

Functional Analysis: Assignment Problems - 2

In the following $\mathcal{F}(\mathbb{N}, \mathbb{K})$ denotes the space of all scalar sequences.

1. Suppose $\|\cdot\|_1$ and $\|\cdot\|_2$ are equivalent norms on a vector space X , and $S \subseteq X$. Show that S is open w.r.t. $\|\cdot\|_1$ iff S is open w.r.t. $\|\cdot\|_2$.

2. For $(\alpha_1, \dots, \alpha_n)$ and $(\beta_1, \dots, \beta_n)$ in \mathbb{K}^n , and $1 < p < \infty$, show that

$$(i) \sum_{j=1}^n |\alpha_j \beta_j| \leq \left(\sum_{j=1}^n |\alpha_j|^p \right)^{1/p} \left(\sum_{j=1}^n |\beta_j|^q \right)^{1/q}, \quad \frac{1}{p} + \frac{1}{q} = 1,$$

$$(ii) \left(\sum_{j=1}^n |\alpha_j + \beta_j|^p \right)^{1/p} \leq \left(\sum_{j=1}^n |\alpha_j|^p \right)^{1/p} + \left(\sum_{j=1}^n |\beta_j|^p \right)^{1/p}.$$

3. Let $x, y \in \ell^p$ for $1 < p < \infty$. Using Problem 2(ii), show that $x + y \in \ell^p$ and

$$\left(\sum_{j=1}^{\infty} |x(j) + y(j)|^p \right)^{1/p} \leq \left(\sum_{j=1}^{\infty} |x(j)|^p \right)^{1/p} + \left(\sum_{j=1}^{\infty} |y(j)|^p \right)^{1/p}.$$

4. Suppose $1 \leq r \leq p \leq \infty$. Show the following:

- (i) $\ell^r \subseteq \ell^p$,
- (ii) $\|x\|_p \leq \|x\|_r$ for all $x \in \ell^r$,
- (iii) $\lim_{p \rightarrow \infty} \|x\|_p = \|x\|_{\infty}$ for every $x \in c_{00}$.
- (iv) if $r < p$, then ℓ^r is not a closed subset of ℓ^p .

5. For $p > 0$, let $X_p := \{x \in \mathcal{F}(\mathbb{N}, \mathbb{K}) : \|x\|_p^p := \sum_{n=1}^{\infty} |x(n)|^p < \infty\}$. Show that, if $0 < p < 1$, then there exist $x, y \in X_p$ such that the relation $\|x + y\|_p \leq \|x\|_p + \|y\|_p$ does not hold.

6. Show that, if $0 < p < 1$, then $x \mapsto \left(\int_a^b |x(t)|^p dt \right)^{1/p}$ does not define a norm on $C[a, b]$.

7. Let X be a normed linear space, and U and V be subsets of X . Show that

- (i) if one of U and V is an open set, then $U + V$ is an open set, and
- (ii) if U is compact and V is closed, then $U + V$ is closed.

8. Let X be a linear space and $\nu : X \rightarrow \mathbb{R}$ be a seminorm.

Show that $Z_{\nu} = \{x \in X : \nu(x) = 0\}$ is a closed subspace of X .

9. Let X be a normed linear space, X_0 be a subspace of X . For $x \in X$, define

$$d(x, X_0) = \inf\{\|x - y\| : y \in X_0\}.$$

Prove the following:

- (i) $d(x, X_0) = 0$ if and only if $x \in cl(X_0)$.
- (ii) If X_0 is closed in X and $x \notin X_0$, then $d(x, X_0) > 0$.
- (iii) For $x \in X$ and $\alpha \in \mathbb{K}$, $d(\alpha x, X_0) = |\alpha|d(x, X_0)$.

10. Let X_0 be a closed subspace of a normed linear space X . Prove the following:

- (i) The map $\nu : x \mapsto dist(x, X_0)$ defines a seminorm on X .
- (ii) The map $[x] \mapsto dist(x, X_0)$ defines a norm on the quotient linear space X/X_0 .

11. The space $\mathcal{P}[a, b]$ is not a Banach space with respect to $\|\cdot\|_\infty$.

12. The space c_{00} is not a Banach space with respect to $\|\cdot\|_p$ for any p with $1 \leq p \leq \infty$.

13. Prove the following.

- (i) $x \mapsto \|x'\|_\infty$ is a seminorm on $C^1[a, b]$.
- (ii) $x \mapsto \|x\|_* := \|x\|_\infty + \|x'\|_\infty$, $x \in C^1[a, b]$, defines a norm on $C^1[a, b]$.
- (iii) $C^1[a, b]$ is a Banach space with respect to $\|\cdot\|_*$.
- (iii) Show that $C^1[a, b]$ is not a Banach space with respect to $\|\cdot\|_\infty$.

14. Let $X = C[a, b]$ with $\|\cdot\|_1$ and $Y = C[a, b]$ with $\|\cdot\|_\infty$. Then the (identity) map $A : X \rightarrow Y$ defined by $Ax = x$, $x \in X$, is not continuous - Why?

15. Prove the following:

- (i) c_{00} is a proper dense subspace of ℓ^p for $1 \leq p < \infty$, and not dense in ℓ^∞ .
- (ii) c_{00} is a proper dense subspace of c_0 with respect to $\|\cdot\|_\infty$, and not dense in c with respect to $\|\cdot\|_\infty$.
- (iii) $\mathcal{P}[a, b]$ is a proper dense subspace of $C[a, b]$ with respect to $\|\cdot\|_p$ for $1 \leq p \leq \infty$.

16. Let X be an inner product space and $x, y \in X$. Show that

$$\|x + \alpha y\| = \|x - \alpha y\| \quad \forall \alpha \in \mathbb{K} \text{ if and only if } \langle x, y \rangle = 0.$$

17. Suppose $A : X \rightarrow Y$ is a linear operator between normed linear spaces X and Y . Show that, if A is an open map, then it is onto.

18. Prove that a Banach space is finite dimensional if and only if every subspace of it is closed.