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ADJOINT OF UNBOUNDED OPERATORS ON BANACH SPACES

M.T. NAIR

Banach spaces considered below are over the field K which is either R or C. Let X

be a Banach space. following Kato [2], X∗ denotes the linear space of all continuous

conjugate linear functionals on X. We shall denote

〈f, x〉 := f(x), x ∈ X, f ∈ X∗.

On X∗,

f 7→ ‖f‖ := sup
‖x‖=1

|〈f, x〉|

defines a norm on X∗.

Definition 1. The space X∗ is called the adjoint space of X.

Note that if K = R, then X∗ coincides with the dual space X ′. It can be shown,

analogues to the case of X ′, that X∗ is a Banach space. Let X and Y be Banach

spaces, and A : D(A) ⊆ X → Y be a densely defined linear operator. Now, we st out

to define adjoint of A as in Kato [2].

Theorem 2. There exists a linear operator A∗ : D(A∗) ⊆ Y ∗ → X∗ such that

〈f, Ax〉 = 〈A∗f, x〉 ∀x ∈ D(A), f ∈ D(A∗)

and for any other linear operator B : D(B) ⊆ Y ∗ → X∗ satisfying

〈f, Ax〉 = 〈Bf, x〉 ∀x ∈ D(A), f ∈ D(B),

D(B) ⊆ D(A∗) and B is a restriction of A∗.

Proof. Suppose D(A) is dense in X. Let

S := {f ∈ Y ∗ : x 7→ 〈f, Ax〉 continuous on D(A)}.

For f ∈ S, define gf : D(A)→ K by

(gf )(x) = 〈f, Ax〉 ∀x ∈ D(A).

Since D(A) is dense in X, gf has a unique continuous conjugate linear extension to all

of X, preserving the norm. Let us denote this extension of gf by g̃f . Taking D(A∗) = S,

define A∗ : D(A∗)→ X∗ by A∗f = g̃f . It can be seen that B is a linear operator, and

it satisfies

〈A∗f, x〉 = 〈f, Ax〉 ∀x ∈ D(A), f ∈ D(A∗).
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Now, suppose B : D(B) ⊆ Y ∗ → X∗ is another linear operator such that

〈Bf, x〉 = 〈f, Ax〉 ∀x ∈ D(A), f ∈ D(B).

Note that if f ∈ D(B), then

|〈f, Ax〉| = |〈Bf, x〉| ≤ ‖Bf‖ ‖x‖ ∀x ∈ D(A),

so that x 7→ 〈f, Ax〉 is continuous on D(A). Thus, D(B) ⊆ S = D(A∗). Further,

f ∈ D(B) ⊆ D(A∗) implies

〈Bf, x〉 = 〈f, Ax〉 = 〈A∗f, x〉 ∀x ∈ D(A).

Hence, Bf = A∗f for all f ∈ D(B), showing that B is a restriction of A∗. �

Definition 3. Let A : D(A) ⊆ X → Y be a densely defined linear operator. The

operator A∗ defined in Theorem 2 is called the adjoint of A.

Corollary 4. If D(A) = X and A is a bounded operator, then A∗ : Y ∗ → X∗ is the

operator which satisfies

(A∗f)(x) = f(Ax) ∀ f ∈ Y ∗, x ∈ X,

and A∗ is a bounded linear operator with ‖A∗‖ = ‖A‖.

Theorem 5. Suppose A : D(A) ⊆ X → Y is a densely defined operator. Then A∗ is

a closed operator.

Proof. Let (fn) in D(A∗) such that fn → f ∈ Y ∗ and A∗fn → g ∈ X∗. Since

〈A∗fn, x〉 = 〈fn, Ax〉 ∀x ∈ D(A), n ∈ N,

we have

〈g, x〉 = 〈f, Ax〉 ∀x ∈ D(A).

Hence, g ∈ D(A∗) and A∗f = g. �

The following example shows that the domain of the adjoint need not be dense even

if A is a closed operator.

Example 6. Consider the Banach space `1 and

D := {(αn) ∈ `1 : (nαn) ∈ `1}.

Define

A(αn) = (nαn), (αn) ∈ D.
Then A is a closed densely define operator: Since c00 ⊆ D, it follows that D is dense

in `1. To see that A is a closed operator, note first that A is surjective and bounded

below:

(βn) ∈ `1 =⇒ (αn) = (βn/n) ∈ `1 ∈ D, A(αn) = (βn).,
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‖A(αn)‖1 =
∑
n

n|αn| ≥
∑
n

|αn| ≥ ‖(αn)‖1.

Hence, A−1 is continuous so that it is closed, and hence its inverse, which is A, is also

a closed operator.

But, the domain of A∗ is not dense: For (βn) ∈ `∞,

(βn) ∈ D(A∗) ⇐⇒ ∃(γn) ∈ `1 such that 〈(γn), (αn)〉 = 〈(βn), A(αn)〉 ∀ (αn) ∈ D.

Note that

〈(βn), A(αn)〉 = 〈(βn), (nαn)〉 =
∑
n

nαnβn.

Thus,

〈(γn), (αn)〉 = 〈(βn), A(αn)〉 ⇐⇒
∑
n

αnγn =
∑
n

nαnβn.

