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Vector Spaces

1.1 Introduction

The notion of a vector space is an abstraction of the familiar set of
vectors in two or three dimensional Euclidian space. For example, let
Z = (z1,22) and ¥ = (y1,%2) be two vectors in the plane R?. Then
we have the notion of addition of these vectors so as to get a new
vector denoted by ¥ + ¢, and it is defined by

T+y= (14 y1,22+ y2).

This addition has an obvious geometric meaning: If O is the coordi-
nate origin, and if P and @ are points in R? representing the vectors
Z and ¥ respectively, then the vector & + ¢ is represented by a point
R in such way that OR is the diagonal of the parallelogram for which
OP and OQ) are adjacent sides.

Also, if « is a positive real number, then the multiplication of &
by « is defined by

af = (ary, axs).

Geometrically, the vector o is an elongated or contracted form of
Z in the direction of Z. Similarly, we can define af with a nega-
tive real number «, so that a& represents in the negative direction.
Representing the coordinate-origin by 0, and —& := (—1)Z, we see
that

i4+0=2  Z+ (%) =0.
We may denote the sum & + (—%) by Z — .

Now, abstracting the above properties of vectors in the plane, we
define the notion of a vector space.

We shall denote by F the field of real numbers or the field of
complex numbers. If special emphasis is required, then the fields
of real numbers and complex numbers will be denoted by R and C,
respectively.
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1.2 Definition and Some Basic Properties

Definition 1.1 (Vector space) A vector space over F is a nonempty
set V together with two operations

(i) addition which associates each pair (x,y) of elements in V a
unique element in V' denoted by x + y, and

(ii) scalar multiplication which associates each pair (a,x) with
a € F and x € V, a unique element in V denoted by az,
satisfying the following conditions:

(a) z4+y=y+z Va,yeV.

(b) (z+y)+z=x+(@y+2) Va,y,zeV.

(¢c) 30V suchthatz+0=a VzeV.

(d) VzxeV,3z €V such that x + 7 = 6.

(e) alr+y)=ar+ay VaeF, Va,yeV.

) (a+PBrx=ax+pzx Va,feF,VeeV.

(g) (af)xr=a(fz) Ya,B€F,VzeV.

(h) lx=2 VzeV.

Elements of a vector space are called vectors, and elements of
the field F (over which the vector space is defined) are often called
scalars.

Proposition 1.1 Let V' be a vector space. Then there is exactly one
element 6 € V such that x +0 =V forallz € V.

Proof. Suppose there are 61 and 65 in V such that
r+60,=x and z+60,=z VrelX.
Then, using conditions (a) and (c), we have
Oy =02+6, =0,+0,=0,.
This completes the proof. I

Definition 1.2 (zero element) Let V be a vector space. The
unique element # € V such that x + 6 = x for all x € V is called the
zero element or simply, the zero in V.

Notation: The zero element in a vector space as well as the zero in
the scalar field are often denoted by the same symbol 0.
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Exercise 1.1 Let V be a vector space. For z,y € V, show that
x +y = x implies y = 0. %

Proposition 1.2 Let V' be a vector space. For each x € V, there is
exactly one element * € V' such that x +x = 0.

Proof. Let x € V. Suppose 2’ and 2’ are in V such that
r+2'=0 and z+2"=0.
Then using the axioms (a), (b), (¢), it follows that
Y= +0=d+(x+2")=@"+2)+2"=0+2" =2".
This completes the proof. |

Definition 1.3 (additive inverse) Let V' be a vector space. For
each z € V, the unique element T € V such that x + & = 6 is called
the additive inverse of x.

Notation: For x in a vector space, the unique element & which
satisfies x + & = 0 is denoted by —z, i.e.,

- =1
Proposition 1.3 Let V be a vector space. Then, for all x € V,
Oz =0 and (—1)z=—=x.
Proof. Let x € V. Since
0z = (0+ 0)z = O0x + Oz,
we have Ox = 0. Now,
z+(-Dz=[1+(-1)]z=0z=40

so that, by the uniqueness of the additive inverse of x, we have
(-Dz=-z. 1

Notation: For z,y in a vector space, the expression = + (—y) is
denoted by = — v, i.e.,

x—y:=x+ (—y).
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Exercise 1.2 Show that, if x € V and = # 0, then ax # [z for
every «a, 3 € F with a # . [Hint: Condition (h)] O

Remark 1.1 We observe that a vector space V', by definition, cannot
be an empty set. It contains at least one element, viz., the zero
element. If a vector space V contains at least one nonzero element,
then it contains infinitely many nonzero elements: If x is a nonzero
element in V', and if «, 3 are scalars such that a £ 3, then ax # Gz
(see Exercise 1.2). O

Convention: Unless otherwise specified, we always assume that the
vector space under discussion is non-trivial, i.e., it contains at least
one nonzero element.

1.3 Examples of Vector Spaces

EXAMPLE 1.1 (Space F") Consider the set F™ of all n—tuples
of scalars, i.e.,

F" .= {(a1,...,apn) ;0 €F, i =1,...,n}.

For z = (a1,..., o), y = (B1,...,0n) in ", and « € F, define the
addition and scalar multiplication coordinate-wise as

x_’_y:(al—i_ﬁl)"'aan"’_ﬂn), Oéx:(aal,...,aan).

Then it can be seen that F" is a vector space with zero element
0 := (0,...,0) and additive inverse of x = (aq,...,qp) as —z =

(—ag,...,—ay). O

NOTATION: We shall, sometimes, denote the i coordinate of
x € F" by z(i) for i € {1,...,n}. Thus, if x = (ai1,...,a,) € F",
then z(i) = o; for i € {1,...,n}.

EXAMPLE 1.2 (Space P,) For n € {0,1,2,...}, let P, be the

set of all polynomials of degree at most n, with coefficients in F, i.e.,
x € P, if and only if x is of the form

r=ag+ait+...+a,t"

for some scalars ag,aq ..., a,. Then P, is a vector space with addi-
tion and scalar multiplication defined as follows:
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For x = apg+ a1t +...a,t", y =bg+ b1t + ...+ b,t" in P, and
aelr,

x4y = (ao+bo) + (a1 +b1)t + ...+ (an + by)t",

ar = aag + aart + ...+ aapt”.

The zero polynomial, i.e., the polynomial with all its coefficients zero,
is the zero element of the space, and

—r = —ap—ait —...— apt™.

O

EXAMPLE 1.3 (Space P) Let P be the set of all polynomials
with coefficients in F, i.e., x € P if and only if x € P, for some
n € {0,1,2,...}. For z,y € P, let n,m be such that x € P, and
Yy € Pp,. Then we have x,y € Py, where k = max {n, m}. Hence we
can define « + y and az for a € F as in P;. With this addition and
scalar multiplication, it follows that P is a vector space. O

EXAMPLE 1.4 (Space F™*") Let V = F"™*" be the set of all
m X n matrices with entries in F. If A is a matrix with its ij-th
entry aj;, then we shall write A = [a;;]. It is seen that V is a vector

space with respect to the addition and scalar multiplication defined
as follows: For A = [a;j], B = [b;j] in V, and € F,

A+ B := [aij + bij]7 aA = [aaij].
In this space, —A = [—a;;|, and the matrix with all its entries are
zeroes is the zero element. O

EXAMPLE 1.5 (Space FF ) This example is a special case of the
last one, namely,

F* .= F1,
This vector space is in one-one correspondence with F¥. One such
correspondence is given by F : F¥ — F* defined by



6 Vector Spaces

NOTATION: If z € F", we shall denote its j*" entry or coordinate
by ;.

EXAMPLE 1.6 (Sequence space) Let V be the set of all scalar
sequences. For («y,) and (3,) in V, and « € F, we define

(an) + (ﬁn) = (an + ﬁn)a Oé(Oén) = (OéOén).

With this addition and scalar multiplication, V' is a vector space with
its zero element as the sequence of zeroes, and —(ay,) = (—ay,). O

Exercise 1.3 Verify that the sets considered in Examples 1.1 — 1.6
are indeed vector spaces. O

EXAMPLE 1.7 (Space C(I)) Let I be an interval and C(I) be
the set of all real valued continuous functions defined on I. For
xz,y € C(I) and a € F, we define x + y and ax point-wise, i.e.,

(z+y)(t) = z(t) +yt), (az)(t)=ax(t), tel.

Then it can be shown that x + y and az are in C(I), and C(I)
is a vector space over R. The zero element is the zero function,
and the additive inverse of x € C(I) is the function —x defined by
(—x)(t) = —x(t), t € I O

EXAMPLE 1.8 (Space R[a,b]) Let R[a,b] be the set of all real
valued Riemann integrable functions on [a,b]. From the theory of
Riemann integration, it follows that if =,y € R[a,b] and o € F, then
x +y and az defined pointwise belongs to R[a,b]. It is seen that
(Verify) Rla,b] is a vector space over R. O

EXAMPLE 1.9 (Product space) Let Vi,...,V, be vector spaces.
Then the cartesian product

V=Vix-xV,

the set of all of ordered n-tuples (z1,...,xy,) with z; € V; for j €
{1,...,n}, is a vector space with respect to the addition and scalar
multiplication defined by

(xl)"'al‘n)'i_(ylv"wyn) = (x1+y1)"'a$n+yn)v

a1, ..., xy) = (Qx1,...,Qxy,)
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with zero element (0,...,0) and additive inverse of x = (z1,...,xy)
defined by —x = (—z1,..., —zy).

This vector space is called the product space of Vi,...V,.

As a particular example, the space F™ can be considered as the
product space Vi x --- x V,, with V; =F for j =1,... ,n. O

Exercise 1.4 In each of the following, a set V is given and some
operations are defined. Check whether V is a vector space with
these operations:

(i) Let V = {x = (z1,22) € R? : 21 + 29 = 1} with addition and
scalar multiplication as for R2.

(i) Let V. = R% F = R. For 2 = (21,22), vy = (y1,¥2), let
r+y:= (1 +y1,r2+y2) and for all o € R,

[ (0,0) a =0,
ar= { (az1,29/0), a#0.

(iii) Let V =C2? F = C. For z = (21,72), ¥ = (y1,%2), let
x4y :=(r1+4+2y1,22+3y2) and ax:= (axi,are) VYa e C.
(iv) Let V. =R2% F =R. For x = (z1,22), y = (y1,y2), let
r4+y:=(xr1+y1,22+y2) and ax:=(x1,0) YVaeR.

O

Exercise 1.5 Let (2 be a nonempty set and W be a vector space.
Let F (€2, W) be the set of all functions from € into W. For f, g €
F(Q,W) and a € F, let F + G and oF be defined point-wise, i.e.,

(f+9)(s)=f(s)+g(s), (af)(s)=af(s), seq.
Let —f and 6 be defined by
(=f)(s) =—f(s), O(s)=0, se8.

Show that F (€, W) is a vector space over F with the above opera-
tions. O

Exercise 1.6 In Exercise 1.5, let Q@ = {1,...,n} and W = F. Show
that the map T : F(S,F) — F" defined by

T(f)=(fQ),....f(n), feFEQF),
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is bijective.
Also show that for every f,g in F(Q,F) and o € F,

T(f+9)=T(f)+T(g), T(af)=aT(f)

Such a map is called a linear transformation or a linear transforma-
tion. Linear transformations will be considered in more detail in the
next chapter. %

1.4 Subspace and Span
1.4.1 Subspace
We observe that

o V ={z = (r1,22) € R?: 15 = 0}, which is a subset of R? is
a vector space with respect to the addition and scalar multiplication
as in R2.

o V = {x = (x1,22) € R? : 221 + 3x3 = 0} which is a sub-

set of R? is a vector space with respect to the addition and scalar
multiplication as in R2.

e P, which is a subset of the vector space P is also a vector space,
These examples motivate the following definition.

Definition 1.4 (Subspace) Let 1 be a subset of a vector space
V. If Vg is a vector space with respect to the operations of addition
and scalar multiplication as in V', then Vj is called a subspace of V.

The following theorem is very useful for checking whether a subset
of a vector space is a subspace or not.

Theorem 1.4 Let V be a vector space, and Vy be a subset of V.
Then Vg is a subspace of V if and only if for every x,y in Vo and
a€el,

r+yeVy and ax e V.

Proof. Clearly, if Vj is a subspace of V, then x +y € Vy and
ax € Vy for all z,y € Vg and for all o € F.

Conversely, suppose that x +y € Vg and ax € Vj for all x,y € Wy
and for all @ € F. Then, for any = € Vj,

§=0xe€Vp and —z=(-1)zel.
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Thus, conditions (c¢) and (d) in the definition of a vector space are
satisfied for V4. All the remaining conditions can be easily verified
as elements of Vj are elements of V as well. 1

EXAMPLE 1.10 The space P, is a subspace of P, for n < m. O
EXAMPLE 1.11 The space Cla,b] is a subspace of R]a, b]. O

EXAMPLE 1.12 (Space C*[a,b]) For k € N, let C*[a, b] be the set
of all F-valued functions defined on [a, b] such that the j-th derivative
2U) of z exists and 1) € C[a,b] for each j € {1,...,k}. It can be
seen that C*[a,b] is a subspace of Cla, b). O

EXAMPLE 1.13 For n € N and (ay,...,a,) € F?) | let
Vo=A(z1,...,2,) €EF":ayx1 + ... + apx, = 0}.

Then Vj is a subspace of F".
Recall from school geometry that, for F = R and n = 3, the
subspace

Vo = {(z1, 22, 73) € R3: ay21 + +agws + azrs = 0}
is a plane passing through the origin. 0

Theorem 1.5 Suppose Vi and Vo are subspaces of a vector space.
Then Vi N Vs is a subspace of V.

Proof. Suppose z,y € V1NV, and a € F. Then z,y € Vi and
x,y € Vo. Since V7 and V5 are subspaces, it follows that ax, x4+y € V3
and az,z +y € V3 so that ax,x +y € V1 N V4. Thus, by Theorem
1.4, V1 N Vs is a subspace. 1

Union of two subspaces need not be a subspace. To see this
consider the subspaces

Vii={(z1,22) twa =21}, Vo= {(z1,22) : 22 = 271}

of the space R?. Note that z = (1,1) € V4 and y = (1,2) € V&, but
r+y=(2,3) ¢ Vi UVy Hence V; UV, is not a subspace of R2.

Exercise 1.7 Let V] and V5 be subspaces of a vector space. Prove
that V3 U V4 is a subspace if and only if either V3 C V5 or Vo C Vi, ¢
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Exercise 1.8 Let A be an m X n matrix of scalars. Show that the
sets
Vi={z €F": Ax =0},

Vo={y e F™: y = Az for some z € F"}

are subspaces of F". %

Exercise 1.9 Let Pla,b] be the vector space P over R taking its
elements as continuous real valued functions defined on [a, b]. Then
the space Pla, b] is a subspace of C¥[a, b] for every k > 1. O

Exercise 1.10 Suppose V; is a subspace of a vector space V', and
V1 is a subspace of V. Then show that V7 is a subspace of V. O

Exercise 1.11 Show that
Vo = {(acl,xg,xg) €R3 cx1+ a2 +2x3 =0, x1 + 212 + 373 :0}

is a subspace of R3. Observe that Vj is the intersection of the sub-
spaces
Vi ={(x1,x9,23) € R3: 2y 4+ a9 + 23 = 0}

and
Vo = {(x1,22,23) € R® : 21 + 235 + 323 = 0}.

Note that V7 and V5 are planes through the origin and hence Vj is a
straight line passing through the origin. O

Exercise 1.12 Suppose A is a set, and for each A € A let V) be a
subspace of a vector space V. Then Nyca V) is a subspace of V..  §

Exercise 1.13 In each of the following vector space V, see if the
subset Vj is a subspace of V:

(i) V=R? and Vy = {(w1,22) : 79 = 221 — 1}.

(i) V=CJ]-1,1] and Vo = {f € V : fis an odd function}.
(iii) V=C[0,1] and Vo ={f € V : f(t) > 0Vt € [0,1]}.
(iv) V =Ps and Vg = {ag + a1t + ast® + ast® : ag = 0}.

(v) V =P5 and Vg = {ag + a1t + at® + ast’ : ag = 0}.
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O
Exercise 1.14 Prove that the only proper subspaces of R? are the
straight lines passing through the origin. %
Exercise 1.15 Let V be a vector space and u1, ..., u, bein V. Show
that
Vor={aqui + ...+ apup: o €eF,i=1,...,n}
is a subspace of V. O

1.4.2 Linear Combination and Span

Definition 1.5 (Linear combination) Let V be a vector space
and ui,...,u, belongs to V. Then, by a linear combination of
UL, ..., Uy, we mean an element in V' of the form aju; + -+ + ayuy,
with oy €F, j=1,...,n.

Definition 1.6 (Span) Let V be a vector space and uq,...,u,

belongs to V. Then the set of all linear combinations of uq,...,u,
is called the span of uq,...,u,, we write it as
span {ug, ..., up}.
In view of Exercise 1.15, if uy,...,u, belongs to a vector space

V', then span {uy,...,u,} is a subspace of V.
More generally, we have the following definition.

Definition 1.7 (Span) Let S be a subset of V. Then the set of all
linear combinations of elements of S is called the span of S, and is
also denoted by span (5).

Thus, for S C V, x € span S if and only if there exists z1,...,z,

in S and scalars aq,...,a, such that © = a1z1 + - -+ + apTy,.
As a convention, span of the empty set is taken to be the singleton
set {0}.

Remember! By a linear combination, we always mean a linear
combination of a finite number of elements in the space. An expres-
sion of the form ayz1 +apx,+--- with z1,22,...in V and aq, s, . ..
in F has no meaning in a vector space, unless there is some additional
structure which allows such expression.

Exercise 1.16 Let V be a vector space, and S C V. Then span (.5)
is a subspace of V', and span () is the smallest subspace containing
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S, in the sense that, if if Vj is a subspace of V such that S C 1,

then span (S) C V. O
Exercise 1.17 Let S be a subset of a vector space V. Show that S
is a subspace if and only if S = span S. O

Exercise 1.18 Let V be a vector space. Show that the the following
hold.
(i) Let S be a subset of V. Then

span S = ﬂ{Y : Y is a subspace of V' containing S}.

(ii) Suppose Vp is a subspace of V and g € V' \ V. Then for
every x € span{zo; Vp} := span ({zo} U 1)), there exists a unique
pair (o, y) € F x Vp such that z = axo + y. O

NOTATION (Kronecker! delta): For (i,7) € N x N, let
0ij = ! %f Z :j:
0 ifiz#j.
EXAMPLE 1.14 Let V = F” and for each j € {1,...,n}, let

ej € F" be such that its i-th coordinate is d;;. Then F" is the span
of {e1,...,en}. O

EXAMPLE 1.15 For 1 <k < n, let
Vo ={(at,...,an) €ER" :0; =0, =k+1,...,n}.

Then it is seen that Vj is the span of {e1,...,ex}. O
EXAMPLE 1.16 Let V = P, and u; = t/=1 j € N. Then P, is
the span of {u1,...,uns1}, and P = span {uq, ug,...}. O

EXAMPLE 1.17 (Space cop) Let V' be the set of all sequences
with real entries. For n € N, let

€En = (5n175n2a . )

Then span {ey, e, ...} is the space of all scalar sequences with only a
finite number of nonzero entries. The space span {ej, ea, ...} usually
denoted by cqg. O

!German mathematician Leopold Kronecker (December 7, 1823 December 29,
1891). He was quoted as having said, ”God made integers; all else is the work of
man”.
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Exercise 1.19 Consider the system of equations

anry +  apprs + + arn, = b
a1zr  +  axpry + + agmzn = b2
+ + - =
am1T1 + amix2 + + pnTn = bp
Let
ai a12 a1n
a21 ag2 | a2n
up = ,Ug = sy Uy =
am1 Am2 Qmn,
Show that the above system has a solution vector = = [z1, ..., 2]
if and only if b = [by,...,b,])7 is in the span of {uy,...,u,}. O

Exercise 1.20 Let u;(t) = /71, j € N. Show that span of {uy,..., %41}
is Py, and span of {uy,ug,...} is P. O

Exercise 1.21 Let ui(t) = 1, and for j = 2,3,..., let u;(t) =
1+¢+...+t/. Show that span of {u1,...,u,} is P,, and span of
{u1,ug,...} is P. O

Definition 1.8 (Sum of subsets) Let V' be a vector space, z € V,
and F, E1, F» be subsets of V. Then we define the following:

r+E:={r+u:uecFE},
FEi+ Ey = {33‘1 +x9:21 € Fp, 9 € Eg}.
The set E1 4+ F» is called the sum of the subsets Fq and Es.

Theorem 1.6 Suppose Vi and Vo are subspaces of V.. Then Vi + Va
s a subspace of V. In fact,

Vi + Vo = span (V1 U Va).

Proof. Let x,y € Vi+V5 and a € F. Then, there exists x1,y1 € V1
and x9,y2 € Va such that x = x1 + y1, ¥y = y1 + y2. Hence,

r+y=(r1+y1)+ W +y2) = (@1 +y1)+ (22 +y2) €V1+ Vo,

a(z+y) =a(zr +y1) = (ary +ayr) € Vi + Va.
Thus, V1 + Va is a subspace of V.



14 Vector Spaces

Now, since V13 U Vo C V; + Vb, and since Vi + V5 is a subspace,
we have span (V3 U Va) C Vi + Vi, Also, since Vi C span (V7 U Va),
Vo C span (V1 U V3), and since span (V7 U Va) is a subspace, we have
Vi + Vo Cspan (Vi U Va). Thus,

Vi+Va Cspan (V1 UVa) C Vi + Vo,
which proves the last part of the theorem. I

Exercise 1.22 Suppose Vi and Vs are subspaces of a vector space V'
such that V3 NV2 = {0}. Show that every x € V; + V5 can be written
uniquely as x = x1 + x9 with z; € V| and x5 € V5. O

Exercise 1.23 Suppose Vi and Vs are subspaces of a vector space
V. Show that Vi + Vo =V if and only if Vo C V. O

1.5 Basis and Dimension

Definition 1.9 (Linear dependence) Let V' be a vector space. A
subset E of V is said to be linearly dependent if there are uq, ..., Uy,
n > 2, in E such that at least one of them is a linear combination of
the remaining ones.

