

Functional Analysis: Assignment Sheet-I

In the following X denotes a linear space over \mathbb{K} .

1. Show that the zero element and the additive inverse of any element in a linear space are unique.
2. Show that if X contains at least one nonzero element, then it contains infinitely many elements: if x is a nonzero element in X , and if α, β are scalars such that $\alpha \neq \beta$, then show that $\alpha x \neq \beta x$. Which axiom of a vector space is used to prove this?
3. Show that if X is of dimension n , then there is a linear isomorphism from X onto \mathbb{K}^n . Show also that any two finite dimensional linear spaces of same dimension are linearly isomorphic.
4. Let S be a subset of X . Show that $\text{span}S$ is the smallest subspace containing S , i.e., if X_0 is a subspace containing S , then $\text{span}S \subseteq X_0$.
5. Show that if S be a subset of X , then $\text{span}S = \bigcap\{Y : Y \text{ is a subspace of } X \text{ containing } S\}$.
6. Let X_0 be a subspace of X and $x_0 \in X \setminus X_0$. Show that for every $x \in \text{span}\{x_0; X_0\}$, there exist a unique $\alpha \in \mathbb{K}$, $y \in Y$ such that $x = \alpha x_0 + y$.
7. Suppose X_1 and X_2 are subspaces of linear space X such that $X = X_1 \oplus X_2$. Show that the map $A : X_2 \rightarrow X/X_1$ defined by $A(x) = [x]$, $x \in X_2$, is a linear isomorphism from X_2 onto X/X_1 .
8. Suppose X_1 and X_2 are linear spaces, and let X be the cartesian product of X_1 and X_2 , i.e., $X = X_1 \times X_2$ with vector space operations defined as in Example ??(xii). Let $Y_1 = X_1 \times \{0\}$ and $Y_2 = \{0\} \times X_2$. Show that
 - (i) $X = Y_1 \oplus Y_2$,
 - (ii) Y_1 and Y_2 are linearly isomorphic with X_1 and X_2 respectively,
 - (iii) X_1 and X_2 are linearly isomorphic with X/Y_2 and X/Y_1 respectively,
9. Show that a subset $\{u_1, \dots, u_n\}$ of X is linearly dependent if and only if there exists a nonzero $(\alpha_1, \dots, \alpha_n)$ in \mathbb{K}^n such that $\alpha_1 u_1 + \dots + \alpha_n u_n = 0$.

10. Show that a subset $\{u_1, \dots, u_n\}$ of X is linearly independent if and only if the function $(\alpha_1, \dots, \alpha_n) \mapsto \alpha_1 u_1 + \dots + \alpha_n u_n$ from \mathbb{K}^n into X is injective.

11. Let $E \subseteq X$. Show that

- (i) if E is linearly dependent in X , then every superset of E is also linearly dependent, and
- (ii) if E is linearly independent in X , then every subset of E is also linearly independent.

12. Show that if $\{u_1, \dots, u_n\}$ is a linearly independent subset of X , and if Y is a subspace of X such that $\{u_1, \dots, u_n\} \cap Y = \emptyset$, then every x in the span of $\{u_1, \dots, u_n, Y\}$ can be written uniquely as $x = \alpha_1 u_1 + \dots + \alpha_n u_n + y$ with $(\alpha_1, \dots, \alpha_n) \in \mathbb{K}^n$, $y \in Y$.

13. Show that if E_1 and E_2 are linearly independent subsets of X such that $(\text{span}E_1) \cap (\text{span}E_2) = \{0\}$, then $E_1 \cup E_2$ is linearly independent.

14. If \mathbf{A} is an $m \times n$ matrix with entries from \mathbb{K} and $n > m$, then show that there exists an $n \times 1$ nonzero matrix \mathbf{x} such that $\mathbf{Ax} = \mathbf{0}$, where $\mathbf{0}$ is the $m \times 1$ zero matrix.