Hence, taking (αn) = ej,

(βn) ∈ D(A∗) =⇒ γj = jβj ∀ j ∈ N.

Thus,

D(A∗) ⊆ {(βn) ∈ `∞ : (nβn) ∈ `1} ⊆ c0.

Hence, D(A∗) is not dense.

The following is a modified form of a theorem in Kato ([2], Theorem 5.29).

Theorem 7. Suppose A : D(A) ⊆ X → Y is a closed densely defined operator and Y

is a reflexive space. Then A∗ : D(A∗) ⊆ Y ∗ → X∗ is a closed densely defined operator.

Proof. By Theorem 1, A∗ is a closed operator. Hence it remains to proof that D(A∗)

is dense. Suppose D(A∗) is not dense in Y ∗. Then there exists ϕ ∈ Y ∗∗ such that

‖ϕ‖ = 1, ϕ(f) = 0 ∀ f ∈ D(A∗).

Since Y is reflexive, there exists y0 ∈ Y such that

‖y0‖ = ‖ϕ‖, ϕ(f) = f(y0) ∀ f ∈ Y ∗.

In particular,

‖y0‖ = 1, f(y0) = 0 ∀ f ∈ D(A∗).

Now, (0, y0) 6∈ G(A). Since G(A) is a closed subspace of X × Y, ∃F ∈ (X × Y )∗ such

that F (0, y0) 6= 0 and F (x,Ax) = 0 for all x ∈ D(A). Let f(y) = F (0, y). Then f ∈ Y ∗
and for x ∈ D(A),

〈f, Ax〉 = f(Ax) = F (0, Ax) = F (x,Ax)− F (x, 0) = −F (x, 0) = 〈g, x〉,

where g dfined by g(x) = −F (x, 0) belongs to X∗. Hence, f ∈ D(A∗). But, then by

(i), f(y0) = 0. This is a contradiction since f(y0) = F (0, y0) 6= 0. �
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It can be easily proved (see, eg. Nair [1]) that

• If A : D(A) ⊆ X → Y is a closed operator which is also continuous, then D(A)

is closed in X.

Hence, together with closed graph theorem, we obtain

Theorem 8. Suppose A : D(A) ⊆ X → Y is a closed densely defined operator. Then A

is continuous if and only if D(A) = X, and in that case D(A∗) = Y ∗ and A∗ : Y ∗ → X∗

is continuous.

Remark 9. (i) Analogous definitions and results hold if we take dual spaces in place

of adjoint spaces.

(ii) Suppose X is a Hilbert space. For f ∈ X∗, let f̃(x) = f(x). Then we see that

f̃ ∈ X ′, and hence by Riesz representation theorem, there exists a unique u ∈ X such

that

f̃(x) = 〈x, u〉X ∀x ∈ X.
Thus,

〈f, x〉 = f(x) = 〈u, x〉X ∀x ∈ X.
Hence, for every f ∈ X∗, there exists a unique zf ∈ X such that 〈f, x〉 = 〈zf , x〉X for

all x ∈ X, and the map f 7→ zf is a surjective linear isometry.

Suppose A : D(A) ⊆ X → Y is a densely defined operator between Hilbert spaces

X and Y . Then, in view of Remark 9 (ii),

〈zA∗f , x〉X = 〈A∗f, x〉 = 〈f, Ax〉 = 〈zf , Ax〉Y ∀x ∈ D(A), f ∈ D(A∗).

For u ∈ Y , let fu ∈ Y ∗ be defined by fu(y) = 〈u, y〉, y ∈ Y . Then zfu = u. Thus, we

obtain

〈u,Ax〉Y = 〈zfu , Ax〉Y = 〈fu, Ax〉 = 〈A∗fu, x〉 = 〈zA∗fu , x〉X
for all u ∈ Y such that fu ∈ D(A∗) and x ∈ D(A). Let us define a linear operator

B : D(B) ⊆ Y → X such that

D(B) = {u ∈ Y : fu ∈ D(A∗)},

and

Bu = zA∗fu .

Note that

{u ∈ Y : fu ∈ D(A∗)} = {u ∈ Y : x 7→ 〈fu, Ax〉 continuous}
= {u ∈ Y : x 7→ 〈u,Ax〉Y continuous}
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Thus,

D(B) = {u ∈ Y : x 7→ 〈u,Ax〉Y continuous}
and

〈u,Ax〉Y = 〈Bu, x〉X ∀x ∈ D(A), u ∈ D(B).

Definition 10. If X and Y are Hilbert spaces, then the operator B : D(B) ⊆ Y → X

with

D(B) = {u ∈ Y : x 7→ 〈u,Ax〉Y continuous}
and

〈u,Ax〉Y = 〈Bu, x〉X ∀x ∈ D(A), u ∈ D(B)

is called the adjoint of A.

If we denote by JX : X∗ → X the map which takes f ∈ X∗ to its Riesz representer

zf , then we have

Bu = zA∗fu = JX(A∗fu) = JXA
∗J−1Y u ∀u ∈ D(B).

Thus

B = JXA
∗J−1Y on D(B),

A∗ = J−1X BJY on D(A∗).

In view of the above observations, (abusing the notation) we use the notation A∗ for

B also.
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