Definition 1.10 (Linear independence) Let V be a vector space.
A subset E of V is said to be linearly independent in V if it is not
linearly dependent.

Exercise 1.24 Let E be a subset of of a vector space V. Then prove
the following.

(i) E is linearly dependent if and only if there exists uq,...,u,
in E and scalars oy, . .., a,, with at least one of them nonzero, such
that aqu; + -+ + apz, =0,

(ii) FE is linearly independent if and only if for every finite subset
{u1,...,up} of E,

aru] + -t apr, =0 = ;=0 Vi=1,...,n.
O
If {u1,...,u,} is a linearly independent (respectively, dependent)
subset of a vector space V, then we may also say that uq,...,u, are

linearly independent (respectively, dependent) in V.
Note that a linearly dependent set cannot be empty. In other
words, the empty set is linearly independent!
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Remark 1.2 If uy,...,u, are such that at least one of them is
not in the span of the remaining, then we cannot conclude that
Ui, ..., Uy, are linearly independent. For the linear independence of
{u1,...,up}, it is required that u; ¢ span{u; : j # i} for every
ie{l,...,n}.

Also, if {u1, ..., u,} are linearly dependent, then it does not imply
that any one of them is in the span of the rest.

To illustrate the above points, consider two linearly independent
vectors up,uy. Then we have uy ¢ span {ug, 3us}, but {uy,us, 3us}
is linearly dependent, and {uj,u2,3us} is linearly dependent, but
u1 ¢ span {ug, 3us}. O
Exercise 1.25 Let V be a vector space.

(i) Show that a subset {ui,...,u,} of V is linearly dependent
if and only if there exists a nonzero (ai,...,ay) in F™ such that
aruy + -+ apuy, = 0.

(ii) Show that a subset {ui,...,un} of V is linearly independent
if and only if the function (aq,...,a,) — ajus + - - - + apuy, from F”
into V' is injective.

(iii) Show that if £ C V is linearly independent in V', then 0 ¢ E.

(iv) Show that if E C V is linearly dependent in V, then every
superset of E is also linearly dependent.

(v) Show that if £ C V is linearly independent in V', then every
subset of F is also linearly independent.

(vi) Show that if {uj,...,un} is a linearly independent subset
of V, and if Y is a subspace of V such that {uj,...,u,} NY = &,
then every x in the span of {ui,...,u,, Y} can be written uniquely
as ¢ = aqui + -+ + apuy + y with (ag,...,a,) € F* y e Y.

(vii) Show that if E; and Ej are linearly independent subsets
of V such that (span Ej N (span E2) = {0}, then E; U Ey is linearly
independent. O

Exercise 1.26 Let A be an m x n matrix of scalars with columns
aj,ag, ..., a,. Show the following:

(i) The equation Az = 0 has a non-zero solution z € F" if and
only if a;,as,...,a, are linearly dependent.

(i) For y € F™, the equation Az = y has a solution z € F" if
and only if ay,a,,...,a,,y are linearly dependent, i.e., if and only
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if span{a,as,...,a,,y} = span{ay,a,...,a,}, ie., if and only if
y € span{a;, ay, ..., a,}- O

Definition 1.11 (Basis) A subset E of a vector space V is said to
be a basis of V' if it is linearly independent and span £ = V.

EXAMPLE 1.18 For each j € {1,...,n}, let e; € F" be such that

ej(i) = 6;, i,j = 1,...,n. Then we have seen that {e1,...,e,} is
linearly independent and its span is F". Hence {e1,...,e,} is a basis
of F™. O

EXAMPLE 1.19 For each j € {1,...,n}, let ¢; € F" be such that
ej(i) = 8, 4,5 = 1,...,n. Then it is easily seen that {e;,...,¢,} is
linearly independent and its span is F". Hence {e;,...,¢, } is a basis

of F". O

Definition 1.12 (Standard bases of " and F") The basis {e1,...,e,}
of F" is called the standard basis of F", and the basis {e{,...,¢e,} of
F" is called the standard basis of F™.

EXAMPLE 1.20 Let u; = /!, j € N. Then {u1,...,upt1} is a

basis of Py, and {u,us, ...} is a basis of P. O
Exercise 1.27 Let uy = 1, and for j = 2,3,...,let u; = 14+t+...+
t7=1. Show that {u1,...,u, 1} is a basis of P,, and {uy,usg,...} is
a basis of P. O

EXAMPLE 1.21 For i = 1,...,m; j = 1,...,n, let M;; be the
m X n matrix with its (4,j)-th entry as 1 and all other entries 0.
Then

{Mij Zi:1...,m;j:1,...,n}

is a basis of F™*", O

Remark 1.3 A linearly independent subset of a subspace remains
linearly independent in the whole space. O

Theorem 1.7 Let V' be a vector space and E C V. Then the fol-
lowing are equivalent.

(i) E is a basis of V

(i) E is a mazimal linearly independent set in V, i.e., E is
linearly independent, and a proper superset of E cannot be linearly
independent.

(i1i) E is a minimal spanning set of V', i.e., span of E is V', and
a proper subset of E cannot span V.
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Proof. (i) <= (ii): Suppose F is a basis of V. Suppose Eis a
proper superset of E. Let # € E\ E. Since E is a basis, x € span (E).
This shows that E is linearly dependent, since E U {z} C E.

Conversely, suppose E is a maximal linearly independent set. If
E is not a basis, then there exists x ¢ span (F). Hence, it is seen
that, FU{x} is a linearly independent which is a proper superset of
FE — a contradiction to the maximality of F.

(i) <= (dii): Suppose FE is a basis of V. Suppose F' is a proper
subset of E. Then, it is clear that there exists x € E \ F which is
not in the span of F', since FU{z} C E. Hence, F does not span V.

Conversely, suppose F is a minimal spanning set of V. If F is
not a basis, then FE is linearly dependent, and hence there exists
x € span (£ \ {z}). Since E spans V, it follows that E \ {z}, which
is a proper subset of F, also spans V — a contradiction to the fact
that F is a minimal spanning set of V. |

Exercise 1.28 For X\ € [a,b], let u)(t) = exp (A\t), t € [a,b]. Show
that {uy : A € [a,b]} is an uncountable linearly independent subset
of C[a, b]. 0

Exercise 1.29 If {uj,...,u,} is a basis of a vector space V, then
show that every = € V, can be expressed uniquely as

T = Ul + -+ Qpln,

that is, for every x € V, there exists a unique n-tuple (aq,..., o)
of scalars such that z = aqui + - - - + anty,. O

Exercise 1.30 Consider the system of equations

a1y + apry + ...+ apr, = b

a1x1 + agexre + ... + agprn, = by
+ ... + ... 4+ =

am1T1 + amiT2 + ...+ G, = by

Show that the above system has at most one solution if and only if
the vectors

ail ai2 Aln
_|ax a2 | a2

wy = I wa = P wn -
am1 am?2 Amn,

are linearly independent. O
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Exercise 1.31 Let u1,...,u, be linearly independent vectors in a
vector space V. Let [a;;] be an m x n matrix of scalar, and let

v = anur + agiue  + +  amiun

V2 = ajpul  +  axuz  + +  amaun
+ + +

Up = G1pU1 +  agpuz  + +  QmpUn.

Show that the vy,..., vy, are linearly independent if and only if the
vectors

ail ai2 Aln

ao as2 _|am2
wy = ) Wy = ) ) Wy =

am1 Am?2 Amn,

<>

are linearly independent.

Exercise 1.32 Let p1(t) = 1+t + 3t2, pa(t) = 2 + 4t + 2, p3(t) =
2t + 5t2. Are the polynomials py, p2, p3 linearly independent? %

1.5.1 Dimension of a Vector Space

Definition 1.13 (Finite dimensional space) A vector space V is
said to be a finite dimensional space if there is a finite basis for V.

Recall that the empty set is considered as a linearly independent
set, and its span is the zero space.

Definition 1.14 (Infinite dimensional space) A vector space
which is not a finite dimensional space is called an infinite dimen-
stonal space.

Theorem 1.8 If a vector space has a finite spanning set, then it has
a finite basis. In fact, if S is a finite spanning set of V', then there
exists a basis £ C S.

Proof. Let V be a vector space and S be a finite subset of V' such
that span.S = V. If S itself is linearly independent, then we are
through. Suppose S is not linearly independent. Then there exists
uy € S such that u; € span (S \ {u1}). Let S; =5\ {u1}. Clearly,

spanS; =span S = V.
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If 57 is linearly independent, then we are through. Otherwise, there
exists ug € Sp such that ug € span (S7\ {ua}). Let So = S\ {u1,ua2}.
Then, we have

span Se = spanS; = V.

If Sy is linearly independent, then we are through. Otherwise, con-
tinue the above procedure. This procedure will stop after a
finite number of steps, as the original set S is a finite set, and we
end up with a subset Sp of S which is linearly independent and
span S =V. 1

By definition, an infinite dimensional space cannot have a finite
basis. Is it possible for a finite dimensional space to have an infinite
basis, or an infinite linearly independent subset? The answer is, as
expected, negative. In fact, we have the following result.

Theorem 1.9 Let V be a finite dimensional vector space with a basis
consisting of n elements. Then every subset of V' with more than n
elements is linearly dependent.

Proof. Let {uy,...,uy} be abasis of V, and {z1,...,zp41} C V.
We show that {x1,...,2,41} is linearly dependent.

If {z1,...,2,} is linearly dependent, then {z1,...,zp4+1} is lin-
early dependent. So, let us assume that {xi,...,z,} is linearly in-
dependent. Now, since {u1,...u,} is a basis of V, there exist scalars
at,...,a, such that

T1 = qqur + -+ Qply.

Since x1 # 0, one of ay, . . ., v, is nonzero. Without loss of generality,
assume that oy # 0. Then we have u; € span {1, ug, ..., u,} so that
V = span {ui,ug,...,up} = span{xi, ug, ..., uy}.

Let oz§2), ces ,ozg) be scalars such that

Tro = a?)xl + a§2)u2 —+ -+ af)un.

Since {x1, z2} is linearly independent, at least one of aéQ), el ag) is

nonzero. Without loss of generality, assume that 0452) # 0. Then we
have ug € span {x1,x2,us,...,u,} so that

V =span{xi,ug,...,up} = span{xy, o, us, ..., uy}.
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Now, let 1 < k <n —1 be such that

V =span{x1, 29, ..., Tk, Ukt1y-- ., Up}-
Suppose k < n — 1. Then there exist scalars ang), e ,angH) such
that
k+1 k+1 k+1

g1 =V 44 oz,(C Jap + O‘l(¢+1 Vg1 + - + oDy,
Since {x1, ..., zky1} is linearly independent, at least one of the scalars
a,(clfll), ce agkﬂ) is nonzero. Without loss of generality, assume that

k+1
oz,(CH ) # 0. Then we have ugi1 € span{x1,...,Tkr1, Upt2,--.,Upn}
so that

V. = span{z1,...,Tp, Ugs1, -, Un}
= span{zi,...,Tp11, Ukt2, .-, Up}-

Thus, the above procedure leads to V' = span{z1,...,Tp_1,un} so
that there exist scalars ozgn), A oz,(ln) such that

(n)

Tp=0a) 1+ -+«

(n)

Tp—1+ ag")un.

n—1
Since {z1,...,2,} is linearly independent, it follows that aq(ln) £ 0.
Hence,
up € span{x1,...,z,}.
Consequently,
V =span{zi,xo,...,Tn_1,u,} = span{z1,xa,...,Tn_1,Zn}.
Thus, z,4+1 € span{zi,...,z,}, showing that {z1,..., 241} is lin-

early dependent.

The following three corollaries are easy consequences of Theorem
1.9. Their proofs are left as exercises for the reader.

Corollary 1.10 IfV is a finite dimensional vector space, then any
two bases of V' have the same number of elements.

Corollary 1.11 If a vector space contains an infinite linearly inde-
pendent subset, then it is an infinite dimensional space.
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Corollary 1.12 If (a;;) is an m x n matriz with a;; € F and n > m,
then there exists a nonzero (aq,...,a,) € F™ such that

a1 + aipan + - - -+ aipay, = 0, t=1,...,m.

Exercise 1.33 Assuming Corollary 1.12; give an alternate proof for
Theorem 1.9. O

By Corollary 1.12, we see that if A € F"™*", then there exists F"
such that
Az = 0.

Definition 1.15 (n-vector) An n x 1 matrix is also called an n-
vector.

In view of Corollary 1.10, the following definition makes sense.

Definition 1.16 (Dimension) Suppose V is a finite dimensional
vector space. Then the dimension of V' is the number of elements in
a basis of V', and this number is denoted by dim V. If V is infinite
dimensional, then its dimension is defined to be infinity and we write
dim X = oo.

EXAMPLE 1.22 The spaces F" and P,,_1 are of dimension n. ¢
EXAMPLE 1.23 It is seen that the set {e1,es,...,} € F(N,F)
with e;(i) = ;; is a linearly independent subset of the spaces ¢!(N)

and ¢ (N). Hence, it follows that ¢/!(N) and ¢>°(N) are infinite di-
mensional spaces. O

EXAMPLE 1.24 We see that {uy,us,...,} with u;(t) =t/ j €
N, is linearly independent in C¥[a,b] for every k € N. Hence, the
space C*[a, b] for each k € N is infinite dimensional. O

EXAMPLE 1.25 Suppose S is a finite set consisting of n elements.
Then F(S,F) is of dimension n. To see this, let S = {s1,...,s,},
and for each j € {1,...,n}, define f; € F(S,F) by

[i(si) = 045, ie{l,...,n}.
Then the set {f1,..., fn} is a basis of F(S,F): Clearly,

Zajfj =0 = Oél':ZOéjfj(Si) =0 Vi

j=1 7j=1
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Thus, {f1,..., fn} is linearly independent. Also, note that
f=> f(s)f; ¥feF(SF).
j=1

Thus span{fi,..., fn} = F(S,F). O

1.5.2 Dimension of Sum of Subspaces

Theorem 1.13 Suppose V1 and Vo are subspaces of a finite dimen-
sional vector space V. If Vi N Vo = {0}, then

dim (V1 + Vz) =dimV; + dim V5.

Proof. Suppose {uy,...,ux} is a basis of Vi and {vi,...,ve} is
a basis of V5. We show that E := {uj,...,ug,v1,...,v} is a ba-
sis of V4 + Vo, Clearly (Is it clear?) span E = Vi 4+ V4. So, it is
enough to show that F is linearly independent. For this, suppose
ait,...,op, 41,..., B are scalars such that ayuq +. ..+ apug + G1v1 +
...+ Bpvy = 0. Then we have

Ti=oqur + .+ ogug = —(Bror + .+ Bevg) € Vi Vo = {0}

so that aqjui +...+agug = 0 and Biv1+. ..+ Gevy = 0. From this, by
the linearly independence of u;’s and v;’s, it follows that «; = 0 for
ie{l,...,k} and B; =0 for all j € {1,...,¢}. Hence, F is linearly
independent. This completes the proof. 1

In fact, the above theorem is a particular case of the following.

Theorem 1.14 Suppose Vi, and Vo are subspaces of a finite dimen-
stonal vector space V. Then

dim (V7 + V2) = dim Vj + dim V5 — dim (V3 N V3).

For the proof of the above theorem we shall make use of the
following result.

Proposition 1.15 Let V be a finite dimensional vector space. If Ey
is a linearly independent subset of V', then there exists a basis E of
V' such that Ey C E.
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Proof. Let Ey = {u1,...,u} be a linearly independent subset of
V, and let {v1,...,v,} be a basis of V. Let

_JEo if v1 € span (Ep),
b EoU{vi} if v1 & span (Ep).

Clearly, Fj is linearly independent, and
Ey C Ey, {v1} C span (Ey).
Then define

R if vo € span (E),
2T EyU{ve} if vg & span (E).

Again, it is clear that FE» is linearly independent, and
Ey C Fs, {v1,v2} C span (£»).

Having defined FEi, ..., Ej;, j <n, we define

E; if vj41 € span (Ej),

Ej1 = .

Ej U {Uj+1} if Vj+1 & span (E])

Thus, we get linearly independent sets F1, Fo, ..., E, such that
EyCELC...E,, {v1,v2,...,v,} Cspan (E,).

Since {v1,...,v,} is a basis of V, it follows that E := E,, is a basis
of V such that B C E, = FE. 1

Proof of Theorem 1.14. Let {u1,...,u;} be a basis of the sub-
space V1 N Va. By Proposition 1.15, there exists vy,...,vp in V)

and wi,...,wy, in Vo such that {uy,...,uk,v1,...,0¢} is a basis
of Vi, and {u1,...,ug, wi,...,wy} is a basis of V5. We show that
E :={uy,...,up,v1,...,00,W1,..., Wy} is a basis of V] 4+ Va.

Clearly, Vi + Vo = span (F). Hence, it is enough to show that E
is linearly independent. For this, let a1,...,ap, B1,- -+, 86,V Ym
be scalars such that

k l m
Z aiu; + Zﬂﬂ)z + Z%wi = 0. (*)
i=1 =1 =1
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Then
k l m
x = ZaiuiJrZﬂivi = —Z%wi eVinW.
i=1 i=1 i=1
Hence, there exists scalars 41, ..., such that
k ¢ k k ¢
Z Q;Us + Z ﬂivi = Z (5iui, i.e., Z(QZ — (51)11/, + Z ﬂﬂ)i = 0
=1 =1 i=1 i=1 i=1
Since {uq,...,uk,v1,...,v} is a basis of Vi, it follows that a; = §;

foralli=1,...,k, and 3; =0 for j = 1,...,¢. Hence, from (x),

k m
Z QU + Z%wi =0.
i=1 i=1

Now, since {uq,...,ug, wi,...,wy,} is a basis of Vs, it follows that
a=0foralli=1,...,k,and y; =0forall j =1,...,m.
Thus, we have shown that {u1,...,ug,v1,...,00,W1,..., Wy} I8

a basis of V] + V5. Since dim (Vi + Vo) =k + 0+ m, dimV; = k + ¢,
dim Vs = k 4+ m and dim (V; N'V2) = k, we get

dim (Vi + Vo) = dim Vj + dim Vo — dim (V3 N Va).
This completes the proof. |

Exercise 1.34 Prove that if V' is a finite dimensional vector space
and Vp is a proper subspace of V, then dim (V) < dim (V). O
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Linear Transformations

2.1 Introduction

We may recall from the theory of matrices that if A is an m x n
matrix, and if z is an n-vector, then Ax is an m-vector. Moreover,
for any two n-vectors x and y, and for every scalar «,

Az +y) = Az + Ay, Alaz) = aAx).

Also, we recall from calculus that if f and ¢ are real-valued differen-
tiable functions (defined on an interval .J), and « is a scalar, then

d d d d d
%(f+9):%f+£ga %(af):aaf-

Note also that, if f and g are continuous real-valued functions defied
on an interval [a, b], then

/ab(f+g)(t)dt:/abf(t)dm/abg(t) dt, /ab(af)(t) :a/abf(t) dt,

and for every s € [a, b],

/as(fw = / F&)di+ /:g(t) dt, /a (af)(t) = a /a f(tyt

Abstracting the above operations between specific vector spaces, we
define the notion of a linear transformation between general vector
spaces.

25
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2.2 What is a Linear Transformation?

Definition 2.1 (Linear transformation) Let V; and V5 be vector
spaces (over the same scalar field F). A a function T : V; — V5 is
said to be a linear transformation or a linear operator from Vi to Vs
if
T(x+y)=T(x)+T(y), T(azx) = aT(x)

for every x,y € V1 and for every o € F.

A linear transformation with codomain space as the scalar field
is called a linear functional. O

e Linear functionals are usually denoted by small-scale letters.

e IfVi=Vo=V,and ifif T : V — V is a linear transformation,
then we say that 7" is a linear transformation on V.

e The linear transformation which maps each x € V onto itself is
called the identity transformation on V', and is usually denoted
by I. Thus, I : V — V is defined by

I(x)=x Ve eV

e If T': Vi — V5 is a linear transformation, then for x € V;, we
shall the element T'(z) € V5 also by Tz..

EXAMPLE 2.1 (Multiplication by a scalar) Let V' be a vector
space and A be a scalar. Define T': V — V by T'(z) = Az, z € V.
Then we see that T is a linear transformation. O

EXAMPLE 2.2 (Matrix as linear transformation) Let A =
(aij) be an m x n-matrix of scalars. For z € F", let T'(z) = Az for
every £ € F". Then, it can be easily seen that T : F" — F™ is a
linear transformation.

Note that
ail ai2 e A1n X1 X1
a1 a2 o a2n x2 Z2
Tl‘ - y xTr =
Gml Om2 " Gmn Tn Tn
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Another example similar the above:

EXAMPLE 2.3 Let A = (a;;) be an m x n-matrix of scalars. For
x=(a1,...,q,) in F" let

n
Tz = (Br,---,Pm), /Bizzaijoéj, t=1,...,m.
j=1

Then T : F* — F™ is a linear transformation. O
More generally, we have the following.

EXAMPLE 2.4 Let V; and V5 be finite dimensional vector space
with bases Fy = {ui,...,u,} and Ey = {v1,...,v,} respectively.
Let A = (ajj) be an m x n-matrix of scalars. For z = }7"_; aju; €
V, let

m n

Tz = Zﬁzvz with ﬁl = Zaijaj for 7¢ {1, .. .,m}.
=1 j=1

Then T : Vi3 — V5 is a linear transformation. Thus,

T(éajuj) = i (éaijaj).

i=1

O
EXAMPLE 2.5 For each j € {1,...,n}, the function f; : F* — F
defined by fj(z) = x; for x = (a1,...,a,) € F", is a linear func-
tional. O

More generally, we have the following example.
EXAMPLE 2.6 Let V be an n-dimensional space and let £ =
{uy,...,u,} be a basis of V. For x = Z?:l ajuj € V, and for each
jeA{l,...,n}, define f; : V—F by
fi(x) = ay.