15. Let X and Y be linear spaces.

- (i) Let X_0 be a subspace of X and $A_0 : X_0 \rightarrow Y$ be a linear operator. Show that there exists a linear operator $A : X \rightarrow Y$ such that $A|_{X_0} = A_0$.
- (ii) Let $u_0 \in X$ and $v_0 \in Y$. Show that there exists a linear operator $A : X \rightarrow Y$ such that $Au_0 = v_0$.

16. Let X and Y be finite dimensional linear spaces with bases $U = \{u_1, \dots, u_n\}$ and $V = \{v_1, \dots, v_m\}$ respectively. Let $F = \{f_1, \dots, f_n\}$ be the dual basis of $\mathcal{L}(X, \mathbb{K})$ with respect to U and $G = \{g_1, \dots, g_n\}$ be the dual basis of $\mathcal{L}(Y, \mathbb{K})$ with respect to V . For $i = 1, \dots, n$; $j = 1, \dots, m$, let $A_{ij} : X \rightarrow Y$ defined by

$$A_{ij}(x) = f_j(x)v_i, \quad x \in X.$$

Show that $\{A_{ij} : i = 1, \dots, n; j = 1, \dots, m\}$ is a basis of $\mathcal{L}(X, Y)$.

17. Let X and Y be finite dimensional linear spaces, and $U = \{u_1, \dots, u_n\}$ and $V = \{v_1, \dots, v_m\}$ be bases of X and Y , respectively. Show the following:

- (i) If $\{g_1, \dots, g_m\}$ is the ordered dual basis of $\mathcal{L}(Y, \mathbb{K})$ with respect to the basis V of Y , then $[A]_{U,V} = (g_i(Au_j))$.

(ii) If $A, B \in \mathcal{L}(X, Y)$ and $\alpha \in \mathbb{K}$, then

$$[A + B]_{U,V} = [A]_{U,V} + [B]_{U,V}, \quad [\alpha A]_{U,V} = \alpha [A]_{U,V}.$$

(iii) Suppose $\{E_{ij} : i = 1, \dots, m; j = 1, \dots, n\}$ is a basis of $\mathbb{K}^{m \times n}$. If $T_{ij} \in \mathcal{L}(X, Y)$ is the linear transformation such that $[T_{ij}]_{U,V} = E_{ij}$, then $\{T_{ij} : i = 1, \dots, m; j = 1, \dots, n\}$ is a basis of $\mathcal{L}(X, Y)$.

18. Let $A : X \rightarrow Y$ be a linear operator between linear spaces X and Y . Show the following:

- (i) If S is a spanning set of X , then $A(S) := \{Ax : x \in S\}$ is a spanning set of $R(A)$. In particular, if X is finite dimensional, then A is of finite rank.
- (ii) A is of finite rank if and only if there exists $n \in \mathbb{N}$, $\{v_1, \dots, v_n\} \subset Y$ and $\{f_1, \dots, f_n\} \subset \mathcal{L}(X, \mathbb{K})$ such that $Ax = \sum_{j=1}^n f_j(x)v_j$ for all $x \in X$.

19. Let $A : X \rightarrow Y$ be a linear operator between linear spaces X and Y . Show the following:

- (i) If E is a linearly independent subset of X and if A is injective, then the set $A(E) := \{Ax : x \in E\}$ is a linearly independent subset of Y .
- (ii) If $\{u_1, \dots, u_n\} \subseteq X$ is such that $\{Au_1, \dots, Au_n\}$ is a linearly independent subset of Y , then $\{u_1, \dots, u_n\}$ is a linearly independent subset of X .

20. Show that a linear functional on a linear space is completely determined by its null space and an element not in the null space, i.e., if f and g are linear functionals on a linear space X such that $N(f) = N(g)$, and $f(x_0) = g(x_0)$ for some $x_0 \in X \setminus N(f)$, then $f = g$.

21. Show that $X_0 := \{x \in C[0, 1] : x(0) = 0 = x(1)\}$ is a proper subspace of $C[0, 1]$, but not a hyperspace.