

# Department of Mathematics, IIT Madras

## MA 5450: Functional Analysis Assignment Sheet-II

Date: October 5, 2015

1. Let  $X$  be an inner product space. Prove the following:
  - (a) If  $X$  is separable, then every orthonormal set in  $X$  is countable.
  - (b) Converse of (a) is true if  $X$  is a Hilbert space.
2. Let  $X$  be a Hilbert space. Show an orthonormal basis of  $X$  is a Hamel basis if and only if  $X$  is finite dimensional.
3. Let  $X$  be an inner product space and  $P : X \rightarrow X$  be an orthogonal projection, i.e.,  $P$  is a linear operator satisfying  $P^2 = P$  and  $R(P) \perp N(P)$ . Then prove the following:
  - (a)  $P$  is a bounded linear operator with  $\|P\| = 1$ .
  - (b)  $\langle Px, y \rangle = \langle x, Py \rangle \forall x, y \in X$ .
  - (c)  $\|x - Px\| = \inf_{v \in R(P)} \|x - v\|$ .
4. Let  $X$  be an inner product space and let  $E = \{u_1, u_2, \dots\}$  be a denumerable orthonormal set. Prove the following.
  - (a) For every  $x \in X$ , the sequence  $(\langle x, u_1 \rangle, \langle x, u_2 \rangle, \dots)$  belongs to  $\ell^2$ .
  - (b) The map  $x \mapsto (\langle x, u_1 \rangle, \langle x, u_2 \rangle, \dots)$  from  $X$  to  $\ell^2$  is injective if and only if  $E$  is an orthonormal basis.
  - (c) For each  $n \in \mathbb{N}$ , the map  $P_n : X \rightarrow X$  defined by  $P_n x = \sum_{j=1}^n \langle x, u_j \rangle u_j$ ,  $x \in X$ , is an orthogonal projection.
  - (d) If  $X$  is a Hilbert space, then for each  $x \in X$ , the series  $\sum_{j=1}^{\infty} \langle x, u_j \rangle u_j$  converges in  $X$  and the map  $P : X \rightarrow X$  defined by  $Px = \sum_{j=1}^{\infty} \langle x, u_j \rangle u_j$ ,  $x \in X$ , is an orthogonal projection and  $R(P) = \overline{\text{span}(E)}$ .
5. Let  $p, r \in [1, \infty]$  with  $p \leq r$ . Prove the following:
  - (a)  $\ell^p$  is a dense subspace of  $\ell^r$ .
  - (b) The inclusion operator  $I : \ell^p \rightarrow \ell^r$  is a bounded linear operator.
  - (c) The inclusion operator  $I : \ell^r \rightarrow \ell^p$  is a not a bounded linear operator.

6. For  $1 \leq p \leq \infty$ , let  $X_p := C[a, b]$  with  $\|\cdot\|_p$ . Let  $p, r \in [1, \infty]$  with  $p \leq r$ . Prove the following:

- (a) The identity operator  $I : X_r \rightarrow X_p$  is a bounded linear operator.
- (b) The identity operator  $I : X_p \rightarrow X_r$  is a not a bounded linear operator.

7. For  $1 \leq p \leq \infty$ , let  $X_p := C[a, b]$  with  $\|\cdot\|_p$ . Let  $k(\cdot, \cdot) \in C([a, b] \times [a, b])$ , and for  $x \in C[a, b]$  let  $(Ax)(s) = \int_a^b k(s, t)x(t)dt$ ,  $s \in [a, b]$ . Prove the following:

- (a) The map  $A : X_\infty \rightarrow X_\infty$  is a bounded linear operator and  $\|A\| \leq \sup_{s \in [a, b]} \int_a^b |k(s, t)|dt$ .
- (b) For any  $p, r \in [1, \infty]$ ,  $A : X_p \rightarrow X_r$  is a bounded linear operator

8. Let  $u \in C[a, b]$  and  $A : C[a, b] \rightarrow C[a, b]$  be defined by  $(Ax)(t) = u(t)x(t)$  for  $t \in [a, b]$ ,  $x \in C[a, b]$ . Prove that  $A$  is a bounded linear operator w.r.t. the norm  $\|\cdot\|_\infty$  on  $C[a, b]$ , and  $\|A\| = \|u\|_\infty$ .

9. Let  $(\lambda_n)$  be a bounded sequence in  $\mathbb{K}$ . For  $1 \leq p \leq \infty$ , let  $A : \ell^p \rightarrow \ell^p$  be defined by  $(Ax)(i) = \lambda_i x(i)$  for  $i \in \mathbb{N}$ ,  $x \in \ell^p$ . Prove that  $A$  is a bounded linear operator and  $\|A\| = \sup_{n \in \mathbb{N}} |\lambda_n|$ .

10. Let  $X$  and  $Y$  be normed liner spaces and let  $X_0$  be a subspace of  $X$ . Prove the following:

- (a) If  $A : X \rightarrow Y$  is a bounded linear operator, then the restriction operator  $A_0 : X_0 \rightarrow Y$  defined by  $A_0x = Ax$  for all  $x \in X_0$  is a bounded linear operator, and  $\|A_0\| \leq \|A\|$ .
- (b) Suppose  $A_0 : X_0 \rightarrow Y$  is a bounded linear operator,  $X_0$  is dense in  $X$  and  $Y$  is a Banach space. Then  $A_0$  has a unique norm-preserving bounded linear extension to all of  $X$ , i.e., there exists a unique bounded linear operator  $A : X \rightarrow Y$  such that  $Ax = A_0x$  for all  $x \in X_0$  and  $\|A\| = \|A_0\|$ .

11. Let  $X = c_{00}$  with usual inner produc, i.e.,  $\langle x, y \rangle := \sum_{j=1}^{\infty} x(j)\overline{y(j)}$ . Let  $f : X \rightarrow \mathbb{K}$  be defined by  $f(x) = \sum_{j=1}^{\infty} \frac{x(j)}{j}$ . Show that

- (a)  $f$  is a bounded linear functional.
- (b) There is no  $y \in X$  such that  $f(x) = \langle x, y \rangle$  for all  $x \in X$ .

12. Let  $X = c_{00}$  with inner product  $\langle x, y \rangle := \sum_{j=1}^{\infty} x(j)\overline{y(j)}$ . Let  $X_0 := \{x \in c_{00} : \sum_{j=1}^{\infty} \frac{x(j)}{j} = 0\}$ . Show that

- (a)  $X_0$  is a closed subspace of  $X$ .
- (b)  $X_0^\perp = \{0\}$ .