Then f; is a linear functional. %

Definition 2.2 The linear functionals fi,..., f, defined as in Ex-
ample 2.6 are called coordinate functionals on V with respect to
the basis F of V. O
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Remark 2.1 We observe that if fi,..., f, are the coordinate func-
tionals on V' with respect to the basis F = {uy,...,u,} of V, then

f](ul) :5ij \V/Z,] = 1,...,n.

It is to be remarked that these linear functionals depend not only on
the basis £ = {uq,...,uy}, but also on the order in which uy, ..., u,
appear in the representation of any z € V. O

EXAMPLE 2.7 (Evaluation of functions) For a given point
T € [a,b], let f;: Cla,b] — F be defined by

fr(z) = z(7), x € Cla,b).
Then f; is a linear functional. O

More generally, we have the following example.

EXAMPLE 2.8 Given points 71,...,7, in [a,b], and wq,...w, in
F, let T : Cla,b] — F be defined by

n

f(l’):Z$(Ti)wi, z € Cla, b].

i=1
Then f is a linear functional. O

EXAMPLE 2.9 (Differentiation) Let T : Cl[a,b] — Cla,b] be
defined by
Tr =1, z € Cla,b],

where f’ denotes the derivative of f. Then T is a linear transforma-
tion. O

EXAMPLE 2.10 For A\, u € F, the function T : C'[a,b] — CJa, ]
defined by
Tx = \x + pa’, z € Cla,b],

is a linear transformation. O
More generally, we have the following example.

EXAMPLE 2.11 Let 17 and 75 be linear transformations from V3
to Vo and A and p be scalars. Then T : V; — V5 defined by

T(x) = \T1(z) + pTe(z), x €V,

is a linear transformation.
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EXAMPLE 2.12 (Definite integration) Let T : Cla,b] — F be
defined by

b
f(z) = / x(t) dt, z € Cla, b].

Then f is a linear functional. O

EXAMPLE 2.13 (Indefinite integration)Let T : C[a, b] — Cla, b]
be defined by

(Tz)(s) = /s x(t) dt, z € Cla,b], s € la,b].

Then T is a linear transformation. O

EXAMPLE 2.14 Let V be a finite dimensional vector space and
Ey ={uy,...,u,} be a basis of V. For z € ", let

n
Tx = E ZTuj.
j=1

Then T : F* — V is a linear transformation. O

In the above example, e, € F" such that Ck; = Ok, then T'ej, = uy,
for k € {1,...,n}. More generally, we have the following.

EXAMPLE 2.15 Let V7 and V5 be vector spaces with dim V; = n.
Let E1 = {ui,...,uy} be a basis of V; and Fs = {v1,...,v,} be a
subset of V,. For x = Z?Zl ajuj € Vi, define T : Vi — V3 by

m
Tx = E Q;U;.
i=1

Then T is a linear transformation. O

Exercise 2.1 Show that the linear transformation 7" in Example
215 is

(a) one-one if and only if Fs is linearly independent,

(b) onto if and only if span (E) = V. O

Exercise 2.2 Let V; and V4 be vector spaces, Fq = {uj,...,up}
be a linearly independent subset of V; and Fy = {v1,...,v,} be a
subset of V5.
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(a) Show that there exists a linear transformation 7' : Vi — V3
such that
TUj:Uj, jG{l,...,n}.
(a) Show that the transformation 7" in (a) is unique if and only
if F is a basis of Vj. O

Exercise 2.3 Let V; and V5 be vector spaces, and Vj be a subspace
of V4. Let Ty : Vi — V5 be a linear transformation. Show that there
exists a linear transformation T : V3 — V5 such that Ty, = Ag. O

Theorem 2.1 Let T : Vi — V5 be a linear transformation which is
one to one and onto. Then T~': Vo — Vi is also a linear transfor-
mation.

Proof. For y1,y2 € Vo, let x1,x2 € V7 be such that Tz, = y; and
Txo = ys. Then for «, 3 € F, by linearity of T, we have

ay1 + Py2 = aTxy + fTxe = T(axy + fz2).
Hence,
T~ o1 + By2) = axy + Bay = ol (a1) + BT ().
This completes the proof. I

Definition 2.3 (Isomorphism of vector spaces) Vector spaces
V1 and V5 are said to be linearly isomorphic if there exists a bijective
linear transformation T : Vi — V5, and in that case T is called a
linear isomorphism from V7 onto V. O

Theorem 2.2 Any two finite dimensional vector spaces of the same
dimension are linearly isomorphic.

Proof. Let V) and V3 be finite dimensional vector spaces of the
same dimension, say n. Let F1 = {uy,...,uy} and Ey = {v1,...,v,}
be bases of Vi and V53, respectively. For x = E?:l aju; € Vi, define

T:Vi — Vo by .
Tx = Z Q;;.
i=1
Clearly, T is a linear transformation. Note that T is bijective as well:
For x = 37" | aju; € Vi,
Tr=0= (a1,...,ap) =0=2=0.

Also, for y = 377 Bjv; € Vo, the element z = 377, Bju; € Vi,
satisfies Tz = y.
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EXAMPLE 2.16 Let dim (V) = n and E = {uy,...,u,} be an
ordered basis of V. Then for z = )", ocju; € V, T1 : V — F" and
Ty : V — F" defined by

an

Q2
T = (ag,...,an), Tox =

A

are a bijective linear isomorphisms.
The above isomorphisms are called canonical isomorphisms be-
tween the spaces involved w.r.t. the basis F. O

2.3 Space of Linear Transformations

Let £(V7,Va) denote the set of all linear transformations from V; to
Va. On L(V1, V) we define addition and scalar multiplication point-
wise, i.e., for T, Ty, Ty in L(V1,V3) and o € F, linear transformations
Ty + 15 and o are defined by

(T + Ty)(x) = T1x + Tox,

(aT)(x) = aTx

for all x € V. Then it is seen that £(V7,V3) is a vector space with
its zero element as the zero operator O : V7 — V5 defined by

Ozrxr=0 VzeW

and the additive inverse —T of T' € L(V,V3) is =T : V; — V5 defined
by
(=T)(z)=—-Tx Vzel.

Definition 2.4 The space L(V,F) of all linear functionals on V' is
called the dual space of V, and this space is also denoted by V'. ¢

Theorem 2.3 Let V be a finite dimensional vector space, and let
E = {uy,...,un} be a basis of V. If f1,..., fn are the coordinate
functionals on V with respect to E, then we have the following:

(i) Every x € V can be written as x = Y1 fj(z)u;.

(i) {f1,.--,fn} is a basis of V.
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Proof. Since E = {uy,...,u,} is a basis of V, for every z € V,
there exist unique scalars aq, ..., such that x = Z?Zl ajuj. Now,
using the relation f;(u;) = d;5, it follows that

fl(SC) :Zajfi(uj) = Oy, izl,...,n.
7j=1

Therefore, the result in (i) follows.
To see (ii), first we observe that if Y ;' | o, f; = 0, then

Qg :Zaifi(u]‘)zo ijl,...,n.
i=1

Hence, {fi,..., fn} is linearly independent in £(V,F). It remains to
show that the span{fi,..., fn} = L(V,F). For this, let f € L(V,F)
and x € V. Then using the representation of z in (i), we have

) =3 1) ) = (X ;)@
j=1 Jj=1

forall z € V. Thus, f = Z;'l:1 f(uj)f;sothat f € span{fi,..., fn}.
This completes the proof. I

Definition 2.5 ((Dual basis)) Let V be a finite dimensional vector
space and let E = {u1,...,u,} be a basis of V, and fi,..., f, be the
associated coordinate functionals. The basis F := {f1,..., fo} of V’
is called the dual basis of E, or dual to the basis E. O

2.4 Matrix Representations

Let V7 and V3 be finite dimensional vector spaces, and Fy = {uq,...,u,}
and Fy = {v1,...,v,} be ordered bases of V; and Va, respectively.
In Example 2.4 we have seen that an m x n matrix of scalars induces
a linear transformation from V; to V5. Now, we show the reverse.

Let T : Vi — V5 be a linear transformation. Note that for
every © € Vi, there exists a unique (aq,...,a,) € F" such that
x =>_"_; ajuj. Then, by the linearity of T', we have

n

T(x) =Y o;T(u;).

=1
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Since T'(uj) € V; for each j =1,...,n and {v1,...,vy} is a basis of
Va, T'u; can be written as

m
T(uj) = Z aijvi
=1

for some scalars a1, asj, . .., Gm;. Thus,
n n m m n
T(ZE) = Z(JéjTUj = Z aj(Zaijvz) = Z (Zaijaj)vi. (*)
Jj=1 j=1 i=1 i=1 j=1
Forz :=>" | au; € V1, let & € F™ be the column vector [ar, . .. ,an]T

Then the relation (%) connecting the linear transformation 7" and the
matrix A = (a;j) can be written as

m

Txr = Z(Af)zvl

i=1

In view of the above representation of T, we say that the m x n
matrix A := (a;;) is the matrix representation of T', with respect
to the ordered bases Fq and FEs of V; and V5 respectively. This fact
is written as

ail ai2 e aln

aai a2 te a2n
16y B, =

aml am2 " Omn

or simply [T] = (ai;) when the bases are understood.

Definition 2.6 The matrix [T]g, g, is called the matriz representa-
tion of T', with respect to {E1, Eq}. O

Clearly, the above discussion also shows that for every m x n
matrix A = (a;), there exists a unique linear transformation 7' €
L(V1, Va) such that [T] = (a;j). Thus, there is a one-one correspon-
dence between L(V7, Va) onto F™*™ namely,

T — [T].
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Suppose Jp : Vi — F" and Js : Vo — F™ be the canonical isomor-
phisms, that is, for z = )" | cyu; € Vi and y = Z?Zl Biv; € Vs,

o B
Ji(x) = :OQ , Jo(x) := éz
Qo /Bn

Then we see that JQTJf1 : F* — F™ and J{l[T]Jl : V1 — V5 are
linear transformations such that

JoTJ ' = [Tz,  z€F",
Jy T e =Te,  z€V.
Exercise 2.4 Prove the last statement. O

Exercise 2.5 Let V be an n-dimensional vector space and {uy, ..., up}
be an ordered basis of V. Let f be a linear functional on V. Prove
the following:

(i) There exists a unique (01, ..., 3,) € F" such that

floqus + ...+ apuy) = 161 + ... + apfOn.

(ii) The matrix representations of [f]g 1) is [B1 -+ Bul- O

Exercise 2.6 Let V; and V5 be finite dimensional vector spaces,
and By = {u1,...,u,} and Ey = {v1,...,v,} be bases of V] and V5,
respectively. Show the following;:

(a) If{g1,-..,gm} is the dual of Es, then for every T € L(V7, V3),
Tk By = (gi(TUj)>-
(b) If T4, Ty € L(V1, V) and « € F, then
[T + T3] gy By = [T By, B + (T2 By B [aT]g,,B, = [Tk, B,-

(c) Suppose {Aj;:i=1...,m;j=1,...,n}is a basis of F"*".
If T%j S [:(Vl, Vg) is such that [Tij]EhEz = Aija then

{Tij:i=1....m;j=1,...,n}

is a basis of L(V1,V2). (e.g., Ai; as in Example 1.21. O



Rank and Nullity 35

Exercise 2.7 Let T : R? — R3 be defined by
T($1,$2,:C3) = (xQ + x3, 3+ x1, T1 + 332).

Find [T]g, g, in each of the following cases.

(a) { :11,0, ),(0,1,0),(0,0,1)}, E2 ={(1,0,0),(1,1,0),(1,1,1)}

(b) E1 ={(1,0,0),(1,1,0),(1,1,1)}, E2 = {(1,0,0),(0,1,0),(0,0,1)}

(C) E, = {(L L, _1)’ (_1’ 1, 1)7 (1’ -1, 1)}7
E2:{(fl,lyl)a(17*171)’(1’1’*1) O

Exercise 2.8 Let T : P? — P? be defined by
T(ao + a1t + a2t2 -+ a3t3) = aj + 2a9t + 3a3t2.

Find Find [T]g, g, in each of the following cases.
(a) By = {1,t,t*,#3}, By = {1 +t,1 —t,t%}
(b) By = {1,1+t, 1+t +t2 3}, By ={1,1 +t,1+t+ %}
(c) By ={1,1+t, 1+t +t2 1+t + 12+ 13}, By = {t?,t,1}

Exercise 2.9 Let T : P? — P3 be defined by

a a
T(ag + art + ast?) = agt + —1> + 3.

2 3

Find Find [T|g, g, in each of the following cases.
(a) By = {1+t,1—t,t2}, By = {1,t,t2 3},
(b)Ey = {1,1+t, 1+t +12}, By = {1,1+t, 1+t -+t 83},
(c) By ={t*,t,1}, By = {1, 1 +t, 1+t + 2,1+t +t2+3}, O

2.5 Rank and Nullity

Let V7 and V5 be vector spaces and T : Vi — V5 be a linear transfor-
mation. Then it is easily seen that the sets

R(T)=A{Tz:xz e Vi}, NT)={zxeVi:Tx =0}

are subspaces of V; and Va, respectively (Verify!).

Definition 2.7 (Range and null space) The subspaces R(7") and
N(T) associated with a linear transformation 7" : V; — V3 are called
the range of T and null space of T, respectively.
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Definition 2.8 (Rank and nullity) The dimension of R(T) is
called the rank of T', denoted by rank T, and the dimension of N(T)
is called the nullity of T'; denoted by null 7.

Let T : Vi — V5 be a linear transformation. We observe that
e T is onto or surjective if and only if R(T) = V5,
e T is one-one or injective if and only if N(T') = {0}.

The proof of the following theorem is easy, and hence left as an
exercise.

Theorem 2.4 Let T : Vi3 — Vo be a linear transformation. The we
have the following.

(a) Ifuy,...,ug are linearly independent in Vi and if T is one-one,
then Tuy,...,Tuy are linearly independent in Vs.

(b) If {uy,...,ur} C Vi is such that Tuy,...,Tuy are linearly in-
dependent subset in Va, then uy, ... uy are linearly independent
mn Va.

From the above theorem we can deduce the following theorem.

Theorem 2.5 Let V| and Vs be finite dimensional vector spaces and
T : Vi — Vo be a linear transformation. Then T is one-one if and
only if rank T = dim V;. In particular, if dim V; = dim V3, then

T is one-one if and only if T is onto.

In fact, the above result is a particular case of the following the-
orem as well.

Theorem 2.6 (Rank-nullity theorem) Let Vi and Vo be vector
spaces and T : Vi — Vo be a linear transformation. Then

rank T +nullT = dim V3.

Proof. First we observe that, if either null’ 7" = oo or rankT" = o0,
then dim V) = oo( Why?). Therefore, assume that both

r:=rankT < oo, k:=nullT < co.

Suppose Ey = {uy,...,ux} is a basis of N(T) and E = {vy,...,v,}
is a basis of R(T'). Let Ey = {w1,...,w,} C Vj such that Tw; = vj,
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j =1,...,r. We show that FyU FE; is a basis of V;. Note that
EgyNE =2.

Let € V;. Since F = {v1,...,v,} is a basis of R(T'), there exist
scalars aq,...,a, such that

T T
Txr = Zajvj = Zaijj
i=1 i=1
Hence,
T
T<:1: — Zajwj> =0
i=1

so that © — ", ajw; € N(T'). Since Ey is a basis of N(T'), there
exist scalars f1,..., [ such that

r k
T — E ajw; = E Biu;.
=1 =1

Thus, = € span (EgU E7). It remains to show that EyU E is linearly
independent. For this, suppose ai,...,a; and by,...,b, are scalars

such that
k r
Z Q;jUj + Z bjwj =0.
=1 =1

Applying T to the above equation, it follows that > ., bju; = 0 so
that, by the linear independence of F, b; = 0 for all j = 1,...,r.
Therefore, we have Zle aju; = 0. Now, by the linear independence
of Ey, aj =0, for all j = 1,...,k. This completes the proof. |

Exercise 2.10 Prove Theorem 2.4. O

Recall that for a square matrix A, det(A) = 0 if and only if its
columns are linearly dependent. Hence, in view of Theorem 2.4, we
have the following:

Theorem 2.7 Let T : Vi — Vs be a linear transformation and let
A be a matrix representation of A. Then T is one-one if and only if
columns of A are linearly independent.

Definition 2.9 (finite rank transformations) A linear transfor-
mation T : V — W is said to be of finite rank if rank T < oco.
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Exercise 2.11 Let T : V7 — V5 be a linear transformation between
vector spaces V7 and V,. Show that T is of finite rank if and only
if there exists n € N, {vy,...,v,} C Vo and {f1,..., fn} C L(V1,F)
such that Tz = Y 1, f;j(x)v; for all z € V. O

2.6 Composition of Linear of Transformations

Let V1, Vi, V3 be vector spaces, and let T1 € L(V1, V3), Ty € L(Va, V3).
Then the composition of T7 and 75, namely, T50T} : Vi — V3 defined
by

(Th o Th)(x) = To(Th2), x eV,
is a linear transformation and it is dented by 157} .

Note that if Vi1 = V5 = V3 = V, then both T1T5, 15T, are well-
defined and belong to L(V'). In particular, if " € L£(V'), we can define
powers of T, namely, T™ for any n € N inductively: 7' := T and for
n>1,

™ =T(T" ).
Using this, we can define polynomials in T as follows: .

For T € L(V) and p € Py, say p(t) = a1 + ait + -+ + apt™, we
define p(T") : V. — V by

p(T) =arl + a1 T+ -+ a, T".

We shall also use the convention: T := I.

EXAMPLE 2.17 Let T} : R? — R? and T : R?2 — R? be defined
by

Ti(ag,ag,a0) = (a1 + ag + 2a3, 201 — as + ag),

To(B1,62) = (Br+ B2, b1 — B2).

Then the product transformation 757} is given by

(TQTl)(Oq, a2, 042) = TQ(Oél + ag + 203, 201 — o + 053)
= (b1 + B2, B1 — B2),

where 81 = a1 + ag + 2a3, P2 = 2a1 — ag + ag. Thus,

(TQTl)(O[l, a9, 042) = (3041 + 3as, —a1 + 209 + 013) .
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Now, consider the standard bases on R? and R?, that is, By =
{(1,0,0), (0,1,0), (0,0,1)} and Ey = {(1,0), (0,1)}, respectively.
Then we see that

1 1 2 1 1
(Th) gy By = [ 5 _1 1 } ; T3]y, B0 = [ 1 —1 ] ;
3 0 3
[TQTl]El,E2 - |: -1 2 1 :| :
Note that

(1211 By By = [12] By, 5, [T1] By 5 -
O

Exercise 2.12 Let Vi, V5, V3 be finite dimensional vector spaces
with based Ei, F,, Es, respectively. Prove that if Ty € L£(V4,V3)
and T € [’(V?a V3)’ then [TQTl]El,Es = [TﬂEQ,ES [Tl]E'l,E'z'

Verify the above relation for the operators in Example 2.17. ¢

Recall from set theory that, if S1 and So are nonempty sets, then
a function f : S7 — Sy is one-one if and only if there exists a unique
g : R(f) — S1 such that

g(f(x) ==z,  fl9(y)) =y

for all z € Sy and for all y € R(f).
In the case of a linear transformation we have the following.

Theorem 2.8 Let T' € L(V1,V2). Then T is one-one if and only if
there exists a linear transformation T : R(T) — Vi such that

T(Tz)=z VzeVy, T(Ty) =y YyeRT),
and in that case, such operator T is UNLQUE.

Proof. The fact that T' is one-one if and only if there exists a
unique function 7' : R(T") — V; such that

T(Tz)=z VzeVi, T(Ty)=y VYye R(T)

follows as in set theory. Thus, it is enough to prove that T is linear.
For this, let y1,y2 be in R(T) and let z1,z2 in Vi be such that
Tx; =vy;, i=1,2. Let o € F. Then, by linearity of T', we have

Y1+ ays = Tfm + aTCFyg = T(fyl + afyg)
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so that
f(yl + ays) = fT(fyl + afyg) = Tyl + afyg.

Thus, 7T is linear. 1

Definition 2.10 If 7': V; — V5 is an injective linear operator, then
the unique linear operator T : R(T') — Vi defined as in Theorem 2.8
is called the inverse of T, and is denoted by T~ : R(T) — V4. ¢

Clearly, if T € L£(V7, V3) is bijective, then its inverse is defined on
all of V. Thus, T' € L(V1, V) is bijective if and only if there exists
a unique operator M € L(V4,V3) such that

TM = IY’ MT = IX7
and in that case(verify), M is also bijective and

(MT)™ = M~

Definition 2.11 A linear operator T : V; — V5 is said to be invert-
ible if it is bijective. O

Exercise 2.13 Prove the following.
(i) Ty : Vi — Vi and Ty : Vo — V3 are linear transformations
such that 757} is bijective, then T, one-one and 77 is onto.

(ii) If T' e L£(V4, V3) is invertible, then dim (V;) = dim (V2), and
the converse need not be true.

(iii) If dim (V) < oo and T' € L(V), then T is invertible if and
only if for every basis E of V, det[T|g.g # 0. O

2.7 Eigenvalues and Eigenvectors
2.7.1 Definition and examples

Let T : V — V be a linear operator on a vector space V.

Definition 2.12 A scalar A is called an eigenvalue of T if there
exists a nonzero vector x € V such that

Tr = \zx,

and in that case, x is called an eigenvector of T corresponding to
the eigenvalue \. %
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Suppose V' is a finite dimensional space, say dim (V') = n, and
T € L(V). Let A be the matrix representation of 7" w.r.t. a basis
{u1,...,u,} of V. Then by the discussion in Section 2.4, we have

n n

v=Y @i, Te= (AR,

i=1 i=1
Hence, x # 0 if and only if & # 0, and for A € F,

Tx = \x < AX = \Z.

Note that A € T is an eigenvalue of T' if and only if T'— AI is
not one-one, and in that case, the subspace N(T — A\I) consists of
all eigenvectors of T" corresponding to the eigenvalue A together with
the zero vector.

