Consequences of Coercivity of Operators

M.T.Nair (IIT Madras)

Definition 1. Let \mathcal{D} be a subspace of a Hilbert space \mathcal{H} . A linear operator $A: \mathcal{D} \to \mathcal{H}$ satisfying

$$|\langle Au, u \rangle| \ge \gamma \|u\|^2 \quad \forall \, u \in \mathcal{D}$$

for some $\gamma > 0$ is called a **coercive operator**, and the constant γ in (1) is called a **coefficient of** coercivity.

THEOREM 2. Let \mathcal{D} be a subspace of a Hilbert space \mathcal{H} and $A : \mathcal{D} \to \mathcal{H}$ be a closed linear operator satisfying

$$|\langle Au, u \rangle| \ge \gamma ||u||^2 \quad \forall u \in \mathcal{D}$$
⁽¹⁾

for some $\gamma > 0$. Thus for every $f \in \mathcal{H}$, there exists a unique $u \in \mathcal{D}$ such that

$$Au = f,$$

and in that case

$$\|u\| \le \frac{\|f\|}{\gamma}$$

Proof. By (1) we have

$$\|Au\| \ge \gamma \|u\| \quad \forall u \in \mathcal{D},\tag{2}$$

so that A is injective, $A^{-1}: R(A) \to X$ is continuous and

$$|A^{-1}\| \le \frac{1}{\gamma}.\tag{3}$$

Now, we show that $R(A) = \mathcal{H}$:

Let (u_n) in \mathcal{D} be such that $Au_n \to v$ for some $v \in \mathcal{H}$. Then (Au_n) is a Cauchy sequence so that by (2), (u_n) is also a Cauchy sequence. Let $u \in \mathcal{H}$ be such that $u_n \to u$. Since A is a closed operator,

 $u \in \mathcal{D}$ and Au = v.

Thus, R(A) is closed. Now, using (1), we have

 $u \in R(A)^{\perp} \implies u = 0$

so that $R(A)^{\perp} = \{0\}$. Hence, by Projection Theorem (cf. [1]), R(A) is dense in \mathcal{H} . Since R(A) is already a closed subspace, $R(A) = \mathcal{H}$. Thus A is bijective so that for every $f \in \mathcal{H}$, there exists a unique $u \in \mathcal{D}$ such that Au = f, and in that case, by (3),

$$||u|| = ||A^{-1}f|| \le ||A^{-1}|| \varphi|| \le \frac{||f||}{\gamma}.$$

PROPOSITION 3. Let A be as in Theorem 3. Assume that

$$\langle Au, u \rangle \in \mathbb{R} \quad and \quad \langle Au, u \rangle \ge 0 \quad \forall \, u \in \mathcal{D},$$

 $\langle Au, v \rangle = \langle u, Av \rangle \quad \forall \, u, v \in \mathcal{D}.$ (4)

Then

$$\langle u, v \rangle_1 = \langle Au, v \rangle, \quad u \in \mathcal{D}$$

defines an inner product on \mathcal{D} .

Proof. We observe that for every $u, v, w \in \mathcal{D}$,

- $\langle u, u \rangle_1 = \langle Au, u \rangle \in \mathbb{R}$ and $\langle u, u \rangle_1 \ge 0$ for all $u \in \mathcal{D}$,
- coercivity of A implies $\langle u, u \rangle_1 = 0 \iff u = 0$,
- $\langle u, v \rangle_1 = \langle Au, v \rangle = \langle u, Av \rangle = \overline{\langle Av, u \rangle} = \overline{\langle v, u \rangle_1}.$
- linearity of $u \mapsto \langle Au, v \rangle$ for each $u \in \mathcal{D}$ implies

$$\langle u+v,w\rangle_1 = \langle u,w\rangle_1 + \langle v,w\rangle_1, \quad \langle \alpha u,w\rangle_1 = \alpha \langle u,v\rangle_1.$$

ſ		1	

Let \mathcal{H}_1 be the completion of \mathcal{D} with respect to the norm $\|\cdot\|_1$. In applications, specially in PDEs, the subspace \mathcal{D} is dense in $\mathcal{H}, \mathcal{H}_1 \subseteq \mathcal{H}$ and the inclusion $I_0 : \mathcal{H}_1 \to \mathcal{H}$ is a compact operator. Now, by Theorem 2, we know that A is bijective and $A^{-1} : \mathcal{H} \to \mathcal{H}$ is continuous, satisfying

$$||A^{-1}f|| \le \frac{1}{\gamma}||f|| \quad \forall f \in \mathcal{H}.$$

Note that, for every $f \in \mathcal{H}$,

$$\|A^{-1}f\|_1^2 = \langle A(A^{-1}f), A^{-1}f \rangle = |\langle f, A^{-1}f \rangle| \le \|f\| \, \|A^{-1}f\| \le \frac{1}{\gamma} \|f\|^2.$$

Hence, $A^{-1}: \mathcal{H} \to \mathcal{H}_1$ is continuous. Since the inclusion $I_0: \mathcal{H}_1 \to \mathcal{H}$ is a compact operator, we can conclude that $B = I_0 A^{-1}: \mathcal{H} \to \mathcal{H}$ is a compact operator. Note that

$$Bf = A^{-1}f \quad \forall f \in \mathcal{H}.$$

In view of this, one uses the symbol A^{-1} for the compact operator B also. Using the property (??), we see that A^{-1} is self-adjoint as well.

By spectral theorem, there exists orthonromal sequence (u_n) of vectors in \mathcal{H} and a null sequence (λ_n) of positive real numbers such that

$$A^{-1}f = \sum_{n} \lambda_n \langle f, u_n \rangle u_n, \quad f \in \mathcal{H}.$$

Hence,

$$Au = \sum_{n} \mu_n \langle u, u_n \rangle u_n, \quad u \in \mathcal{D},$$

where $\mu_n = 1/\lambda_n \to \infty$ as $n \to \infty$. Note also that $\lambda_n u_n = A^{-1}u_n \in \mathcal{D}$ so that $u_n \in \mathcal{D}$ for every $n \in \mathbb{N}$.

References

 M.T. Nair, *Functional Analysis: A First Course*, New Delhi: Printice-Hall of India, 2002 (Third Print, PHI Learning, 2010).