

Functional Analysis: Assignment Problems-3

1. Suppose $A : X \rightarrow Y$ is a linear operator between normed linear spaces X and Y . Show that, if A is an open map, then it is onto.
2. Let $X = C[a, b]$ with $\|\cdot\|_1$ and $Y = C[a, b]$ with $\|\cdot\|_\infty$. Then the (identity) map $A : X \rightarrow Y$ defined by $Ax = x$, $x \in X$, is not continuous - Why?
3. Let X be an inner product space and $x, y \in X$. Prove *Pythagoras theorem*: If $x \perp y$, then $\|x + y\|^2 = \|x\|^2 + \|y\|^2$.
4. Let X be an inner product space and S_1, S_2 are subsets of X . Show that if $S_1 \subseteq S_2$ then $S_2^\perp \subseteq S_1^\perp$.
5. Let X be an inner product space and $S \subseteq X$. Show that following:
 - (i) S^\perp is a closed subspace of X ,
 - (ii) $S \subseteq S^{\perp\perp}$ and $S^\perp = (\text{span}(S))^\perp = (\text{cl.span}(S))^\perp$,
 - (iii) $S^{\perp\perp\perp} = S^\perp$.
6. Let X be an inner product space and X_0 be a subspace of X . Show that, for $x \in X$, if a best approximation of x from X_0 exists, then it is unique.
7. Let X be an inner product space, $\{u_1, \dots, u_k\}$ be an orthonormal set and $P : X \rightarrow X$ is defined by $Px = \sum_{j=1}^k \langle x, u_j \rangle u_j$, $x \in X$. Show that
 - (i) P is an orthogonal projection, i.e., $P^2 = P$ and $R(P) \perp N(P)$,
 - (ii) $\langle Px, y \rangle = \langle x, Py \rangle$ for all $x, y \in X$
8. Let X be an inner product space over \mathbb{R} . If $x, y \in X$ are such that $\|x + y\| = \|x - y\|$, then show that $x \perp y$.
9. Let X be an inner product space over \mathbb{R} and $P : X \rightarrow X$ be an orthogonal projection, i.e., $P^2 = P$ and $R(P) \perp N(P)$.
 - (i) Show that $\|Px\| \leq \|x\|$ and $\|(I - P)x\| \leq \|x\|$ for all $x \in X$. Deduce that both P and $I - P$ are continuous linear operators. [Hint: use Pythagoras theorem.]
 - (ii) Show that for every $x \in X$, Px is the unique best approximation of x from $R(P)$. [Hint: use Pythagoras theorem for existence, and parallelogram law for uniqueness.]
 - (iii) $R(P)^\perp = N(P)$ [Hint: Note: $X = R(P) \oplus R(P)^\perp$, $X = R(P) \oplus N(P)$.]

10. Suppose X is a Hilbert space, and $P : X \rightarrow X$ and $Q : X \rightarrow X$ are orthogonal projections. Show that $R(P) \perp R(Q) \Leftrightarrow PQ = 0 = QP$.

11. Let X be an inner product space and $P : X \rightarrow X$ be a projection, i.e., $P^2 = P$. Show that P is an orthogonal projection (i.e., $R(P) \perp N(P)$) if and only if $R(P)^\perp = N(P)$.

12. Suppose X is a an inner product space and $P : X \rightarrow X$ and $Q : X \rightarrow X$ are projections, i.e., $P^2 = P$ and $Q^2 = Q$.

- (i) Show that $R(P) \subseteq R(Q) \implies QP = P$.
- (ii) If in addition P and Q satisfy $R(P)^\perp = N(P)$ and $R(Q)^\perp = N(Q)$, then show that $R(P) \subseteq R(Q) \Leftrightarrow PQ = P = QP$. [Hint: Use Problem 4 and (i) above.]