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ADJOINT OF UNBOUNDED OPERATORS ON BANACH SPACES

M.T. NAIR

Banach spaces considered below are over the field K which is either R or C. Let X
be a Banach space. following Kato [2], X* denotes the linear space of all continuous
conjugate linear functionals on X. We shall denote

(fix):=f(x), ze€X, feX"
On X*,
f=lfll:= sup [(f,z)]

defines a norm on X*.

Definition 1. The space X* is called the adjoint space of X.

Note that if K = R, then X* coincides with the dual space X’. It can be shown,
analogues to the case of X', that X* is a Banach space. Let X and Y be Banach
spaces, and A : D(A) C X — Y be a densely defined linear operator. Now, we st out
to define adjoint of A as in Kato [2].

Theorem 2. There exists a linear operator A* : D(A*) CY* — X* such that
(f,Ax) = (A" f,x) Vo e D(A), f e D(A")

and for any other linear operator B : D(B) C Y* — X* satisfying
(f,Ax) = (Bf,x) Ve D(A), feD(B),

D(B) C D(A*) and B is a restriction of A*.

Proof. Suppose D(A) is dense in X. Let
S:={feY": z— (f, Azx) continuous on D(A)}.
For f € S, define gy : D(A) — K by
(97)(x) = {f, Az) Vz e D(A).
Since D(A) is dense in X, g has a unique continuous conjugate linear extension to all
of X, preserving the norm. Let us denote this extension of g; by g;. Taking D(A*) =S,
define A* : D(A*) — X* by A*f = gs. It can be seen that B is a linear operator, and

it satisfies

(A*f,z) = (f, Az) Vo D(A), f € D(A").
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Now, suppose B : D(B) C Y* — X* is another linear operator such that
(Bf,x) = (f,Ax) Yz € D(A), f € D(B).
Note that if f € D(B), then
|(f, Ax)| = (Bf, o) < [|Bf|[ ||z V2 € D(A),

so that  +— (f, Ax) is continuous on D(A). Thus, D(B) C S = D(A*). Further,
f € D(B) C D(A*) implies

(Bf,a) = (f, Az) = (A"f,) V€ D(A).
Hence, Bf = A*f for all f € D(B), showing that B is a restriction of A*. O

Definition 3. Let A : D(A) € X — Y be a densely defined linear operator. The
operator A* defined in Theorem 2 is called the adjoint of A.

Corollary 4. If D(A) = X and A is a bounded operator, then A* : Y* — X* is the
operator which satisfies

(A"f)(x) = f(Az) VfeY' zelX,
and A* is a bounded linear operator with ||A*| = || A]|.

Theorem 5. Suppose A : D(A) C X — Y is a densely defined operator. Then A* is
a closed operator.

Proof. Let (f,) in D(A*) such that f,, — f € Y* and A*f,, — g € X*. Since
(A" fn, ) = (fn,Ax) Vw € D(A),neN,
we have
(9.%) = (f,Az) V€ D(A).
Hence, g € D(A*) and A*f = g. 0

The following example shows that the domain of the adjoint need not be dense even
if A is a closed operator.

Example 6. Consider the Banach space ¢! and
D = {(a,) € ' : (nay,) € '}
Define
Alay) = (nay,), (o) € D.
Then A is a closed densely define operator: Since cog C D, it follows that D is dense

in ¢'. To see that A is a closed operator, note first that A is surjective and bounded
below:

(Bn) €01 = () = (Bn/n) €' € D, Ala,) = (Bn)-,
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1A 1 =D nlaw| =Y feal = [l

Hence, A~! is continuous so that it is closed, and hence its inverse, which is A, is also
a closed operator.

But, the domain of A* is not dense: For (5,) € £>°,
(Bn) € D(A*) <= 3(v,) € £" such that ((71,), () = ((Bn), Alaw)) ¥V (an) € D.
Note that

((B2): Aln)) = ((Ba), (n0wn)) = Y 1.