Definition 2.13 If A is an eigenvalue of T', then the space N(T'—\I)
is called the eigenspace of T' corresponding to A.

The set of all eigenvalues of T is called the eigenspectrum of
T, and will be denoted by Eig(T). O

In view of Theorem 2.7, we have the following:

Theorem 2.9 Let V be finite dimensional and T € L(V). If A is a
matriz representation of T with respect to a basis of V', then X is an
eigenvalue of T if and only if det(A — A\I) = 0.

EXAMPLE 2.18 The conclusions in (i)-(vi) below can be verified
easily:

(i) Let T : R? — R3 be defined by
T(ar, ag,a3) = (1,01 + az, a1 + @z + a3).

Then Eig(T') = {1} and N(A — I) = span{(0,0,1)}.
(i) Let T : F? — F? be defined by

T(a1,a2) = (aq + a2, az).

Then Eig(T") = {1} and N(T' —I) = span{(1,0)}.
(iii) Let T : F2 — F? be defined by

T(ay, o) = (ag, —aq).
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If F = R, then A has no eigenvalues, i.e., Eig(A) = @.

(iv) Let T be as in (ii) above. If F = C, then Eig(T') = {i,—i},
N(A —il)=span{(1,7)} and N(T +il) = span{(1, —i)}.

(v) Let T': P — P be defined by

(Tz)(t) = ta(t), zeP.

Then Eig(T) = @.
(vi) Let X be Pla,b] and A : V — X be defined by

(T2)(t) = %m(t), veP.

Then Eig(T) = {0} and N(T') = span{zo}, where xo(t) = 1 for all
t € la,b]. O

Theorem 2.10 Let T € L(V) and X € F. Let Vj = {0} and for
jEN, let Vj:= N((T — N )?). Then the following hold.

(i) {0} S N(T —=AXI) CN((T - MN)?>)CN{(T-X)*)C....

(i) If N(T — A)¥) = N((T — AI)**1) for some k € NU{0}, then
N{(T — XD)¥) = N((T — M\I)**9) for all j € N.

Suppose V is finite dimensional. Then every inclusion in Theorem
2.10(i) cannot be proper. Thus, the following corollary is immediate
from Theorem 2.10.

Corollary 2.11 Let T € L(V) and X\ be an eigenvalue of T. If V
is a finite dimensional vector space, then there exists £ € {1,...,n}
such that N((T — M\I)*) = N((T — XI)**9) for all j € N.

Definition 2.14 Let T € L£L(V) and A be an eigenvalue of 7. The
number dim N (T — \I) is called the geometric multiplicity of X. If
there exists £ € N such that N((T — M\I)*) = N((T — A\I)**) for all
j € N, then

(i) ¢ is called the indez of A,

(ii) N((T — XI)?) is called the generalized eigenspace of T corre-
sponding to A,

(iii) dim N((T — M)) is called the algebraic multiplicity of X. ¢
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If V is finite dimensional, T € £(V') and A be an eigenvalue of T’
then it is obvious that A has (finite) index and algebraic multiplicity.
If g, £ and m) are the geometric multiplicity, index and algebraic
multiplicity, respectively, of A, then from Theorem 2.10(i), we have

g+ —1<my.
It is also known! that
m < {g.
Thus, if £ = 1, then g = m, that is, generalized eigenspace coincides
with eigenspace.

2.7.2 Existence of an eigenvalue

From the above examples we observe that in those cases in which
the eigenspectrum is empty, either the scalar field is R or the vector
space is infinite dimensional. The next result shows that if the space
is finite dimensional and if the scalar field is the set of all complex
numbers, then the eigenspectrum is nonempty.

Theorem 2.12 Let V be a finite dimensional vector space over C.
Then every linear operator on V has at least one eigenvalue.

Proof. Let dim (V) = n and T : V — V be a linear opera-
tor. Let x be a nonzero element in V. Since dim (V) = n, the
set {x, Tx,T?x,..., T"z} is linearly dependent. Let ag,a; ..., a, be
scalars with at least one of them being nonzero such that

ax +a1 Tz + -+ a, Tz =0.
Let k =max{j:a; #0, j=1,...,n}. Then writing

p(t) =ao+ait + - +apt*, p(T)=aol +aiT + -+ a,T",

we have

p(T)(z) = 0.
By fundamental theorem of algebra, there exist Aq,..., Ag in C such
that

p(t) = ar(t — A1)t — A2) ... (£ — Ak).

'M.T. Nair: Multiplicities of an eigenvalue: Some observations, Resonance,
Vol. 7 (2002) 31-41.
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Thus, we have
(T —MD(T = XoI) ... (T — N I)(z) =p(T)(x) = 0.

Hence, at least one of T'— A1, ..., T — A\iI is not one-one so that
at least one of \1,..., \; is an eigenvalue of A. |

Theorem 2.13 Let A1, ..., A\ be distinct eigenvalues of a linear op-
erator T’ : V — V with corresponding eigenvectors uq, ..., ux, respec-
tiely. Then {u1,...,ux} is a linearly independent set.

Proof. We prove this result by induction. Clearly {u;} is linearly

independent. Now, assume that {uy, ..., u;,} is linearly independent,
where m < k. We show that {u1,...,un41} is linearly independent.
So, let a,...,amy1 be scalars such that

a1ul + -+ Uy + A1 Umt1 = 0. ()

Applying T and using the fact that Tu; = A\ju;, we have
arAug + -+ A AU + A1 Am+1Um+1 = 0.
From (%), multiplying by Ap,+1, we have
A1 Am1UL + - F O Am+1Um + Cmp1 Amt1Um+1 = 0.
Thus,
a1(A1 — Amg1)ur + -+ (A1 — At = 0.

Now, using the fact that {uq,...,u} is linearly independent in V,
and A1, ..., Ap, A1 are distinet, we obtain a; = 0 for j = 1,...,m.
Therefore, from (%), apm41 = 0. This completes the proof. |1

By the above theorem we can immediately infer that if V' is finite
dimensional, then the eigenspectrum of every linear operator on V
is a finite set.

Definition 2.15 Let T' € £(V) and V} is a subspace of V. Then V;
is is said to be invariant under T if T'(Vp) C Vp, that is,

reVy=—Tx e

If Vy is invariant under T, then the restriction of T to the space Vj
is the operator Ty € L(V}) defined by

Tor =Tx Ya e V.
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Exercise 2.14 Prove that if '€ L(V), A € Eig(T') and for k € N if
Vi = N((T — A\I)¥) and Wy, = R((T — M)¥), then show that V}, and
W, are invariant under T. O

Exercise 2.15 Prove that if 7' € L(V), Vp is invariant under 7', and
Ty € L(Vp) is the restriction of T to Vp, then Eig(Tp) C Eig(T). ¢
2.7.3 Diagonalizability

Definition 2.16 Suppose V is a finite dimensional vector space and
T :V — Vis alinear operator. Then T is said to be diagonalizable
if V has a basis E such that [T]g g is a diagonal matrix. O

The proof of the following theorem is immediate (Write details!).

Theorem 2.14 Suppose V is a finite dimensional vector space and
T:V — V is alinear operator. Then T is diagonalizable if and only
if V has a basis E consisting of eigenvectors of T .

Hence, in view of Theorem 2.13, we have the following.

Theorem 2.15 Suppose dim (V) =n and T : V — V is a linear
operator having n distinct eigenvalues. Then T is diagonalizable.

It is to be observed that, in general, a linear operator 7' : V — V
need not be diagonalizable (See Example 2.18(ii)). However, we
shall see in the next chapter that if V' has some additional struc-
ture, namely that V is an inner product space, and if T satisfies
an additional condition with respect to this new structure, namely,
self-adjointness, then T is diagonalizable.

Exercise 2.16 Which of the following linear transformation T is
diagonalizable? If it is diagonalizable, find the basis £ and [T]g .
(i) T :R3 — R3 such that

T(x1,xe,23) = (x1 + 22 + x3, 1 + T2 — 3, T1 — T2 + T3).
(ii) T : P3 — P53 such that
T(ag + art + ast® + a3t3) = a1 + 2ast + 3ast?.
(iii) 7 : R® — R3 such that

Ter =0, Tey=¢e1, Tesz=es.
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(iv) T : R?® — R3 such that

T61 = €9, T62 = €3,
iv) T :R3 — R3 such that
(iv)

Tep =e3, Tey=eo,

Teg =0.

Teg = e;.
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Inner Product Spaces

3.1 DMotivation

In Chapter 1 we defined a vector space as an abstraction of the
familiar Euclidian space. In doing so, we took into account only two
aspects of the set of vectors in a plane, namely, the vector addition
and scalar multiplication. Now, we consider the third aspect, namely
the angle between vectors.

Recall from plane geometry that if & = (x1,22) and ¥ = (y1, y2)
are two non-zero vectors in the plane R?, then the angle 0, between
Z and ¥ is given by

g . Ty + T2Y2
OV T

where for a vector @ = (uy,us) € R?, |i| denotes the absolute value

of the vector , i.e.,
] = \Ju? +u3,

which is the distance of the point (u,u2) € R? from the coordinate
origin.

We may observe that the angle 6, , between the vectors ¥ and
is completely determined by the quantity x1y; + x2y2, which is the
dot product of ¥ and y. Breaking the convention, let us denote this
quantity, i.e., the dot product of ¥ and ¥, by (Z, ), i.e.,

(%, 9) = x1y1 + x2y2.

A property of the function (Z, %) — (&, %) that one notices immedi-
ately is that, for every fixed 7 € R?, the function

x — (Z,7), Z € R?,

47
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is a linear transformation from R? into R, i.e.,

(Z+u,y) = (Z,9) + (4,7), (o, §) = (@, y) (3.1)

for all Z, % in R?. Also, we see that for all &, i in R?,

(Z,7)) >0, (3.2)
(Z,7) =0 <= =0, (3.3)
(@, 9) = (¥, ). (3.4)

If we take C? instead of R?, and if we define (Z,7) = x1y1 + 22y, for
Z,7 in C?, then the above properties are not satisfied by all vectors
in C2. In order to accommodate the complex situation, we define a
generalized dot product, as follows: For Z, i in F2, let

(Z, 7))« = 2171 + x272,

where for a complex number z, Z denotes its complex conjugation.
It is easily seen that (-, -). satisfies properties (3.1) — (3.4).

Now, we shall consider the abstraction of the above modified dot
product.

3.2 Definition and Some Basic Properties

Definition 3.1 (Inner Product) An inner product on a vector
space V' is a map (z,y) — (z,y) which associates each pair (z,y)
of vectors in V, a unique scalar (x,y) which satisfies the following
axioms:

(

(

(©) (@+y,2)=(x,2) +(y,2) Va,y,z€V,

(d) (az,y) = afz,y) VaeF and Vz,y € V, and

(e) (z,y) = (y,z) Va,yeV. 0
Definition 3.2 (Inner Product Space) A vector space together
with an inner product is called an inner product space. %

If an inner product (-, ) is defined on a vector space V, and if V}
is a subspace of V, then the restriction of (-,-) to Vo x Vjp, i.e., the
map (z,y) — (z,y) for (z,y) € Vy x Vp is an inner product on Vj.
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Before giving examples of inner product spaces, let us observe
some properties of an inner product.

Proposition 3.1 Let V be an inner product space. For a given
yeV,let f:V —TF be defined by

flz) =(x,y), zeV.
Then f is a linear functional on V.

Proof. The result follows from axioms (c) and (d) in the definition
of an inner product: Let z,2 € V and « € F. Then, by axioms (c)
and (d),

flta) = (z+a’y) = (@,y) + (', y) = f(x) + f2),
flax) = {ax,y) = alz,y) = af(2).

Hence, f is a linear transformation. |

Proposition 3.2 Let V' be an inner product space. Then for every
x,y,u,v in V, and for every a € F,

(x,u+v) = (x,u) + (x,v), (x,ay) = alx,y).

Proof. The result follows from axioms (c),(d) and (e) in the def-
inition of an inner product: Let x,y,u,v in V and o € F.

(x,ut+v) = (u+v,2} = (u,x) + (v, z) = (u, z)+(v,z) = (x,u)+(z,v),

(z,00) = (ay,z) = aly,z) = a(z,y).
This completes the proof. I

Exercise 3.1 Suppose V is an inner product space over C. Prove
that Re(iz,y) = —Im(x,y) for all z,y € V. O

3.3 Examples of Inner Product Spaces

EXAMPLE 3.1 For x = (aq,...,ap) and y = (B1,...,0,) in F™,
define

(@,y) = a;B;.
j=1

It is seen that (-,-) is an inner product on F™.

The above inner product is called the standard inner product
on . O
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EXAMPLE 3.2 Suppose V is a finite dimensional vector space, say
of dimension n, and F := {uy,...,u,} is an ordered basis of V. For

=" ou, Y=y i By in V, let
n —_
(T, y)E =Y aifi.
i=1

Then it is easily seen that (-,-)p is an inner product on V. O

EXAMPLE 3.3 For f,g € C|a,b], let

b -
(f,9) 12/ f()g(t)dt.

This defines an inner product on C|a, b]: Clearly,

b
. f) = / FOPd =0 Vf e Clab,

and by continuity of the function f,

(£, 1) = /ab\f(t)|2dt =0 < [f(t)=0 Vitelab].
The other axioms can be verified easily. O
Exercise 3.2 Let T': V — F" be a linear isomorphism. Show that
(x,y)yp == (Tx, Ty)pn, z,y €V,

defines an inner product on V. Here, (-, -)pn is the standard inner
product on F™. O

Exercise 3.3 Let 7q,..., 7 +1 be distinct real numbers. Show that

n+1
<pa Q> = Zp(Tl)Q(TZ)v p,q € PTH
i=1

defines an inner product on P,,. %
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3.4 Norm of a Vector

Recall that the absolute value of a vector & = (x1,x2) € R?, is given

by
|Z] = /2% + 23

Denoting the standard inner product on R? by (z, x)s, it follows that
|| = V{Z, D).

As an abstraction of the above notion, we define the norm of a
vector.

Definition 3.3 (Norm of a Vector) Let V be an inner product
space. Then for x € V, then norm of x is defined as the non-negative
square root of (x,z), and it is denoted by ||z||, i.e,

loll = V@), weV.
The map x — ||z|| is also called a norm on V. O

Definition 3.4 A vector in an inner product space is said to be a
unit vector if it is of norm 1. O

Exercise 3.4 If z is a non-zero vector, then show that u := z/||z||
is a vector of norm 1. O

Recall from elementary geometry that if a,b are the lengths of
the adjacent sides of a parallelogram, and if ¢,d are the lengths of
its diagonals, then 2(a? + b?) = ¢ + d?. This is the well-known
parallelogram law. This has a generalized version in the setting of
inner product spaces.

Theorem 3.3 (Parallelogram law) For vectors x,y in an inner
product space V.,

lz + ylI* + o = yl* = 2 (l=[* + ly]1*) -
Exercise 3.5 Verify the parallelogram law (Theorem 3.3). O

Exercise 3.6 Let V be an inner product space, and let z,y € V.
Then, show the following:

(a) [z = 0.
(b) ||z =0 iff z = 0.
(c) |laz|| = || ||z|| for all a € F..
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Exercise 3.7 Let V] and V4 be an inner product spaces, using the
same notations for inner products (respectively, norms) on both the
spaces. Let T : V4 — V5 be a linear transformation. Prove that, for
all (z,y) € V1 x V3,

(T'z,Ty) = (z,y) < [|Tz| = [l]|.

[Hint: For the only if part, use (T'(z + ), T(z +y)) = (x +y,z + y)
and use Exercise 3.1.] O

3.5 Orthogonality

Recall that the angle 6, , between vectors Z and % in R? is given by

<f,g>2

|29

cos Oy, =

Hence, we can conclude that the vectors & and ¢ are orthogonal if
and only if (Z,¢)2 = 0. This observation motivates us to have the
following definition.

Definition 3.5 (Orthogonal vectors) Vectors z and y in an inner
product space V are said to be orthogonal to each other or x is
orthogonal to y if (z,y) = 0. In this case we write x L y, and read x
perpendicular to y, or x perp y. O

Note that

o forz,yinV,x ly <— y Lz and
e 0 lxforallzeV.

3.5.1 Cauchy-Schwarz inequality

Recall from the geometry of R? that if Z and i are nonzero vectors
in R?, then the projection vector p, of Z along ¥ is given by

_ . <f537>2_»

Py = ~5
S lgl?

and it has less length atmost ||Z]|, that is, ||pyy|| < [|Z]|. Thus, we
have

(&, Dzl < 12| [1]]-
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Further, the vectors p, , and ¢, := & — P, are orthogonal, so that
by Pythagoras theorem,

1Z]1% = 1Payll* + |Gy I

Now, let us prove these concepts in the context of a general inner
product space.

First recall Pythagoras theorem from elementary geometry that if
a, b c are lengths of sides of a right angled triangle with ¢ being the
hypotenuse, then a? + b> = ¢?. Here is the generalized form of it in
the setting of an inner product space.

Theorem 3.4 (Pythagoras theorem) Suppose x andy are vectors
in an inner product space which are orthogonal to each other. Then

e+ yl1* = [l=]1* + lyll*.

Proof. Left as an exercise. (Follows by writing the norms in terms
of inner products and simplifying expressions.) |

Exercise 3.8 (i) If the scalar field is R, then show that the converse
of the Pythagoras theorem holds, that is, if ||z + y||?> = ||=||* + ||ly]|?,
then z 1 y.

(ii) If the scalar field is C, then show that the converse of Pythago-
ras theorem need not be true .

[Hint: Take V = C with standard inner product, and for nonzero
real numbers «, 5 € R, take © = o, y =i 3.] O

Theorem 3.5 (Cauchy-Schwarz inequality) Let V' be an inner
product space, and x,y € V. Then

[z, o) < [l lyll-

Equality holds in the above inequality if and only if x and y are
linearly dependent.

Proof. Clearly, the result holds if y = 0. So, assume that y # 0,
and let ug = y/||y||. Let us write z = u + v, where

u = (z,ug)up, v=x — (T, up)uo.
Note that (u,v) = 0 so that by Pythagoras theorem,

1 = [lull + [vll* = Kz, uo)* + ol|*.
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Thus, [(x,up)| < ||z|]. Equality holds in this inequality if and only if
v:=1x — (z,up)up = 0, i.e., if and only if x is a scalar multiple of y
if and only if 2 and y are linearly dependent. 1

As a corollary of the above theorem we have the following.

Corollary 3.6 (Triangle inequality) Suppose V is an inner prod-
uct space. Then for every x,y in V,

lz +yll < [zl + [lyll-

Proof. Let x,y € V. Then, using the Cauchy-Schwarz inequality,
we obtain

lz+yl? = (z+y,x+y)

(z,2) + (z,y) + (Y, 2) + (¥, )
= [lzl* + llyll* + 2 Re (z, y)
)1 + lyl1* + 2 [{z, )]

Iz )1® -+ lyll* + 2 (|| Iyl

= (=]l + llylH>.

IN N

Thus, ||z + y|| < ||lz|| + ||y| for every z,y € V. 1

Remark 3.1 For nonzero vectors x and y in an inner product space
V', by Schwarz inequality, we have

(=, y)|
eIl

<1

This relation motivates us to define the angle between any two nonzero
vectors x and y in V' as

0y, = cos ' (M>
i ]| Iy
Note that if © = cy for some nonzero scalar ¢, then 0., = 0, and if
(z,y) =0, then 6, , = 7/2.
3.5.2 Orthogonal and orthonormal sets

Theorem 3.7 Let V be an inner product space, and x € V. If
(x,y) =0 for ally € V, then x = 0.
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Proof. Clearly, if (x,y) =0 for all y € V, then (z,z) = 0 as well.
Hence x =0 1

As an immediate consequence of the above theorem, we have the
following.

Corollary 3.8 Let V be an inner product space, and ui,us, ..., U,
be linearly independent vectors in V. Let x € V.. Then

(x,u;) =0 Vie{l,....,.n} <= (z,y)=0 Vycspan{uy,...,up}.

In particular, if {ui,ug,...,u,} is a basis of V', and if (x,u;) = 0
forallie{1,...,n}, then z = 0.

Exercise 3.9 If dimV > 2, and if 0 # « € V, then find a non-zero
vector which is orthogonal to . %

Definition 3.6 (Orthogonal to a set) Let S be a subset of an
inner product space V, and x € S. Then z is said to be orthogonal
to S if (x,y) =0 for all y € S. In this case, we write z L S. The set
of vectors orthogonal to S is denoted by S+, i.e.,

St={zeV:z 1S}

O
Exercise 3.10 Let V be an inner product space.
(a) Show that V*+ = {0}.
(b) If S is a basis of V, then show that S+ = {0}. O

Definition 3.7 (Orthogonal and orthonormal sets) Let S be a
subset of an inner product space V. Then

(a) S is said to be an orthogonal set if (x,y) = 0 for all distinct =,
y € S, i.e., for every x,y € S, x # y implies z | y.

(b) S issaid to be an orthonormal set if it is an orthogonal set and
|lz|| =1 for all x € S.

O

Theorem 3.9 Let S be an orthogonal set in an inner product space
V. If0 &S, then S is linearly independent.
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Proof. Suppose 0 ¢ S and {uy,...,u,} € S. If aq,...,q are
scalars such that aju; + asue + ... + ayu, = 0, then for every
j€{l,...,n}, we have

n n

0= <z:l;auu]> = (aiug, ug) =Y o{ui,ug) = o uy, u).

i=1 i=1
Hence, a; =0 for all j € {1,...,n}. 1
By Theorem 3.9, it follows that every orthonormal set is linearly
independent. In particular, if V' is an n-dimensional inner product

space and F is an orthonormal set consisting of n vectors, then F is
a basis of V.

