now, by Theorem 3(i), 
K and R are invariant under  T, so that  (T - #I)x  = 
0 implies (T - #I)Xl = 0 and ( T -  #I)x2 = 0. In 
particular, if Xl ~ 0, then tt is an eigenvalue of T I K  , 

a contradiction to the fact (ref. Theo lem 3(iv)) tha t  
is the only eigenvalue of TIK. Hence Xl = 0, so tha t  
x = x 2  ER.  

Next suppose tha t  the result (3) is true for some j > 1. 
Let x C ker (T-#I )  j+l, and xl E K and x2 E R are such 
that  x = Xl + x2. Again, using the  invariance of K and 
R under T, ( T -  I t I ) J+ lx l  -~ 0 and ( T -  I t I )J+lx2  = O. 
In particular, using the induction hypothesis, we have 

( T -  #I)xl  C_ K •ker (T -  #I) j C_ K ~ R =  {0}. 

Since A is the  only eigenvalue of T I K  , it then follows tha t  
xl = 0, and hence x = x2 C R. Thus (3) is proved, and 
the proof of the  theorem is complete. [] 

Now the following theorem is obvious from Theorem 3 
(iii) and Theorem 4. 

T h e o r e m  5 Let A1,. . . ,  Ak be distinct eigenvalues of T 
with ascents g l , - . . , gk  respectively. Then 

with 

X = k e r ( T -  AII) el + . . .  + k e r ( T -  AkI) ek 

ker(T - A i I )  t~ N ker(T - AjI) ej = {0} for i ~ j. 

In particular, 

d imX = d i m [ k e r ( T -  AlI) el] + . . .  + d i m [ k e r ( T -  AkI)ek]. 

Note that  the  above theorem includes the relation (2). 

As a corollary to the above theorem we have 
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T h e o r e m  6 Let h i , . . . ,  hk be distinct eigenvalues o f T  
with ascents ~1,. . . ,  gk respectively. Then T is diagonal- 
izable if and only if gj = 1 for every j c {1 , . . . ,  k}. 

Finally we would like to mention a Class of linear trans- 
formations on finite dimensional inner product spaces, 
the so called self-adjoint operators, which can be diago- 
nalized. 

Suppose that  X is a finite dimensional inner product 
space with (positive definite, hermitian) inner product 
(.,-}. Recall that  a linear transformation transformation 
T : X -+ X is called a self-adjoint operator if 

(Tx, y) = (x, Ty} Vx, y C X.  
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Suppose T �9 X --+ X is a self-adjoint operator. If x E X 
and h c C are such that  Tx  = hx, then we have 

h<x,x> : <hx,x> : <Tx, x ) :  <x, Tx> : <x, hx> : i<x,x), 

where ] denotes the complex conjugate of h. From this 
it follows that every eigenvalue of T is a real number. 
We also obtain that  if x 6 ker(T - h / )  2, then 

< ( T -  hi)x,  ( T -  hi)x> : < ( T -  hI)2x, x> : O. 

so that  k e r ( T -  h i )  2 C k e r ( T -  M). We already know 
that  k e r ( T -  h i )  C k e r ( T -  h i )  2. Hence, k e r ( T -  h i )  2 = 
k e r ( T - h i ) ,  and consequently, ascent of every eigenvalue 
of T is 1. Thus we have proved the following diagonal- 
ization theorem for self-adjoint operators. 

T h e o r e m  7 Suppose T : X --+ X is a self-adjoint op- 
erator on a finite dimensional i'nner product space X .  
Then every eigenvalue of T is real and has ascent 1. 
In particular, if hi, : . . ,  hk are distinct eigenvalues of T, 
then 

X = k e r ( T -  h l I )  + . . .  + k e r ( T -  hkI). 
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