Thus,
(), (@) = {(Bu) Al@n)) == 3 aurn = 3 naf.

n n

Hence, taking (o) = e;,
Thus,

D(A*) C{(B,) € £~ : (nB,) € £'} C co.
Hence, D(A*) is not dense.

The following is a modified form of a theorem in Kato ([2], Theorem 5.29).

Theorem 7. Suppose A: D(A) C X — Y is a closed densely defined operator and 'Y
is a reflexive space. Then A* : D(A*) CY* — X* is a closed densely defined operator.

Proof. By Theorem 1, A* is a closed operator. Hence it remains to proof that D(A*)
is dense. Suppose D(A*) is not dense in Y*. Then there exists ¢ € Y** such that

lell =1, @(f)=0 VfeDA).

Since Y is reflexive, there exists yy € Y such that

lgoll = llell,  (f) = flyo) VfeY™
In particular,
lyoll =1, f(yo) =0 V[ e D(AY).
Now, (0,y0) & G(A). Since G(A) is a closed subspace of X x Y, IF € (X x Y)* such
that F'(0,y0) # 0 and F(z, Ax) =0 for all z € D(A). Let f(y) = F(0,y). Then f € Y*
and for z € D(A),
(f,Az) = f(Az) = F(0, Az) = F(x, Az) — F(2,0) = —F(z,0) = (g, x),

where ¢ dfined by g(x) = —F(x,0) belongs to X*. Hence, f € D(A*). But, then by
(i), f(yo) = 0. This is a contradiction since f(yo) = F(0,yo) # 0. O
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It can be easily proved (see, eg. Nair [1]) that

o If A: D(A) C X — Y is a closed operator which is also continuous, then D(A)
is closed in X.

Hence, together with closed graph theorem, we obtain

Theorem 8. Suppose A: D(A) C X — Y is a closed densely defined operator. Then A
is continuous if and only if D(A) = X, and in that case D(A*) = Y* and A* : Y* — X*
15 continuous.

Remark 9. (i) Analogous definitions and results hold if we take dual spaces in place
of adjoint spaces.

(ii) Suppose X is a Hilbert space. For f € X*, let f(x) = f(z). Then we see that
f € X', and hence by Riesz representation theorem, there exists a unique u € X such
that

flz) =(r,u)x VzelX.
Thus,
(fox) = f(x) = (u,z)x VaelX.

Hence, for every f € X*, there exists a unique zy € X such that (f,z) = (zf,z)x for
all x € X, and the map f > zy is a surjective linear isometry.

Suppose A : D(A) € X — Y is a densely defined operator between Hilbert spaces
X and Y. Then, in view of Remark 9 (ii),

(zarp,x)x = (A" f,x) = (f, Az) = (25, Az)y Va e D(A), f € DA").

Foru e Y, let f, € Y* be defined by f.(y) = (u,y), y € Y. Then z5, = u. Thus, we
obtain

(u, Az)y = (21, Ax)y = (fu, Ax) = (A" fu, 2) = (241, T)x
for all u € Y such that f, € D(A*) and © € D(A). Let us define a linear operator
B: D(B) CY — X such that

D(B) ={ueY: f.€ DA},
and
Bu = 24+, .
Note that
{ueY: f,e DA")} = {ueY: xw— (f,, Az) continuous}

= {ueY: xw— (u,Az)y continuous}
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Thus,
D(B)={u €Y : z+— (u, Ar)y continuous}
and
(u, Az)y = (Bu,z)x Vzx € D(A), u € D(B).
Definition 10. If X and Y are Hilbert spaces, then the operator B: D(B) CY — X
with
D(B)={u €Y : z+— (u, Ar)y continuous}
and
(u, Az)y = (Bu,z)x Vz € D(A), ue D(B)
is called the adjoint of A.

If we denote by Jx : X* — X the map which takes f € X* to its Riesz representer
2f, then we have

Bu = 24+5, = Jx(A*f,) = JxA*Jy'u Vu € D(B).
Thus
B = JxA*J;' on D(B),
A* = J'BJy on D(A").
In view of the above observations, (abusing the notation) we use the notation A* for
B also.
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