Definition 3.8 (Orthonormal basis) Suppose V is a finite di-
mensional inner product space. An orthonormal set in V' which is
also a basis of V is called an orthonormal basis of V. O

EXAMPLE 3.4 The standard basis {ey,...,e,} is an orthonormal
basis of F" w.r.t. the standard inner product on F". O

EXAMPLE 3.5 Consider the the vector space C[0, 27| with inner
product defined by

2

(f,9):= f(t)g(t)dt

0

for f,g € C[0,27]. For n € N, let
un(t) :=sin(nt), wv,(t) = cos(nt), 0<t<2nm.
Since
2 2T
/ cos(kt)dt =0 = / sin(kt)dt Vke€Z,
0 0

we have for n # m,

<unaum> = <UnaUm> = <unavn> = <un7vm> =0.
Thus, u, : n € N} is an orthonormal set in C[0, 27]. O

Exercise 3.11 If {e,...,e,} is the standard basis of F", then for
every i # j, e; +ej L e; —e; w.r.t. the standard inner product. ¢
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Exercise 3.12 Let V; and V5 be inner product spaces and F; =
{u1,...,un} and Ey = {vy,..., vy} be orthonormal bases of V; and
Vs, respectively. Let T' € L(V1, Va). Prove that

(a) [Tey,By = (Tuj, vi).

(b) (Tz,y) Y(xz,y) € Vi x Vo <= (Tuj,u;) = (us, Tuy)
Vi=1,....m;j=1,...,n. O

3.5.3 Fourier expansion and Bessel’s inequality

Theorem 3.10 Suppose V' is an inner product space, and {u1, ..., uy}
is an orthonormal subset of V.. Then, for every x € span{uy,...,un},
n n
2 2
= (wujuy, P =D e
j=1 J=1
Proof. Let x € span {u1,...,uy}, Then there exist scalars aj, o, ..., ay
such that

T = iUl + -+ apun.

Hence, for every i € {1,...,n},
(T, ui) = an(ug, ug) + -+ + ap(un, u;) = ;.
and

n n n n
HxHQ = (z,2) = <Z aiuiazajuj> = Zza¢@j<ui,uj>
i=1 j=1

i=1 j=1
n n

= > il = [ u)l”.
i=1 i=1

This completes the proof. I

The proof of the following corollary is immediate from the above
theorem.

Corollary 3.11 (Fourier expansion and Parseval’s identity)
If {uy, ..., un} is an orthonormal basis of an inner product space V.,
then for every x € V,

n

n
r =) {x,u5)uy, 21 = [, ug) .
j=1

J=1
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Another consequence of Theorem 3.10 is the following.

Corollary 3.12 (Bessel’s inequality) Suppose V' is an inner prod-
uct space, and {uy,...,u} is an orthonormal subset of V.. Then, for
every x € V,

n
> e up)? < el
j=1

n

Proof. Let x € V, and let y = Z@ﬂh)% By Theorem 3.10,
i=1

n
Iyll> = 1y, wi)l>.
=1

Note that (y,u;) = (z,w;) foralli € {1,...,n}, ie, (r—y,u;) =0 for
all © € {1,...,n}. Hence, (z —y,y) = 0. Therefore, by Pythagoras
theorem,

n
Izl = llyll® + llz = yl* = lyl® = D [z, u) .
i=1

This completes the proof. I

EXAMPLE 3.6 Let V = C]0,2n] with inner product (z,y) :=
2 N

o z(t)y(t)dt for x,y in C[0,27]. For n € Z, let u, be defined by

un(t) = t € [0,27].

Then it is seen that

< >_ I i(n_m)tdt_ 1 1fn:m,
tnotm) = € 10 ifn#m.

Hence, {u, : n € Z} is an orthonormal set in C[0,27]. By Theorem
3.10, if x € span{u; : j = —N,-N +1,...,0,i,...,N},

N

, ) 1 [% »
T = .ZN(M '™ with a, = 277/0 x(t)e " dt.
e
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Theorem 3.13 (Riesz representation theorem) Let V' be a finite
dimensional inner product space. Then for very linear functional
f:V —=F, there exists a unique y € V' such that

flz) =(z,y) VYzeV.

Proof. Let {u1,...,u,} be an orthonormal basis of V. Then,
n

by Corollary 3.11, every x € V can be written as x = Z(m,uj>uj.
j=1
Thus, if f: V — F is a linear functional, then

@) =S () flu) = 3 Flaghug) = <x f(ug')Uj>-
j=1 j=1 j=1

Thus, y := Z?:l f(uj)u; satisfies the requirements. To see the
uniqueness, let y; and y2 be in V' such that

flz) =(z,y1), f(x)=(x,y2) VaxeV.

Then
(T,y1 —y2) =0 VzeV

so that by Theorem 3.7, y; —y2 = 0, i.e., y3 = y2. 1

3.6 Gram-Schmidt Orthogonalization

A question that naturally arises is: Does every finite dimensional
inner product space has an orthonormal basis? We shall answer this
question affirmatively.

Theorem 3.14 (Gram-Schmidt orthogonalization) Let V' be
an inner product space and ui,us,...,u, are linearly independent
vectors in V. Then there exist orthogonal vectors vi,va, ..., v, in V
such such that

span{uy,...,up} =span{vy,...,vx} Vke{l,...,n}.

In fact, the vectors vy,ve, ..., v, defined by
vl = U
 (uke1,vj)
Vg1 = Ukt 7272}3-, k=1,2,...,n—1,
= (vvy)

satisfy the requirements.



60 Inner Product Spaces

Proof. We construct orthogonal vectors vi,ve,...,v, in V such
such that span {uy,...,ur} =span{vy,...,vx} forall k € {1,...,n}.
Let v1 = uy. Let us write ug as

U = aul + va,

where « is chosen in such a way that vy := uy — au; is orthogonal to
v, i.e., (ug — auy,vy) =0, ie.,

~ {ug,v1)

(v, o)
Thus, the vector
(u2,v1)
(v1,v1)
is orthogonal to v;. Moreover, using the linearly independence of
uy,ug, it follows that vy # 0, and span{uj,us} = span{vi,ve}.
Next, we write

Vo ‘= Uy —

Uz = (alvl + CMQ'UQ) + vs,

where v, g are chosen in such a way that vs := us — (1v1 + agv?)
is orthogonal to v; and wvs, i.e.,

<U3 — (ozlvl + OéQUQ),1)1> =0, <U3 — (alvl + O(QUQ), ’L)2> =0.

That is, we take

(uz, v1) (us3,v2)
a1 = N a9 = .
<111, Ul> <U27 122)
Thus, the vector
R O R (R
(v1,v1) (v2,v2)

is orthogonal to v; and vs. Moreover, using the linearly independence
of u1,us, us, it follows that vs # 0, and

Span {Ul, uz, u3} = Span {Ulv V2, 1)3}‘

Continuing this procedure, we obtain orthogonal vectors vy, vo, ..., v,
defined by
(ug+1,1) (uk+1,02) (Uk+1, Uk)
Vg1 = Ukt1 — v — vg— ... — —

<v1, 'U1> <712, Uz) <Uk, Uk>
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which satisfy

span {uy,...,ur} = span{vy,..., v}

for each k € {1,2,...,k—1}. 1

Exercise 3.13 Let V be an inner product space, and let uy, us, ..., uy
be orthonormal vectors. Define wy,ws, ..., w, iteratively as follows:

v

v1:=u; and wi = !

[[o]]

and for each k € {1,2,...,n — 1}, let
b v
k+1
Vky1 i= Ugg1 — Z(Ulc+17wi>wi and Wiy = :
- ol
Show that {wy,ws,...,w,} is an orthonormal set, and
span{wi,...,wi} =span{uy, ..., ug}, k=1,2,...,n.

From Theorem 3.14, we obtain the following two theorem.

Theorem 3.15 FEvery finite dimensional inner product space has an
orthonormal basis.

From Theorem 3.15 we deduce the following.

Theorem 3.16 (Projection theorem) Suppose V' is a finite di-
mensional inner product space and Vy is a subspace of V. Then there
exists a subspace W of V' such that

V=VW+W and VoL W.

Proof. If Vo =V, then W = {0}. Now, assume that dim (V') =n
and dim (Vy) = k < n. Let Ey = {ui,...,ur} be an orthonormal
basis of V. Now, extend Ey to a basis £ of V. Now, orthonormal-
ization of F' by Gram-Schmidt orthogonalization process will give
an orthonormal basis E = {uj,...,ug, Ugs1,...,uy} of V. Then
W = span {ug41, ..., u,} will satisfy the requirements. |1
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3.6.1 Examples

EXAMPLE 3.7 Let V = F? with standard inner product. Consider

the vectors u; = (1,0,0), ug = (1,1,0), uz = (1,1,1). Clearly,

w1, ug, uz are linearly independent in F3. Let us orthogonalize these

vectors according to the Gram-Schmidth orthogonalizaion procedure:
Take v = uy, and

(ug,v1)
(v, 1)

Vo = U9 —

Note that (vi,v1) = 1 and (ug,v1) = 1. Hence, va = ug — v; =
(0,1,0). Next, let

B (uz, v1) (u3,v2)
V3 = U3 — V1 — V2.
(v1,v1) (v2,v2)

Note that (va,v2) = 1, (us,v1) = 1 and (u3,vs) = 1 Hence, vz =
Ug — V1 — V2 = (0,0, 1). Thus,

{(1,0,0),(0,1,0),(0,0,1)}

is the Gram-Schmidt orthogonalization of {u, ug, us}. O

EXAMPLE 3.8 Again let V = F? with standard inner product.
Consider the vectors u; = (1,1,0), ug = (0,1,1), us = (1,0,1).
Clearly, w1, us, u3 are linearly independent in F3. Let us orthogonal-
ize these vectors according to the Gram-Schmidth orthogonalizaion
procedure:

Take v1 = uy, and

(ug, v1)

e (v1,v1)

Note that (v1,v1) =2 and (ug,v1) = 1. Hence,

ve = (0,1,1) — %(1, 1,0) = (=1/2,1/2,1).

Next, let
V3 = ug — <u3avl>v1 B <U3,'l)2>
(v1,v1) (v2,v2)
Note that (va,ve) = 3/2, (ug,v1) =1 and (us,ve) = 1/2 Hence,
1 1

vy = (1,0,1) — 5(1, 1,0) — 3(—1/2, 1/2,1) = (-2/3,2/3,-2/3).
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Thus,
{(1,1,0),(-1/2,1/2,1),(-2/3,2/3,—-2/3)}

is the Gram-Schmidt orthogonalization of {u1, ua, us}.

EXAMPLE 3.9 Let V =P be with the the inner product

1
(p,q>=/ p(t)q(t)dt,  p,geV.

-1
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Let u;(t) = t/=1 for j = 1,2,3 and consider the linearly independent
set {u1,uz,ug} in V. Now let vi(t) = uy(t) = 1 for all ¢t € [—1,1],

and let
(u2,v1)
(v1,v1)

Vo = U9 —

Note that

-1 -1

(t)
1 o 1
(ug,v1) :/ ug(t)vy (t) / tdt =

-1 -1

1 1
(v1,v1) = / vy (t)vr(t) dt = dt =2,
dt = 0.

Hence, we have va(t) = ua(t) =t for all t € [—1,1]. Next, let

_ (uz, v1) (ug, va)
V3 = U3 — v — V9.
(v1,v1) (v, v2)

Here,

1 1
<U3,v1):/ U3(t)v1(t)dt:/ t2dt:§,

-1 -1

(uz, vo) = /1 uz(t)ve(t) dt = /1 t3dt = 0.

-1 -1

Hence, we have v3(t) = t? — % for all t € [—1,1]. Thus,

1
1,682 — =
{,, 3}

is an orthogonal set of polynomials.
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Definition 3.9 (Legendre polynomials) The polynomials

Po(t),p1(t), p2(t) ...

obtained by orthogonalizing 1,t,¢2, ... using the inner product

1
(p,q) = / pOa®dt,  pageP,

-1
are called Legendre polynomials. O

It is clear that the n-th Legendre polynomial p,(t) is of degree n.
We have seen in Example 3.9 that

1

pot) =1, p(t)=t, paft)=1"— 3

Remark 3.2 For nonzero vectors x and y in an inner product space

V', by Schwarz inequality, we have

IS

lelllyll —

This relation motivates us to define the angle between any two nonzero
vectors x and y in V' as

6 = Cosfl (M)
Ty .
! ][ flyll
Note that if 2 = cy for some nonzero scalar ¢, then 6, , = 0, and if

(x,y) =0, then 8, , = 7/2.

Exercise 3.14 Let Vi and V5 be finite dimensional inner product
spaces, and F7 and FEs be ordered orthonormal bases of V; and V5
respectively. Let A : F" — F™ be the linear transformation corre-
sponding to the matrix [T']g, g,. Prove that

(Tz,y) = (Az,y)  V(z,y) € V1 x Vo
Deduce that (T'z,y) = (z,Ty) for all (x,y) € Vi x Vs if and only

[Tk, .k, is hermitian. O

3.7 Diagonalization

In this section we show the diagonalizability of certain type operators
as promised at the end of Section 2.7.3.
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3.7.1 Self-adjoint operators and their eigenvalues

Recall from the theory of matrices that a square matrix

aip aiz - A1n
az; a2 - A2n
anl Aap2 -+  Qpp

with complex entries is said to be hermitian if its conjugate transpose
is itself, that is,

ail aiz -+ Glp ail G210 Qpl
a1 G2 - G2p | | G12 @G22 - Gp2
anl Qap2 -+ QAapn Q1p Q2p *° Gpp

The real analogue of hermitian matrices are the so called symmetric
matrices, that is, matrices whose transpose is itself.

In the context of a general inner product space, there is a analogue
for the above concepts too.

Definition 3.10 A linear transformation 7" : V' — V on an inner
product space V is said to be a self-adjoint if

(Tz,y) = (z,Ty) Vz,yeV.

O

Suppose V is finite dimensional, E := {u1,...,uy} is an (ordered)

orthonormal basis of V, and T : V. — V is a self-adjoint linear
transformation. Then we have the following:

o (Tuj,ui) = (uj,Tu;) for all 4,j =1,...,n,
o F=C and V = C" implies [T]g g is a hermitian matrix,
e F=R and V =R" implies [T]g g is a symmetric matrix.
Observe that if T': V' — V is a self-adjoint operator, then
(Tz,x) e R VzeW.
Using this fact we prove the following.

Theorem 3.17 FEigenvalues of a self-adjoint operator are real.
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Proof. Let T : V — V be a self-adjoint operator and A € F be an
eigenvalue of T. Let x be a corresponding eigenvector. Then x # 0
and T'r = \xz. Hence,

(Tz,x) = Az, x) = Xz, x).
Since (Tx,z) and (x,x) is nonzero real, \ is also real. |1
Corollary 3.18 Figenvalues of a Hermitian matriz are real.
We also observe the following.

Theorem 3.19 Figenvectors associated with distinct eigenvalues of
a self-adjoint operator are orthogonal.

Proof. Let T : V — V be a self-adjoint operator and A and u be
distinct eigenvalues of T'. Let x and y be eigenvectors corresponding
to A and p, respectively. Then, we have

Mz, y) = (v, y) = (Tx,y) = (2, Ty) = (z, py) = p{z, y).
Hence, (z,y) =0. 1

Next we have another important property of self-adjoint opera-
tors.

Theorem 3.20 FEwvery self-adjoint operator on a finite dimensional
inner product space has an eigenvalue.

Proof. We already know that if F = C, then every linear operator
on a finite dimensional linear space has an eigenvalue. Hence, assume
that V' be an inner product space over R and T : V — V is self-
adjoint.

Let dim (V) = n and let A = (a;;) be a matrix representation
of T with respect to an orthonormal basis {uj,...,u,}. Then A as
an operator on C" has an eigenvalue, say A. Since A : C" — C" is
self-adjoint, A € R. Let z € C" be an eigenvector corresponding to
A, that is, x # 0 and Az = Az. Let u and v be real and imaginary
parts of z. Then we have

A(u+iv) = Mu + iv).

Therefore,
Au = Au, Av = .
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Since x is nonzero, at least one of u # 0 and v # 0 is nonzero.
Without loss of generality, assume that w # 0. Thus, If a1,...,a,
are the coordinates of u, then u := E?:l aju; satisfies the equation
Tu=u. |

In the Appendix (Section 3.11) we have given another proof for
Theorem 3.20 which does not depend on the matrix representation
of T.

We end this subsection with another property.

Theorem 3.21 Let T : V — V be a self-adjoint operator on a finite
dimensional inner product space V. and Vy be a subspace of V.. Then

T(Vo) CVo=T(Vg) C Vg

Proof. Suppose V} is a subspace of V such that T'(Vy) C Vy. Now,
let x € VOL and y € Vy. Since Ty € Vg, we have

(Tz,y) = (x,Ty) = 0.
Thus, Ty € Vg~ for every y € V5. 1

3.7.2 Diagonalization of self-adjoint operators

First we prove the diagonalization theorem in the general context.
Then state it in the setting of matrices.

Theorem 3.22 (Diagonalization theorem) Let T : V — V be a
self-adjoint operator on a finite dimensional inner product space V.

Then there exists an orthonormal basis for V consisting of eigenvec-
tors of T'.

Proof. Let A1, ..., A\ be distinct eigenvalues of 1" and let
Vo=NA-XMNI)+...+ NA—-X\I).

Then the union of orthonormal bases of N(A—AI),..., N(A—AI)
will be an orthonormal basis of V. Thus, if Vj = V, then we are
through.

Suppose Vg # V. Then Vg~ # 0 (See Theorem 3.16). Now, it can
be easily seen that T'(Vp) C Vp. Hence, by Theorem 3.21, T(W) C W.
Also, the operator 17 : VOL — VOL defined by Tix = Tx for every
x € Vg- is self-adjoint. Hence, T} has an eigenvalue, say \. If x € V-
is a corresponding eigenvector, then we see also have Tx = Ax, so
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that A = \; for some j € {1,...,k}. Therefore, z € N(T—\;I) C V.
Thus, we obtain
0#2€VynVg = {0},

which is clearly a contradiction. |1

We observe that, the method of the proof of the above theo-
rem shows that, if T': V' — V is a self-adjoint operator on a finite
dimensional inner product space V and Aq,...,\; are the distinct
eigenvalues of T" and if {uj1,...,ujm;} is an ornthonromal basis of
the eigenspace N(T' — A\;I) for j = 1,...,k, then the matrix repre-
sentation of T" with respect to the ordered basis

{U1t, - Uiy U215 - Uy - e e s ULy - - 5 Uk |
is a diagonal matrix with diagonal entries
Alyeooy ALy A2 ooy A2y ey Ay e oy AR
with each \; appearing m; times where
mi+...+my =dim(V), mj =dim N(T —M\;I), j=1,... k.

If A is a square matrix, then let us denote the conjugate transpose
of A by A*. For the next result we introduce the following definition.

Definition 3.11 A square matrix A with entries from F is said to
be a

1. self-adjoint matriz if A* = A, and

2. unitary matrix if A*A=1= AA*.

We note the following (Verify!):

e If A is unitary then it is invertible and A* = A~! and columns
of A form an orthonormal basis for F”.

In view of Theorem 3.22 and the above observations, we have the
following.

Theorem 3.23 Let A be a self-adjoint matriz. Then there exists a
unitary matriz U such that U"YAU is a diagonal matriz.



Best Approximation 69

3.8 Best Approximation

In applications one may come across functions which are too com-
plicated to handle for computational purposes. In such cases, one
would like to replace them by functions of ”simpler forms” which
are easy to handle. This is often done by approximating the given
function by certain functions belonging to a finite dimensional space
spanned by functions of simple forms. For instance, one may want
to approximate a continuous function f defined on certain interval
[a, b] by a polynomial, say a polynomial p in P,, for some specified n.
It is desirable to find that polynomial p such that

If=pl <|f—4qll VgqePn.

Here, ||.|| is a norm on Cf[a,b]. Now the question is whether such
a polynomial exists, and if exists, then is it unique; and if there is
a unique such polynomial, then how can we find it. These are the
issues that we discuss in this section, in an abstract frame work of
inner product spaces.

Definition 3.12 Let V be an inner product spaceand Vj be a sub-
space of V. Let x € V. A vector zg € V) is a called a best approx-
imation of = from Vj if

|z — zo|| < ||z — Yovel.

O

Proposition 3.24 Let V be an inner product space , Vyy be a subspace
of V, and x € V. If xg € Vjy is such that x — xg L Vg, then xg is a
best approximation of x, and it is the unique best approximation of
x from Vj.

Conversely, if xo € Vg is a best approrimation of x, then x —xqg L

V.

Proof. Suppose o € Vj is such that x —xzg L Vj. Then, for every
u € Vo,

le —ul* = |l(z = w0) + (w0 — w)|*

= |l —o|* + [lwo — ul®.

Hence
|z — 2ol <z —v|  Vve,
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showing that xg is a best approximation.
To see the uniqueness, suppose that vy € Vj is another best ap-
proximation of x. Then, we have

[ = zol| < [l —wol| and [l —wvol| < [l — o],

so that |[x — xg|| = |l@ — wvol|]. Therefore, using the fact that
(x — x0, 9 — v9) = 0, we have

|z = voll” = ||lz — mol|” + |lwo — vol|*.

Hence, it follows that ||xg — vo|| = 0. Thus vy = xo.
Conversely, suppose that xop € Vp is a best approximation of x.
Then ||z — z¢|| < ||z — ul| for all u € Vp. In particular, if v € 1},

|z — xo|| < ||z — (zo + av|| Va €F.

Hence, for every a € T,

A

Iz — o] |z — (2o + avl|®

= ((x —z9) + av, (x — z9) + av)

= |z — z0|* = 2Re(z — 9, av) + |a?|v|*.
Taking o = (z — z0,v)/||v]|?, we have

2
T — xg,V
(@ — o, av) = LEZ 2000 22

|v]]?
so that
lz = zol® < |z — xo|]? — 2Re(x — z0, av) + af?Jv]?
‘<$ - xo,UH
= ||z — x| - —H
[[v]|2

Hence, (z — zg,v) =0. |

By the above proposition, in order to find a best approximation
of x € V from V,, it is enough to find a vector xy € Vj such that
x —xg L Vy; and we know that such vector zg is unique.

Theorem 3.25 Let V be an inner product space, Vi be a finite di-
mensional subspace of V., and x € V. Let {ui,...,u,} be an or-
thonormal basis of Vo. Then for x € V, the vector

n

Ty 1= Z(:U,uﬁul

=1

is the unique best approximation of x from V.



Best Approximation 71

Proof. Clearly, zog := Y i ,(x,u;)u; satisfies the hypothesis of
Proposition 3.24. 1

The above theorem shows how to find a best approximation from
a finite dimensional subspace Vj, provided we know an orthonormal
basis of Vj. Suppose we know only a basis of V5. Then, we can find
an orthonormal basis by Gram-Schmidt procedure. Another way to
find a best approximation is to use Proposition 3.24:

Suppose {vi,...,v,} is a basis of Vy. By Proposition 3.24, the
vector x that we are looking for should satisfy (x — xg,v;) for every
i =1,...,n. Thus, we have to find scalars a;, ..., a, such that

n
<x—2ajvj, Ui>:0 Vi=1,...,n.
j=1

That is to find aq, ..., a, such that

n

S (g, vy = (@) Vi=1,...n.

j=1

The above system of equations is uniquely solvable (Why?) to get
ai,...,ap. Note that if the basis {vy, ..., v,} is an orthonormal basis
basis of Vp, then o = (z,v;) for j=1,...,n.

Exercise 3.15 Show that, if {v1,...,v,} is a linearly independent
subset of an inner product space V, then the columns of the matrix
M := (ai;) with a;; = (vj,v;), are linearly independent. Deduce
that, the matrix is invertible. O

EXAMPLE 3.10 Let V = R? with usual inner product, and Vy =
{x = (z1,72) € R? : 1 = m2}. Let us find the best approximation of
x = (0,1) from Vj.

We have to find a vector of the form g = (o, @) such that z—z¢ =
(0,1) = (o, ) = (—a, 1 — @) is orthogonal to Vj. Since Vj is spanned
by the single vector (1,1), the requirement is to find « such that
(—a,1 — «) is orthogonal to (1,1), i.e., a has to satisfy the equation
—a+ (1 —a =0, ie, a = 1/2. Thus the best approximation of
x = (0,1) from Vj is the vector zg = (1/2,1/2). O

EXAMPLE 3.11 Let V be the vector space C|0, 1] over R with the
inner product: (x,u) = fol x(t)u(t)dt, and let Vo = P;. Let us find
the best approximation of = define by z(t) = ¢* from space Vj.
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We have to find a vector xg of the form z¢(t) = ag + a1t such
that the function x — zg defined by (z — zo)(t) = t*> — ag — ayt is
orthogonal to Vj. Since Vj is spanned by u1, ug where u;(t) = 1 and
ug(t) = t, the requirement is to find ag,a; such that

1
(x — mo,u1) = / (t? — ag — ayt)dt =0,
0

1
(x — xo, ug) = / (t3 — agt — a1t?)dt = 0.
0

That is

1
/(ﬁ—wm—aﬁﬂt—ﬁWS—a@—aﬁWﬂé—lB—wm—aﬁ2—Q
0

1
/ (t3—agt—at®)dt = [t*/4—apt? /2—a1t3 /3]y = 1/4—ap/2—a1/3 = 0.
0

Hence, ag = —1/6 and a; = 1, so that the best approximation z( of
t2 from P is given by xo(t) := —1/63 + t. O

Exercise 3.16 Let V' be an inner product space and Vg be a finite
dimensional subspace of V. Show that for every x € V, there exists
a unique pair of vectors u,v with v € Vj and v € VOJ- satisfying
xr =u+ v. In fact,

V=V+V. ¢

Exercise 3.17 Let V = C|0, 1] over R with inner product (z,u) =
fol z(t)u(t)dt. Let Vo = P3. Find best approximation for z from Vj,
where z(t) is given by

(i) e!, (ii) sint, (iii) cost, (iv) t*. O

3.9 Best Approximate Solution

In this section we shall make use of the results from the previous
section to define and find a best approximate solution for an equation
Az = y where A : V) — V5 is a linear transformation between vector
spaces V7 and Vs with V5 being an inner product space.
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Definition 3.13 Let V4 and V5 be vector spaces with Vo being an
inner product space, and let A : V3 — V5 be a linear transformation.
Let y € Va. Then a vector xg € V; is called a best approximate
solution or a least-square solution of the equation Az = y if

[Azo —yll < [Au —yll  Vue Vi

O

It is obvious that xy € V; is a best approximate solution of Az =
y if and only if yg := Axg is a best approximation of y from the
range space R(A). Thus, from Proposition 3.24, we can conclude the
following.

Theorem 3.26 Let Vi and Vo be vector spaces with Vo being an
inner product space, and let A : Vi3 — Va be a linear transformation.
If R(A) is a finite dimensional subspace of Vo, then the equation
Az =y has a best approximate solution. Moreover, a vector xg € Vi
is a best approximate solution if and only if Axg —y is orthogonal to

R(A).

Clearly, a best approximate solution is unique if and only if A is
injective.

Next suppose that A € R™*" ie., A is an m X n matrix of real
entries. Then we know that range space of A, viewing it as a linear
transformation from R™ to R™, is the space spanned by the columns
of A. Suppose u1,...,u, be the columns of A. Then, given y € R™,
a vector zg € R" is a best approximate solution of Ax = y if and
only if Axg — y is orthogonal to u; for i = 1,...,n, i.e., if and only if
ul' (Avg—y) =0 fori=1,...,n, ie., if and only if AT (Azg—y) =0,
i.e., if and only if

AT Azg = ATy,
11 0
EXAMPLE 3.12 Let A = 0 0 and let y = uE Clearly, the
equation Ax = y has no solution. It can be seen that xy = _i

is a solution of the equation ATAz = ATy. Thus, zg is a best
approximate solution of Ax = y.

O



74 Inner Product Spaces

3.10 QR-Factorization and Best Approximate
Solution

Suppose that A € R™*" ie., A is an m X n matrix of real entries
with n < m. Assume that the columns of A are linearly independent.
Then we know that, if the equation Az = y has a solution, then the

solution is unique. Now, let uq,...,u, be the columns of A, and
let vy, ..., v, are orthonormal vectors obtained by orthonormalizing
Ui, ..., u,. Hence, we know that for each k € {1,...,n},

span {uy,...,ur} = span{vi,..., v}

Hence, there exists an upper triangular n x n matrix R := (a;;) such

that Uj = a1;v1 + a2jV2 + ... + anjvy, j=1,...,n. Thus,
[ur, ug, ..., uy] = [v1, vo, ..., vy)R.
Note that A = [u1, ug, ..., uy], and the matrix Q := [v1, va, ..., Uy]

satisfies the relation

QTQ=1

Definition 3.14 The factorization A = QR with columns of () being
orthonormal and R being an upper triangular matrix is called a QR-
factorization of A. O

We have see that if columns of A € R™*™ are linearly indepen-
dent, then A has a QR-factorization.

Now, suppose that A € R™*™ with columns of A are linearly
independent, and A = QR is the QR-factorization of A. Let y € R™.
Since columns of A are linearly independent, the equation Az = y
has a unique best approximate solution, say xg. Then we know that

AT Axy = ATy
Using the QR-factorization A = QR of A, we have
R'Q"QRxo = R"Q"y.
Now, QTQ = I, and R” is injective, so that it follows that

Rz = QTy.
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Thus, if A = QR is the QR-factorization of A, then the best approx-
imate solution of Az = y is obtained by solving the equation

Rz = Q1y.

For more details on best approximate solution one may see
http://mat.iitm.ac.in/~mtnair/LRN-Talk.pdf

3.11 Appendix

Another proof for Theorem 3.20. Assuming F = R, another
way of proving Theorem 3.20 is as follows: Consider a new vector
space V := {u+iv:u,v € V} over C. For u+ iv, uj + ivy, ug + tve
in V and o + if) € C with (a,8) € R? the addition and scalar
multiplication are defined as

(u1 +iv1) + (u2 +dve) := (u1 + u2) + i(v1 + v2),
(a4 if)(u+iv) := (au — [v) +i(av + pu).
The inner product on V is defined as
(ug + vy, ug + ivg) := (uy, ua) + (vi,v2).
Deﬁnef:f/—>‘7by
T(u+ iv) := Tu + iTv.

Then, self-adjointness of T implies that T is also self-adjoint. Indeed,

(T'(u1 +ivy), ug + ive) (T'uy +iTv1), ug + ivs)
(T'uy, ug) + (Tvy,v2)
= (uy,Tug) + (v1,Tv2)
(uy + vy, Tug + iTv9)
(ug + vy, (ug + iv9)).
Now, let A € R be an eigenvalue of T with a corresponding eigenvec-
tor & := u + tv. Since

Ti = \i = Tu+iTv =M+ i v < Tu=\u&Tv=M

and since one of u and v is nonzero, it follows that A is an eigenvalue
of T as well. 1
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Error Bounds and Stability of
Linear Systems

4.1 Norms of Vectors and Matrices

Recall that a norm || - || on a vector space V is a function which
associates each z € V a unique non-negative real number ||z|| such
that the following hold:

(a) Forz eV, |z]|=0 < 2=0
(b) flz+yll <ll=ll + llyll  Vz,y €V,
(©) llez]| = laf||lz]| Ya eF, zeV.

We have already seen that if V' is an inner product space, then
the function z — ||z| := (x,2)'/? is a norm on V. It can be easily
sen that for = = (21,22, ...,2) € R¥,

k
]y = Z; il lalloo = mas fa]
=

define norms on R¥. The norm induced by the standard inner prod-
uct on R* is denoted by || - ||z, i.e.,

k
1/2
2
ol == (D lal?)
j=1
Exercise 4.1 Show that ||z]|e < ||z]l2 < ||z|l1 for every 2 € RF
Compute |[z]loo, [|#[l2, [|#[[1 for z = (1,1,1) € R

We know that on Cla, b],
b 1/2
Jollai= (w,0)/2 = ([ fao)Pat)

76
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defines a norm. It is easy to show that

b
folli= [ la@ldt ol = marfo(t)

also define norms on Cfa, b].

Exercise 4.2 Show that there exists no constant ¢ > 0 such that
|z]|co < ¢||z]]1 for all x € Cla, b].

Next we consider norms of matrices. Considering an n X n matrix
2 . .
as an element of R™, we can obtain norms of matrices. Thus, ana-
n — nxn
logues to the norms || - ||, - [|2, || - [loc o0 R™, for A = (a;;) € R™*™,
the quantities

3N lail, <ZZ\%‘| ) ; 127?};”\%\

i=1 j=1 i=1 j=1

define norms on R™*".
Given a vector norm || - || on R™, it can be seen that

|A]| := sup ||Az]], AeRYV,
2l <1

defines a norm on the space R™*™. Since this norm is associated with
the norm of the space R", and since a matrix can be considered as
a linear operator on R"”, the above norm on R™*" is called a matrix
norm associated with a vector norm.

The above norm has certain important properties that other norms
may not have. For example, it can be seen that

o [[Az| < [|A|[lz]] VzeR",
o |Az|| <c|z|| VzeR" = ||4| <ec,.
Moreover, if A, B € R™" and if I is the identity matrix, then

o [|ABI < [IAIBI, ]l =1.

Exercise 4.3 Let ||| be a norm on R™ and and A € R"*™. Suppose
¢ > 0is such that || Az|| < c||z]| for all z € R™, and there exists xg # 0
in R™ such that ||Azg|| = ¢||xo||. Then show that | Al = c.
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In certain cases operator norm can be computed from the knowl-
edge of the entries of the matrix. Let us denote the matrix norm asso-
ciated with ||-||; and || -||ec by the same notation, i.e., for p € {1, 00},

[Allp = sup [|Az[,, ~— A€R™™

l|lzlp<1

Theorem 4.1 If A = (a;;) € R"™", then

[A[ly = max Z laijl, Ao = max Z |aijl-

1<j<n 1<i<n

Proof. Note that for x = (z1,...,z,) € R",

s = 0[S <30 sl

=1 j=1 =1 j=1
n n

= > (Xtail) eyl < ((max Zrau ) Zm\
Jj=1 =1

Thus, HAHl < maxi<;j<n Z?:l |al~j|. AISO, note that HAejﬂl = Z?:l |aij|
for every j € {1,...,n} so that > | |a;;| < ||A|: for every j €

{1,...,n}. Hence, maxi<j<pn iy laij| < ||A]l1. Thus, we have
shown that
Al = max Z .
Next, consider the norm || - || on R™. In this case, for z =
(z1,...,2y) € R™ we have

n
e = mae |3 angs|
J:

Since
n n

n
> ass| <3 lagl a1 < olloo D las),
j=1

Jj=1 Jj=1
it follows that

Azl < (maxz ais|) 2l
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n
From this we have ||Al| < max E laij|. Now, let ig € {1,...,n}
lizn £

be such that ax Z la;;| = Z lai,;], and let xp = (a1, ..., ap) be
: o
L |a103|/am] if aioj # 0, _
such that a; = { 0 ifa; 5 # 0. Then ||xg]|cc = 1 and

n n
S laingl = |3 aigos| = 1(4z0)i,| < [ Az0]l0 < 4]
i=1 j=1

Thus, max Z la;j| = Z |aipj| < ||Alloo. Thus we have proved that

[Alloc = max Z |agj]-

1<i<n
This completes the proof of the theorem. |

What about the matrix norm

|All2 ;== max ||Az|2, A€ R™",
=<1

induced by || - |]2 on R"? In fact, there is no simple representation
for this in terms of the entries of the matrix. However, we have the
following.
Theorem 4.2 Suppose A = (a;;) € R™*". Then
1/2
4 < (33 Jau?)

=1 j=1

If M\, Ao, ..., Ay are the (non-negative) eigenvalues of the matriz

AT A, then
|All2 = max VA
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Proof. Using the Cauchy-Schwarz inequality on R™, we have, for
x = (x1,...,2,) €ER",

n
lAzl} = |3 ayay

IN
(=
—
(3=
E)
<.
T
~
—
=)
<
o
~—
—_

i=1 j=1 j=1
n n
< (DX lawl) el
i=1 j=1
n o n ) 1/2
Thus, ||A]] < (Zme ) .

i=1 j=1
Since AT A is a symmetric matrix, it has n real eigenvalues (may
be some of the are repeated) with corresponding orthonormal eigen-
vectors uj, Uy, ..., u,. Note that, for every j € {1,2,...,n},

Aj = Ajlug ug) = (g, ug) = (AT Auj, ug) = (Auy, Aug) = || Aug®
so that \;” s are non-negative, and |\;| < ||A|| for all j. Thus,

Jh < AL
nax 5 < |IA4]]

To see the reverse inequality, first we observe that uy, uy, . .., u, form
an orthonormal basis of R™. Hence, every z € R" can be written as
x=>"_{x,uj)u;, so that

]:1 y 47 7

n n

AT Az = Z(x,uj>ATAuj = Z(aj,uj>)\juj.

j=1 j=1

Thus, we have ||Az|? = (Ax, Az) = (AT Az, z) so that

|Az|? = <Z<x,uj>xjuj,2<x,ui>ui>

j=1 i=1

= > Kz up)P
j=1

< <max )\j> |2
1<j<n

Hence, ||A|2 < maxi<j<pny/Aj. This completes the proof. |

A
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Exercise 4.4 Find ||A||1, ||Al|co, for the matrix A =

W N =
N W N
— oW

4.2 Error Bounds for System of Equations

Given an invertible matrix A € R™"™ and b € R", consider the
equation
Ax =b.

Suppose the data b is not known exactly, but a perturbed data bis
known. Let £ € R™ be the corresponding solution, i.e.,

Az = b.

Then, we have z — % = A~ (b — b) so that

N T “1yp iy Az g lle =Bl
- - AT T
16=b]l < [|A[l lz—z]| = [|A]| lz—Z]| < [[Al[A™] 161]-
[l ]
Thus, denoting the quantity || Al ||A~!|| by x(A),
Loo=bf _ [lz— 2| Ib — bl
< < k(A) (4.1)
r(A) o] ] 1]l

From the above inequalities, it can be inferred that if k(A) is large,
then it can happen that for small relative error ||b—b||/||b] in the
data, the relative error ||z — Z||/||z|| in the solution may be large. In
fact, there do exist b,B such that

e — 2] 15— B
= k(A ,
STy

]

where z, # are such that Az = b and A% = b. To see this, let z¢ and
u be vectors such that

1Azoll = Al lwoll, — [1A™ ull = AT [Jull,

and let }
b:=Axg, b:=b+u, I:=mx9+ A lu.
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Then it follows that A% = b and

lwo — @ _ Al ATl JAITA™ ]l (A)

_ =
lool ~ Twoll Tl | Aol

1]

The quantity x(A) := ||A||[|[A™!|| is called the condition num-
ber of the matrix A. To illustrate the observation in the preceding
paragraph, let us consider

. 1 14+¢ . bl
Sl FE R I b

It can be seen that

1 1 —1—¢ 110
-1_ + S PR B |
A _62|:1+6 1 ] so that == A""b 5{62]'
From this, it is clear that, if € is small, then for small ||b]|, ||z|| can
be very large. In this case, it can be seen that

_ 1
llle =242, 147 oo = (2 =) n(4) = (

24eN\2 4
) >
€ €
In practice, while solving Az = b by numerically, we obtain an
approximate solution Z in place of the actual solution. One would
like to know how much error incurred by this procedure. We can
have inference on this from (4.1), by taking b := Az.

Exercise 4.5 Let A € R™ " be an invertible matrix. Then there ex-
ist vectors x, u such that || Axg|| = || Al ||zo| and ||A" u| = ||A7Y| ||ul|
— Justify.

Exercise 4.6 1. Suppose A, B in R™ ™ are invertible matrices,
and b,b are in R". Let x,Z are in R" be such that Az = b and
Bz = b. Show that

| — | “y(IA=Bl | lb—b]
<A+ )

[Hint: Use the fact that B(x — %) = (B — A)z + (b — l~)),~and
use the fact that |[(B — A)z| < ||B — Al|||lz][, and [|b — b =
[[b = bll[[Az|[/llb]l < [1b— bILA[] 1]l /[[b]].]

2. Let B € R™™. If | B|| < 1, then show that I — B is invertible,
and [|(I - B)~'| < 1/(1 — || B]).

[Hint: Show that I — B is injective, by showing that for every
z, |(I = B)z|| > (1 — ||B]])||z||, and then deduce the result.]
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3. Let A, B € R™"™ be such that A is invertible, and [|[A — B|| <
1/|[A=Y||. Then, show that, B is invertible, and

1A~
A= BIH{lA=H
[Hint: Observe that B = A — (A — B) = [I — (A — B)A™1]A,
and use the previous exercise. |

1B~ <
1—

4. Let A, B € R™" be such that A is invertible, and ||A — B|| <
1/2||A~Y|. Let b,b,z,% be as in Exercise 1. Then, show that,
B is invertible, and

: lA-B| b5
< 2x(A + .
2l O )

[Hint: Apply conclusion in Exercise 3 to that in Exercise 1.]
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Fixed Point Iterations for
Solving Equations

Suppose S is a non-empty set and f : S — S is a function. Our
concern in this chapter is to find an = € S such that z = f(z).

Definition 5.1 A point z € S is called a fixed point of f: S — S
if z = f(x).

It is to be mentioned that a problem of finding zeros of a func-
tion can be converted into a problem of finding fixed points of an
appropriate function. A simplest case is the following:

Suppose S is a subset of a vector space V and g : S — V. Then
for x € S,

g(x) =0 if and only if =z = f(z),

where f(z) =z — g(z). Thus, if x — g(x) € S for every x € S, then
the problem of solving g(z) = 0 is same as finding a fixed point of
f:8—-5.

It is to be remarked that a function may not have a fixed point
or may have more than one fixed point. For example

e f:R — R defined by f(z) =« + 1 has no fixed point,
e f:R — Rdefined by f(x) = 2z+1 has exactly one fixed point,
e f:R — R defined by f(z) = 22 has exactly two fixed point,

e f:R? — R? defined by f(x1,22) = (72, 1) has infinitely many
fixed points

e f:C|0,1] — C|0,1] defined by f(x)(t) = fg x(s)ds has no fixed
point.

84
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Now, suppose that S is a subset of a normed vector space V with
anorm | -||. For finding a fixed point of f : S — S, one may consider
the following iterative procedure to construct a sequence (z,) in S:

Start with some g € S, then define iteratively
Tn = f(Xp-1), n=1,2,....

One may enquire whether (x,,) converges to a fixed point

of f.

Suppose the above iterations converge to some x € V, i.e., sup-
pose there exists an 2 € V such that ||z — z,| — 0 as n — oo. Then
the question is whether z € S and f(x) = x.

We require the following definition.

Definition 5.2 Let S be a subset of a normed vector space V', and
f:85—-25.

(a) The set S is said to be a closed set if it has the property
that x € V and = = lim,,_~ 2, for some sequence (z,,) in S implies
xeSs.

(b) The function f is said to be continuous (on S) if for every
sequence (x,) in S which converges to a point = € S, the sequence

(f(zp)) converges to f(x).

Using the above definition, the proof of the following proposition
is obvious.

Proposition 5.1 Suppose S is a subset of a normed vector space
V,and f : S — S. Let xyg € S, and (z,) is defined iteratively by
Ty, = f(xn—1) for n € N. Suppose that (zy) converges to an z € V.
If f is continuous and S is closed then x is a fived point of f.

In the above proposition the assumption that the sequence ()
converges is a strong one. Sometimes it is easy to show that a se-
quence is a Cauchy sequence.

Definition 5.3 Let V be a normed vector space V. A sequence (x,)
is V is said to be a Cauchy sequence if for every ¢ > 0 there exists
a positive integer N such that ||z, — zp,|| < € for all n,m > N.

A normed space in which every Cauchy sequence converges is
called a Banach space
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Examples of Banach spaces are
o R¥ with || -1 or || [l2 or || - [loc,
o (Ca,b] with ||z]|co := max{|z(t)| : a <t < b}.

It is known that every finite dimensional vector space with any
norm is a Banach space, whereas every infinite dimensional space
need not be a Banach space with respect to certain norms. For
instance, it can be shown easily that, C[a, b] with the norm ||z|; :=

b z(t)|dt is not a Banach space.
fa p

Theorem 5.2 Suppose S is a closed subset of a Banach vector space
V,and f: S — S satisfies

1f(@) = fWl <plz—yl  Va,yes,

for some constant p satisfying 0 < p < 1. Then f has a unique fized
point. In fact, for any xg € S, if we define

Tn = f(Xn-1), n=12,...,

iteratively, then (x,) converges to a unique fized point © € S of f,
and

st — @all < pllan — wacill < p"ller —z0ll  Vn €N,

|1 — zo]]  Vn>m,

m
e =2l < 35

V2

H:U—aanglp o1 — 20| Vn e N.

—p
Proof. Let o € S, and define
Tn = f(xp-1), n=1,2,....
Then
[2nt1 = znll = 1f (2n) = f(znall < pllen —2znall YR €N,

so that
[Zn41 — znll < p"llz1 —20l] VR EN.
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Now, let n > m. Then

[Zn —Zm|l < 2w — a1l + [|2n-1 — Zp2|l + ... + [Tmg1 — 20|
< (PP 4 ™) e — ol
m
< 1_p”$1*$0‘|-

Since p™ — 0 as m — o0, (x,) is a Cauchy sequence. Since V is a
Banach space (x;,) converges to some x € V, and since S is a closed
set, x € S. It also follows that, for all m € N,

|2 — 2] = lim [y — || < L—|l21 — 0]
n—o0o 1

Observe that

o= f@)l < [[(@—2zm) + (2m — f(@)]

< e —amll + llzm — f(2)]]

< e —zml + pllzm- — 2]
pm pmfl

< 1 — ol + p 1 — 2ol
L=p L=p
2p™

< 1 = @ol|-
L=p

Since p™ — 0 as m — oo, it follows that ||z — f(z)|| = 0, i.e.,

x = f(x), i.e., z is a fixed point of f. Now, to show that there is
only one fixed point of f, suppose u and v are fixed points of f, i.e.,
u= f(u) and v = f(v). Then we have

lu = vl = [f(u) = F)Il < pllu -

so that (1 — p)|lu —v|| < 0. Since 1 — p > 0 and ||lu — v|| <0, we see
that [[u —v]| =0, e, u=uv. §

Remark 5.1 For certain functions f : S — V, sometimes one may
be able to show that || f(z) — f(y)|| < pllz — y|| for all z,y € S for
some p > 0, but the condition “f(x) € S for all z € S” may not
be satisfied. In this case the above theorem cannot be applied. For
example, suppose f : [1,2] — R be defined by f(x) = /2. Then, we
have | £(2) — f(y)| = plz —y| with p = 1/2, but f(3/2) = 3/4 & [1,2].

Now, suppose that || () — f(y)ll < pllz — || for all 7,y € S and
if we also know that
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(i) f has a fixed point z*, and
(ii) S contains D, := {z € V : ||z — z*|| < r} for some r > 0.
Then it follows that f(z) € D, for all x € D,. Indeed, for x € D,,

1f (@) = 2™l = £ (2) = fF@)]| < plle — 2™ <z =27 <7

Thus, under the additional assumptions (i) and (ii), we can generate
the iterations with any x¢ € D,.

Remark 5.2 In order to have certain accuracy of the approximation,
say for the error ||x — z,|| to at most € > 0, we have to take n large

enough so that
7

I—p

that is, error ||z — z,|| < e > 0 for all n satisfying

o (ller = zoll /(1 = )
"= log(1/p) '

5.1 Iterative Methods for Solving Az =0

Suppose A € R™*™ and b € R™. We would like to convert the problem
of solving Ax = b into that of finding a fixed point of certain other
system. In this regard, the following result is of great use.

1 — @0l <,

Theorem 5.3 Let C € R™" and d € R™. Let (9 € R" be given
and %) € R™ be defined iteratively as

z®) = cz-1 +d, n=12,....

If||C|| < 1, then () converges to a (unique) fived point of the
system x = Cx + d and

lz — =™ < Iz =2, p=|C.

Proof. Let F: R"™ — R" be defined by
F(z)=Cx+d, xzeR"
Then we have
1F(z) = Fy)ll = [Cz =)l < [IC]l l2 = yl-

Hence, the result follows from Theorem 5.2. 1
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Now let A € R™™™ and b € R™. Note that for € R",
Az =b <= z=(I—-A)z+b.
Hence, form Theorem 5.3, the iterations
a® = (1 - )z +b, n=1,2,...

converges to a unique solution of Az = b, provided ||I — A|| < 1.

EXAMPLE 5.1 Consider the system Ax = b with

3 1 1 11 1
T 3 3 T 7 4
A= 1 9 9 so that A—-1T= i 3 9
114 i1 9
6 3 5 6 3 5

Thus, it follows that ||I — A|l.c = 35/36 and |I — Al; = 31/30.
Thus, the error estimates for the above described iterative procedure
for this example is valid if we take || - || on R3, but not with || - [|;.

The idea of resorting to an iterative procedure for finding approx-
imate solution of Ax = b is when it is not easy to solve it exactly.
Suppose we can write A = A + Ao, where the system Ajx = v can
be solved easily. Then, we may write Ax = b as Ajx = b — Asx, so
that the system Ax = b is equivalent to the system

T = Aflb — AflAgx.
Suppose, for a given z(?), we define 2 by
AliL‘(k) = b—Agx(kfl), k=1,2,....

Then, by Theorem 5.3, if ||A]*As|| < 1, then (z(®)) converges to a
unique solution of x = Al_lb — Al_lAgx which is same as Az = b.
5.1.1 Jacobi Method

Let A = (a;j) be an n x n matrix. In Jacobi method, we assume that
a;; # 0 for all i = 1,...,n, and define the Jacobi iterations by

O ai [bl. _ Zaijxgk*)}, k=1,2,...
v J#i

for ¢ = 1,...,n. This is equivalent to splitting of A as A = A} +
Ao with Ay being the diagonal matrix consisting of the diagonal
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entries of A. Thus, convergence of the Jacobi iterations to the unique
solution of Az = b is ensured if ||A] 1 As|| < 1. If we take the norm
| - oo on R™, then we have

|AT IAQHOO = max

> laigl.

o ”| J#i

Hence, required condition is

Z’aij’ <laz| Vi=1,...,n

J#

EXAMPLE 5.2 Consider the system Ax = b with

9 1 1
A=12 10 3
3 4 11

For applying Jacobi method, we take

9 0 0 011
Ai1=110 10 0 and Ay =12 0 3
0 0 11 340
We see that
1 11
e Y 1 Y9
A7 =10 w O so that A Ay = % 0 %
1 4
00 1 it 0

Thus, it follows that [|A]'As|lee = 7/11 and ||A]'Aglly = 47/99.
Thus, the error estimates for the above described iterative procedure

for this example is valid if we take either || - ||oo or || - [ on R3. For
instance, taking || - [|; on R? and p = 47/99, we have
ok
99 47
o~ a® s < L Jla® — 2O = 2 (57) Iat ~ 2.
p

5.1.2 Gauss-Siedel Method

Let A = (a;j) be an n x n matrix. In this method also, we assume
that a; # 0 for all i = 1,...,n. In this case we view the system
Az =0 as

Az =b— Aoz,
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where A; is the lower triangular part of A including the diagonal,

and Ay = A — Aq, i.e.,

all 0 0 e 0 0 a12 ais QA1p
A1 _ CL.21 a.22 0 . . 0 ’ A2 _ O 0 ass aon
anl An2 Gp3 ... Qpn 0 O 0 Ann,
Thus, the Gauss-Siedel iterations are defined by
1 _
561(1) _ [bi B Zaiﬂgk 1)}7
a1 j>i
k 1 k k—
R LD DL AR DUNE: S| NN S
v j<i J>i
for ¢ = 1,...,n. The convergence of the Gauss-Siedel iterations to

the unique solution of Az = b is ensured if ||A] ' Ag|| < 1.

EXAMPLE 5.3 Again consider the system Ax = b with

9 1 1
A=12 10 3
3 4 11

For applying Gauss-Siedel method, we take

9 0 O 011
Ai=12 10 0 and A;=10 0 3
3 4 11 000
We see that
s 0 0 0 3
ATl = | =1 L 0 sothat A7'Ay=]0 —L
1 = 5 10 1 42 = 15
_r 2 1 0 —1L
15 55 11 15

el

Bl

Thus, it follows that ||A]* As|leo = 3/10 and || A7 Aa|); = 103/198 >
3/10. Thus, the error estimates for the above described iterative
procedure for this example is valid if we take either || - ||o or || - |1
on R3. For instance, taking | - || on R* and p = 3/10, we have

k k
Ly <« P o 103N @ o
Iz — 2@y < Lo ® = 2O = 2 (2) 2 ® - 2O,

—p 10
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5.2 Newton’s Method for Solving f(x) =0

Suppose f : [a,b] — R is a function having a zero z* € [a,b], i.e.,
fx*) = 0. In practice, the exact location of * may not be known,
but an (initial) approximation of z*, say xo may be known. The idea
of Newton’s method is to find better approximations for z* in an
iterative manner. For this first we assume that

e [ is differentiable at every z € [a,b], and f’'(z) # 0 for every
x € [a,b].

The idea is to choose an initial point 2y € [a,b], and find a point
x1 as the point of intersection of the tangent at xy with the x-axis.
Thus x1 has to satisfy

flxo) =0 flxo)

f'(wo) = To — T1 To— o1’
i.e., x1 is defined by
oy = g — f (o) .
f'(xo)
Now, repeat the above procedure with x; in place of zg to get a new
point
oy =y — f(z1) .
f'(@1)
In general, we define
Ty
Ty 1= Tp_1 — f'((f;;—ll))’ n=1,2,

There arises some questions:
e Does each z;, belong to [a, b]?

e Does the sequence (x,) converge to x*7

In order to answer the above questions we define a new function
g+ [a,b] — R by

=T — f(l') X a
g(fL‘) T f/(x)? S [ 7b]

Theorem 5.4 Suppose that f : [a,b] — R is twice continuously
differentiable at every x € [a,b], and that there exists x* € [a,b] such
that f(x*) = 0. Then there exists a closed interval Jy C [a,b] such
that g : Jo — Jy is a contraction.



Newton’s Method for Solving f(z) =0 93

Proof. Note that, under the above assumption, the function g is
continuously differentiable at every x € [a, b], and

f(@)f" (@)

g (x) = RTIOEE x € la,b].

Now, by mean value theorem, for every z,y € [a, b], there exists &,
in the interval whose end points are  and y, such that

9(x) = 9(y) = 9'(Eay)(x — y).

Hence, g is a contraction in an interval Jy if there exists p such
that 0 < p < 1 and |¢/(&2y)| < p for all z,y € Jy. Note that the
function ¢’ is continuous in [a,b] and ¢'(z*) = 0. Hence, for every p
with 0 < p < 1, there exists a closed interval J, C [a,b] such that
ld'(z)] < pforall z,y € Jy. |

Assume that f : [a,b] — R is twice continuously differentiable at
every x € [a,b], and let Jy be as in the above theorem. Then, taking
xo € Jo, the sequence (z,) defined earlier converges to z*, and

Vs

|x*—mn|§p|x*—xn_1\§1p |1 —xo| VYmeN.

5.2.1 Error Estimates

Suppose f : [a,b] — R is a twice continuously differentiable function,
and there exits z* € [a,b] such that f(z*) = 0. We have already
seen that for any given p € (0, 1), there exists a closed interval Jy
centered at z* such that xy € Jy implies z,, € Jy for all n € N, and

Ve

|z* — zp| < plz* — xp_1| < |1 —x9| VneN.

=1,
Now we see that a better convergence estimate is possible.

Assume that f'(z) # 0 for all z € [a,b]. Let us assume for the
time being that the sequence (x,) given iteratively as follows is well-
defined:

f(@n)

$n+1121}n—m, n:(),l,2,....
n

Then, by mean value theorem, we have

0= J(") = ) + (" = o) f o) + 0" — 2 )
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so that Fan) e
= Tn *_ * 2 n
Now, by the definition of x,41,
0= (o = s + (" = 20) + (5" = 2)°5 f/((i;))
so that §
S xn)Qéff/((iZ)) .

From the above relation, it is clear that if Jy is as in Theorem
5.4, and if we know that there exists a constant x > 0 such that
|f"(x)/2f"(y)| < k for all x,y € Jy, then

|2* — 2py1| < Kl2* — 2,2 V.

Another way of looking at the issue of error estimates is the
following: Since f’(z*) # 0, there exists § > 0 such that J; :=
[* — §,2* + 0] C [a,b] and |f'(z)| > |f/(«*)|/2 for all z € J;. Let
M > 0 be such that |f”(z)| < M for all x € J;. Hence,

|7 (x)/2f ()| < ko := M/|f'(z*)| Vx € Ji.

Then we see that
2”1/

2
kol — Tpy1] < (fio|$* - $n|) < ("‘0|$* - 330|) vn.

Thus, it is seen that if 29 € Jo := Jy N {z : [2* — 2| < 1/Ke}, then
xn € Jo for all n € N (z,) converges to x* as n — oo. Moreover, we
have the error estimate

—1‘ *

|2* — Zpy1| < wolz® — xp 2 < K2 THEH — 20|*" V.

Exercise 5.1 1. Consider the equation f(z) := 2% -z -1 = 0.
Apply Newton’s method for this equation and find =, f(z,)
and z, —x,_1 for n = 1,2, 3,4 with initial guesses (i) zo = 1.0,
(i) xo = 1.5, (iii) o = 2.0. Compare the results.

2. Using Newton’s iterations, find approximations for the roots of
the following equations with an error tolerance, |z, — Tp—1| <
1076:

(i) 23 —2? -2 —1=0, (ii) z = 1 + 0.3 cos(x), (iii) z = e~ *.
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3. Write Newton’s iterations for the problem of finding 1/b for a
number b > 0 with x¢ > 0.

4. Show that the Newton’s iterations for finding approximations
for /a for a > 0 has the error formula:

Va—xpi = —ﬁ(\/a— )2

5. Using Newton’s method find approximations for m-th root of
2 for six significant digits, for m = 2, 3,4, 5.
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Interpolation and Numerical
Integration

6.1 Interpolation

The idea of interpolation is to find a function ¢ which takes certain

prescribed values (1, (2, ..., O, at a given set of points t1,%o, ..., ;.
In application the values (1, B9, ..., 3, may be values of certain un-
known function f at t1,ts,...,t, respectively. The function ¢ is to

be of some simple form for computational purposes. Thus, the in-
terpolation problem is to find a function ¢ such that ¢(t;) = 3,
1=1,...,n.

Usually, one looks for ¢ in the span of certain known functions

U1, ..., Uy,. Thus, the interpolation problem is to find scalars aq, ..., oy,
such that the function ¢ := Y77, aju; satisfies p(t;) = f; for i =
1,...,n, ie., to find ay, ..., a, such that

n
Zajuj(ti):ﬁi, i=1,...,n.
j=1

Obviously, the above problem has a unique solution if and only if the
matrix [u;(t;)] is invertible. Thus we have the following theorem.

Theorem 6.1 Suppose ui,...,u, are functions defined on [a,b],
and ti,...,t, are points in [a,b]. Then there exists a unique ¢ €
span {uy, ..., un} satisfying (t;) = B; fori=1,...,n if and only if
the matriz [u;(t;)] is invertible.

Exercise 6.1 Suppose uy,...,u, are functions defined on [a, b], and
t1,...,t, are points in [a,b]. Show that, if the matrix [u;(t;)] is
invertible, then w1, ..., u, are linearly independent.

Hint: A square matrix is invertible if and only if its columns are
linearly independent.

96
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Exercise 6.2 Suppose uy, ..., u, are functions defined on [a, b], and
t1,...,ty are points in [a, b] such that the matrix [u;(¢;)] is invertible.
If vy,...,v, are linearly independent functions in span{ui,...,u,},

then show that the matrix [v;(t;)] is also invertible.

Hint: Let Xy := span{uy,...,u,}. Then observe that, if the
matrix [u;(t;)] is invertible, then the function J : Xy — R™ defined
by J(z) = [z(t1),...,x(t,]" is bijective.

Exercise 6.3 Let t1,...,t, be distinct points in R, and for each

je{1,2,...,n}, let
t—1t;
6o =11;—
j 7

i#]
Then show that {¢1, ..., £¢,} is a basis of P,,_1, and it satisfies £;(t;) =
0;5 for all 4,7 =1,...,n. Deduce from the previous exercise that the
matrix [t;_l] is invertible.
In general, if t1, ..., t, are distinct points in [a, b], and if uy, ..., uy

are functions which satisfy u;(t;) = 6;;, then the function ¢(t) :=
> i—1 Bju;(t) satisfies p(t;) = B;. Thus, ift1,...,t, be distinct points

in [a,b], and if uy, ..., u, are functions which satisfy u;(t;) = d;;, the
interpolation function of f : [a,b] — R, associated with the nodes
t1,...,t, and the basis functions u;’s is
n
p(t) ==Y ftjui(t), a<t<b.
j=1

EXAMPLE 6.1 Let ty,...,t, be distinct points in [a,b]. Define
U, ..., Uy, as follows:

1 ifa <t <ty
ui(t) = =% ifty <t <ty
0, elsewhere,

1 ift, <t<b,
ot it St <ty
0, elsewhere,

Un

and for 2 < j <n-—1,

(t) = {
Dol fg g <t <ty
i(t) =

tg—tj_l
—tit1 .
0, elsewhere,

u
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Because of their shapes uq, . .., u, are called hat functions. Note that
u;j(t;) = 0;;. In this case the interpolation function ¢ is the polygonal
line passing through the points (t1, f(¢1)), ..., (tn, f(tn)). In this case
it is also true that 37, u;(t) =1 for all j € [a,b]. Hence,

F() = olt) = D LF(8) = o(t)]us(2)-

Jj=1

Note that, for t; 1 <t <t <t;,

6.1.1 Lagrange Interpolation

By Exercise 6.3, {{1,...,{,} is a basis of P,_1, and it satisfies £;(t;) =
0;; for all 4,5 = 1,...,n. Hence, by Theorem 6.1, it is clear that,
given distinct points 1, ..., ¢, in [a, b], and numbers 1, ..., (3,, there
exists a unique polynomial L, (t) € P,—1 such that L, (t;) = 3; for
i1=1,...,n, and it is given by

Lo(t):=> Bit;(t), a<t<b.
j=1

The above polynomial is called the Lagrange interpolating polyno-
mial, and the functions ¢1,...,¥¢, are called Lagrange basis polyno-
mials.

It can be seen that the Lagrange basis polynomials ¢;(¢) also
satisfies Z;’:l ¢;(t) = 1. Hence, if ¢ is the Lagrange interpolat-
ing polynomial of a function f associated with nodes t1,...,t,, i.e.,
Ly(t) = Z?:l f(tj)gj(t), then

n

F() = Lalt) = Y _[F (1) = olt5)]5(8).

J=1

The following theorem can be seen in any standard text book on
Numerical Analysis.

Theorem 6.2 If f is continuously differentiable n + 1 times on the
interval [a,b], and if ¢ is the Lagrange interpolating polynomial of a
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function f associated with nodesty, ..., t,, then there exists £ € (a,b)
such that
(n+1)
f(t) = Ly(t) = fi(g)(t —t)(t—ta)...(t —tn).

(n+1)!

By the above theorem,

[f )] (0 —a)
n+1 (n)!

£ () = Ln(t)] <

Note that (b(;f;,)n — 0 as n — 00.Thus, if f is sufficiently smooth,
then we can expect that L, is close to ¢ for sufficiently large n.
Although we have a nice result in the above theorem, it is not at
all clear whether L,, is close to f whenever the maximum width of
the subintervals is close to zero. In fact it is known that
e if, for each n € N, tgn), - ,tgn) are points in [a,b] then there
exists f € Cla,b] such that ||f — L,|l« # 0 as n — oo, where

La(t) = Y5 F0)67 ).
6.1.2 Piecewise Lagrange Interpolation

The disadvantage of Lagrange interpolation polynomial is that for
large n, more computations are involved in obtaining the coefficients
of the polynomial, and even for large n, it is not guaranteed that
L, (t) is close to f for less smooth functions f(¢). One way to sur-
mount this problem is to divide the interval [a, b] into n equal parts,
say by a partition a = ap < a1 < ag < ... < ap = b. In each subin-

terval I; = [a;—1,a;] we consider the Lagrange interpolation of the
function. For this we consider points 7;1, ..., 7% in I;, and for ¢ € I;,
i=1,...,n, define
t—T;
pin(®) =3 FE)l @), ) = T ——,
, Tij — Tim

J=1 m#j

and py(t) = pin(t) whenever t € I;. Note that p, is a function on
[a,b] such that for each i € {1,...,n}, py|s, is a polynomial in Py_1.
Such a function p,, is called a spline. If 757 = a;_1 and 7;; = a;, then
we see that p,, is a continuous function on [a, b].

Instead of taking arbitrary points 71, . .., 7% in I; one may choose
them by mapping a fixed number of points 71,...,7; in [—1,1] to
each subinterval I; by using functions g; : [—1,1] — I; so as to
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obtain 7, = g¢i(7m) for m = 1,... k. Points 71,...,7% in [—1,1]
chosen as zeros of certain orthogonal polynomial of degree k has
some advantages over other type of points.

If f is k times continuously differentiable, then by Theorem 6.2,
for each 7 € {1,...,n}, there exists & € I; such that for t € I,

(k+1 k
f(t)_pn(t)_ f t_sz

m=1
Hence, for every t € [a, b],

1FED]| .

sup H (t — Tim)-

£ () — pa(t)] < SR 6 <i<a

In particular, if a; — a;—1 = hy, := (b—a)/n for all i € {1,...,n},

then (b 1)
— < 22 .
Hf pn”oo_ (k‘ 1)! n

Note that h, — 0 as n — oo. Thus, for large enough n, p, is an
approximation of f.

6.2 Numerical Integration

The idea involved in numerical integration of a (Riemann integrable)
function f [a b] — R is to replace the integral [ b f(t)dt by another

integral f t)dt, where ¢ is an interpolation of f based on certain
points in [a, b} Thus, numerical integration formulas are of the form

Zf w]a

where t1,...,t, are called the nodes and wyq, ..., w, are called the
weights of the formula. Numerical integration formulas are also called
quadrature rules.

Suppose u, ..., u, are functions such that u;(t;) = 6;; for ,j =
1,...,n, and let ¢ be the interpolation of f based on t1,...,t, and

Uty upsieen, o(t) = 370 f(t)u(t). Then

b n b
/ oyt =" Fltw; with w; = / w;(t)dt.
a J=1 a

The above quadrature rule is called an interpolatory quadrature
rule. Here are some special cases of interpolatory quadrature rules.
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6.2.1 Trapezoidal rule

Suppose we approximate f by the interpolation polynomial ¢ of de-
gree atmost 1 based on the points a and b, i.e., we approximate the
graph of f by the straight line joining (a, f(a)) and (b, f(b)). Then
we see that

b b—a
p(t)dt = ——[f(a) + f(b)]-
This quadrature rule is called the trapezoidal rule.

EXAMPLE 6.2 Consider f(t) =1/(1+¢) for 0 <t <1. Then

= 0.75.

oo

| et =350 + 1) = 5+ 3 -

We know that [; 12 = In(2) =~ 0.693147.

1
Error = log(2) — / o(t)dt ~ —0.056852819
0

6.2.2 Composite Trapezoidal rule

Let a = ap < a1 < ... < a, = b be a partition of [a,b]. Suppose
we approximate f by the piecewise interpolation polynomial ¢ which
is of degree atmost 1 in each subinterval [a;_1,a;] for i = 1,...,n,
based on the points a;_1 and a;, i.e., we approximate the graph of
f by a polygonal line line passing through the poits (a;, f(a;)) for
1=20,1,2,...,n. Then we see that

b tLofai " a; —ai_
[ewit=3" [ et =3 "= fain) + fla).
@ i=1 " %1

i=1
This quadrature rule is called the composite trapezoidal rule. In par-
ticular, if h, := a; — a;—1 = (b — a)/n, then

b Qa a
/ o(t)dt = hn[f(QO) + fla)+ ...+ flan—1) + f(2n)}.

EXAMPLE 6.3 Consider f(t) = 1/(1+1t) for 0 < ¢ < 1. Taking
n=2 h, =1/2 and

1
| etwar = S[E2 4 s B

2
1712 17 17
§[§+§+ﬂ = 5 = 0.70833.
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1
Error = In(2) — / @(t)dt ~ —0.01518
0

6.2.3 Simpson’s rule

Suppose we approximate f by the interpolation polynomial ¢ of de-
gree atmost 2 based on the points a, ¢ := (a 4+ b)/2 and b, i.e., we
approximate the graph of f by a quadratic polynomial . We know
that

(t—c)(t—10)
(a—c)(a—0b)

If we take h = (b — a)/2, then we see that

b —a-b) b
/a TR

p(t) =

c—a)(c—0 3
b(t—a)t—c) , h
/G(b— o—o%=3

Hence,

b h
[ et =3 (1@ +as@ + 1),

This quadrature rule is called the Simpson’s rule.

EXAMPLE 6.4 Consider f(t) = 1/(1+1t) for 0 <t < 1. Taking
n=2, h,=1/2and

' h
[ et = glr@as+s0)
0
é[f(O) +4f(1/2) +f(1)} - 6[5 +4(§) N %}

25
= — ~0.69444.
36

1
Error = In(2) — / o(t)dt ~ —0.001293
0
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6.2.4 Composite Simpson’s rule

Consider the partition a = ag < a1 < ... < a, = b of of [a,b] n is an
even number, and h,, := a;—a;—1 = (b—a)/n foreveryi =1,2,...,n.
Suppose we approximate f by the piecewise interpolation polynomial
¢ which is of degree atmost 2 in each subinterval [ag;, ag;12] based

on the points ag;, agi+1 and ag;4o for ¢ = 0,1,2, ...,k where 2k = n.
Then we see that
b k—1 a;42 k—1 h
n
/ p(t)dt = Z/ p(t)dt = 3 [f(a%)+4f(a2i+1)+f(a2i+2)
a i=0 “ a2i i=0
Thus,

b
/@(t)dt = %[f(ag)+4f(a1)+2f(a2)+4f(a3)+2f(a4)+

o+ 2f(a2) + 4 f () + f(an)]

k k-1
= %n [f(ao) + Z 4f(agi-1) + Z 2f (ag) + f(anﬂ
=1 i=1

This quadrature rule is called the composite Simpson’s rule.

EXAMPLE 6.5 Consider f(t) = 1/(1+1t) for 0 <t < 1. Taking
n=2k=4, h, =1/4 and

1
et = T [1a0) + 45 @) + 2f(02) + 1) + fla)]

= 2[R0+ 47 (/) +2£(1/2) + 4F(3/4) + £(1)]
1 1 16 4 16 1
Gt E 3T gl

1 1747

T2 X 210 ~ 0.693253968

1
Error = In(2) — / o(t)dt ~ —0.000106787
0

Exercise 6.4 Apply trapezoidal rule, composite trapezoidal rule,
Simpson’s rule, and composite Simpson’s rule for approximating the
the following integrals:

1 4 21
dt dt
[t [la [T,
0 0 1 =+ t 0 2 + COS(t)
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Additional Exercises

In the following V' denotes a vector space over F which is R or C.

1.

Let V be a vector space. For z,y € V, show that x +y =
implies y = 4.

Suppose that € V is a nonzero vector. Then show that
ax # Bx for every a, 0 € F with o # .

Let R[a,b] be the set of all real valued Riemann integrable
functions on [a,b]. Show that R]a,b] is a vector space over R.

Let V be the set of all polynomials of degree 3. Is it a vector
space with respect to the usual addition and scalar multiplica-
tion?

Let S be a nonempty set, so € S. Show that the set V of all
functions f : S — R such that f(sp) = 0 is a vector space
with respect to the usual addition and scalar multiplication of
functions.

Find a bijective linear transformation between F"™ and P,,_1.

Let V' be the set of real sequences with only a finite number of
nonzero entries. Show that V' is a vector space over R and find
a bijective map T : V' — P which also satisfies T'(z + ay) =
T(x)+ oI (y) for all z,y € V and a € R.

In each of the following, a set V is given and some operations
are defined. Check whether V is a vector space with these
operations:

(a) Let V = {x = (z1,22) € R? : 25 = 0} with addition and
scalar multiplication as in R2.

104
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(b) Let V = {x = (x1,22) € R?: 221 +3x5 = 0} with addition
and scalar multiplication as in R2.

(c) Let V = {x = (x1,22) € R?: 21 + 2o = 1} with addition
and scalar multiplication as for R2.

(d) Let V= R2 F = R. For 2 = (z1,22), ¥y = (y1,¥2), let
x4y :=(x1+ y1,22 + y2) and for all o € R,

az _{ (070) Oé:(),
"\ (ary,x2/a), a#0.

(e) Let V=C2 F =C. For z = (71,72), y = (y1,2), let

z+y = (x14+2y1, x2+3y2) and ax = (azy,axrs) Va e C.

(f) Let V=R2% F =R. For x = (z1,22), y = (y1,¥2), let
r4+y:=(r1+y,x2+y2) and azx:=(r1,0) VaeR.

Let A € R™ ™, O is the zero in R™!. Show that the set Vj of
of all n x 1 matrices X such that AX = O, is a subspace of
Rnxl_

Let V' be the space of all sequences of real numbers, and let
?1(N) be the set of all absolutely convergent real sequences.
Show that ¢*(N) is a subspace of V.

Let V be the space of all sequences of real numbers, and let
¢>*(N) be the set of all bounded sequences of real numbers.
Show that ¢>°(N) is a subspace of the space of V.

For a nonempty set S, V be the set of all functions from S to
R, and let let B(S) be the set of all bounded functions on S.
Show that B(S) is a subspace of V/

Suppose Vy is a subspace of a vector space V, and V; is a
subspace of Vj. Then show that V; is a subspace of V.

Give an example to show that union of two subspaces need not
be a subspace.

Let S be a subset of a vector space V. Show that S is a subspace
if and only if S = span S.
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17.

18.

19.

20.

21.

22.

23.

Additional Exercises

Let V' be a vector space. Show that the the following hold.

(i) Let S be a subset of V. Then span S is the intersection of
all subspaces of V' containing S.

(ii) Suppose Vj is a subspace of V and xg € V' \ Vy. Then for
every x € span{zo; Xo}, there exist a unique o € F, y € 1}
such that z = axg +y.

Show that

(a) Py is a subspace of Py, for n < m,

(b) Cla,b] is a subspace of Rla, b,

(c) C¥[a,b] is a subspace of C|a,b].
For each )\ in the open interval (0,1), let uy = (1,\,A\2,...).

Show that uy € ¢! for each € (0,1), and {uy : 0 < XA < 1} is a
linearly independent subset of £

Let A be an m x n matrix, and b be a column m-vector. Show
that the system Ax = b has a solution n-vector if and only if
b is in the span of columns of A.

Let e; = (1,0,0), ea = (0,1,0), e3 = (0,0,1). What is the span
of {e1 +ez,e2 + €3,e3+€1}7

What is the span of S = {t":n=0,2,4,...} in P?

Let S be a subset of a vector space V. Show that S is a subspace
if and only if S = span S.

Let V be a vector space. Show that the the following hold.

(a) Let S be a subset of V. Then

span S = ﬂ{Y : Y is a subspace of V' containing S}.

(b) Suppose Vj is a subspace of V and zg € V \ Vo. Then
for every x € span {xo; Xo}, there exist a unique « € F,
y € Vg such that x = axg + y.
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Consider the system of equations

aj1ry +  appre + + amr, = b
anry + agre + + agmrT, = b
+ + + =
am1T1 + amire + + AmnTn = bm
Let
an a2 a1n
_|axn | a2 | a2
Uy = ,Ug 1= yeeoyUp 1=
Am1 am?2 Amn,

(a) Show that the above system has a solution vector x =
[z1,...,2,)T ifand only if b = [by, ..., b,]T € span({uy, ...

(b) Show that the above system has atmost one solution vec-
tor x = [z1,...,2,]" if and only if {u,...,u,} is linearly
independent.

Show that every superset of a linearly dependent set is linearly
dependent, and every subset of a linearly independent set is
linearly independent.

Give an example to justify the following: FE is a subset of vector
space such that there exists an vector u € E which is not a
linear combination of other members of E, but F is linearly
dependent.

Is union (resp., intersection) of two linearly independent sets a
linearly independent? Why?

Is union (resp., intersection) of two linearly dependent sets a
linearly dependent? Why?

Show that vectors u = (a, c), v = (b, d) are linearly independent
in R? iff ad — bc # 0. Can you think of a generalization to n
vectors in R".

Show that Vy := {z = (x1,29,23) : 1 + 22 + 23 = 0} is a
subspace of R3. Find a basis for V.

Show that E := {1 + "t + "t + ", ... t" L + " 1"} is a
basis of P,.

,Un}.
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32.

33.

34.

35.

36.

37.

38.

Additional Exercises

Let uq, ..., u, are linearly independent vectors in a vector space
V. Let [ai;] be an m x n matrix of scalar, and let

v = anul + aue + +  amiun
Vg = ajpur + axu2 + ... +  am2un
+ ...+ +
VUp = aipUl + agpu2 + ... +  Gmplp.
Show that the vq,...,v,, are linearly independent if and only
if the vectors
ail a2 G1n
| a2z ) a22 | am2
w1 ‘= , W2 = seeey  Wp =
am1 am2 Amn,

are linearly independent.

Let up(t) =1, and for j =2,3,..., let u;(t) =1+t +... +t.
Show that span of {ui,...,u,} is P, and span of {uy,us,...}
is P.

Let pi(t) = 1+t + 3t2, po(t) = 2 + 4t + t2, p3(t) = 2t + 5t2.
Are the polynomials p1, pa, p3 linearly independent?

Show that a basis of a vector space is a minimal spanning set,
and maximal linearly independent set.

Suppose V1 and Va are subspaces of a vector space V' such that
Vi NV, = {0}. Show that every x € Vi + V5 can be written
uniquely as x = x1 + xo with z; € Vi and x4 € V5.

Suppose Vi and V5, are subspaces of a vector space V. Show
that V4 + Vo = V7 if and only if V5 C V.

Let V be a vector space.

(a) Show that a subset {ui,...,u,} of V is linearly indepen-
dent if and only if the function (aq,...,an) — aju; +
-+ + apuy, from F™ into V is injective.

(b) Show that if £ C V is linearly dependent in V', then every
superset of F is also linearly dependent.



39.

40.

41.

42.

43.

109

(c) Show that if £ C V is linearly independent in V/, then
every subset of F is also linearly independent.

(d) Show that if {uy,...,uy} is a linearly independent subset

of V, and if Y is a subspace of V such that (span {u1,...,uy})N

Y = {0}, then every V in the span of {uy,...,u,, Y} can
be written uniquely as £ = ajuy + -+ + anu, + y with
(a1,...,an) EF" y €Y.

(e) Show that if F; and E, are linearly independent subsets
of V such that (span E;) N (span Es) = {0}, then E; U E»
is linearly independent.

For each k € N, let F¥ denotes the set of all column k-vectors,
i.e., the set of all £ x 1 matrices. Let A be an m X n matrix of
scalars with columns a;,as, ..., a,. Show the following:

(a) The equation Az = 0 has a non-zero solution if and only
it ay,as,...,a, are linearly dependent.

(b) For y € F™, the equation Az = y has a solution if and
only if aj,ay,...,a,,y are linearly dependent, i.e., if and
only if y is in the span of columns of A.

Fori=1,...,m;j=1,...,n,let E;; be the m xn matrix with
its (i,)-th entry as 1 and all other entries 0. Show that

{Eijii:1...,m;j:1,...,n}
is a basis of F™*",

If {uy,...,u,} is a basis of a vector space V, then show that
every x € V, can be expressed uniquely as x = aqui+- - -+ un;
i.e., for every x € V|, there exists a unique n-tuple (a1, ..., ay)
of scalars such that £ = ayu; + - - - + auy,.

Suppose S is a set consisting of n elements and V' is the set of
all real valued functions defined on S. Show that V' is a vector
space of dimension n.

Given real numbers ag, a1, ..., ax, let X be the set of all solu-
tions x € C*[a, b] of the differential equation
A A S 0
ay— +a1—— + -+ arz = 0.
Odtk gkt F
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44.

45.

46.

47.

48.

49.

Additional Exercises

Show that X is a linear space over R. What is the dimension
of X7

Let to,t1,...,t, bein [a,b] such that a =ty <t < ... <t, =
b. For each j € {1,...,n}, let u; be in C([a, b], R) such that

) 1 ifi=j
uqi(t;) =
! 0 ifi#j,

and the restriction of u; to each interval [t;_1,¢;] is a polyno-
mial of degree atmost 1. Show that the span of {uy,...,u,} is
the space of all continuous functions whose restrictions to each
subinterval [t;_1,;] is a polynomial of degree atmost 1.

State with reason whether 7" : R? — R? in each of the following
is a linear transformation:

(a) T(z1,22) = (L, 22), (b) T(x1,22) = (w1,23)
(¢) T(x1,2z2) = (sin(z1),x2) (d) T'(z1,22) = (21,2 + z2)

Check whether the functions T in the following are linear trans-
formations:

(a) T :R? — R? defined by T(x,y) = (2 + y, x + y?).
(ii) 7: C'[0,1] — R defined by T(u) = [ [u(t)]?dt.

(b) T : C'[~1,1] — R? defined by T'(u) = (f_ll u(t)dt, u’(O)).
(c) T:C'[0,1] — R defined by T'(u) = [; ' (t)dt.

Let 77 : Vi — V5 and Ty : Vo — V3 be linear transformations.
Show that the function T": Vi — V3 defined by Tz = To(T1x),
x € V1, is a linear transformation.

[The above transformation 7" is called the composition of T
and T, and is usually denoted by T577.]

If Ty : CY0,1] — C[0,1] is defined by Ty(u) = v/, and T :
C[0,1] — R is defined by T»(v) = [; v(t)dt, then find ToT}.

Let Vi, V5, V3 be finite dimensional vector spaces, and let E,
FEs, E3 be bases of Vp, Vo, V3 respectively. If T7 : Vi — V5
and 15 : Vo — V3 are linear transformations. Show that
(1214 By 2y = [12) By, [T1] By s -
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If 71 : Pnl0,1] — P,[0,1] is defined by Ti(u) = «/, and T :
Pu[0,1] — Ris defined by T»(v) = [} v(t)dt, then find [T1] g, 5,
[TQ]EQ’E3, and [TZTI]El,E37 where E1 = E2 = {1,t,t2,.. . ,tn}
and E3 = {1}

Justify the statement: Let T7 : V3 — V5 be a linear transforma-
tion. Then T is bijective iff there exists a linear transformation
T5 : Vo — Vj such that T175 : Vo — V5 is the identity transfor-
mation on V5 and ToT7 : V4 — Vi is the identity transformation
on V1.

Let V1 and V5 be vector spaces with dimV; = n < oco. Let
{u1,...,u,} be a basis of Vi and {vi,...,v,} C Vo. Find a
linear transformation 7" : Vi — Va such that T'(u;) = v; for
j=1,...,n. Show that there is only one such linear transfor-
mation.

Let T be the linear transformation obtained as in the above
problem. Show that

(a) T is one-one if and only if {v1,...,v,} is linearly indepen-
dent, and
(b) T is onto if and only if span ({v1,...,v,}) = Va.

Let T : R2 — R2 be the linear transformation which satisfies
T(1,0) =(1,4) and T'(1,1) = (2,5). Find the T'(2,3).

Does there exists a linear transformation 7 : R3 — R2 such
that 7(1,0,2) = ((1,1) and 7(1/2,0,1) = ((0,1) ?

Show that if V4 and V5 are finite dimensional vector spaces
of the same dimension, then the there exists a bijective linear
transformation from V7 to V5.

Find bases for N(T') and R(T) for the linear transformation 7'
in each the following:

(a) T :R? — R? defined by T'(x1,z2) = (1 — 22, 222),
(b) T :R? — R3 defined by T(z1,x2) = (71 + x2,0, 273 — 73),

(¢c) T : R™™ — R defined by T(A) = trace(A). (Recall
that trace of a square matrix is the sum of its diagonal
elements. )
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58. Let T : Vi — V5 is a linear transformation. Given reasons for
the following;:

a) rank(7) < dimVj.
b
(c

(d) Suppose dimVj = dimV, < oo. Then T is one-one if and
only T is onto.

(
(b) T onto implies dimVs < dimV7,

T one-one implies dimV; < dimVs

)
)
)
)

59. Let Vi and V4 be finite dimensional vector spaces, and E; =
{ui,...,up} and Ey = {v1,...,v,,} be bases of Vi and V3,
respectively. Show the following:

(a) If {g1,...,9m} is the ordered dual basis of L(V1,F) with
respect to the basis Ey of Va, then [T)g, g, = (9:(Tyj)) .
for every T € L(V7,V3).

(b) If A,B € L(V1,V3) and a € F, then

[A+B]E1,E2 = [A]E1,E2+[B]E1,E27 [O‘A]El,Ez = a[A}E17E2'

(c) Suppose {M;; : i =1...,m;j = 1,...,n} is a basis of
Fmxn o If Ty; € L£(Vi,Va) is the linear transformation
such that [Ti;|g, B, = Mij, then {T3; i =1...,m; j =
1,...,n} is a basis of L(V, V3).

60. Let V4 and V» be finite dimensional vector spaces, and E; =
{uy,...,up} and Ey = {v1,...,v,,} be bases of Vi and V3,
respectively. Let F} = {f1,..., fn} be the dual basis of L(V},F)
with respect to Ey and Fy = {g1,...,gn} be the dual basis of
L(Va,F) with respect to Fy. Fori=1,...,n;j=1,...,m, let
T;j : V. — W defined by

Tij(x) = fi(@)vi,  x € V1.

Show that {T;; : i« = 1,...,n;j = 1,...,m} is a basis of
L(V1, V2).
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61. Let T : R? — R3 be defined by
T(x1,22,73) = (22 + x3,23 + 21,71 + 22), (71,72, 23) € R3

Find the matrix representation of T" with respect to the basis
given in each of the following.

(a) E1={(1,0,0),(0,1,0),(0,0,1)}, E2 = {(1,0,0),(1,1,0), (1,1
(b) Ey = (1707 )a( 1 a(lvlv )} Ey = {( )a(03170)7(07031)}
(C) Ey = (1’1) 1)’( 171’1)7(1’ )}7

Ey ={(-1,1,1),(1,-1,1),(1,1,-1)

62. Let T : P?> — P2 be defined by
T(ag + art + ast® + ast’) = ay + 2ast + 3ast’.

Find the matrix representation of T" with respect to the basis
given in each of the following.

(a) By = {1,t,t2 13}, By = {1 +t,1 —t,t%}
(b) By = {1,14+t,1+t+t2 3}, By ={1,1 +t,1+t+ 2}
(c) By ={1,1+t,1+t+t2 1+t +t2+13}, FEy={t?t1}

63. Let T : P? — P3 be defined by

a a
T(ag + art + ast?) = (aot + ?1752 + 213,

3

Find the matrix representation of T" with respect to the basis
given in each of the following.

(a) By ={1+t,1—t,t*}, By = {1,t, 2 13},

(b) By ={1,1+t, 1+t +t3}, By ={1,1+¢, 1+t -+t 13},

(c) By ={t3t,1}, Ba = {1, 1 +t, 1+t + 12,1+t + 2 + 3},
64. A linear transformation T : V — W is said to be of finite rank

if rankT < oo.

Let T : Vi — V4 be a linear transformation between vector
spaces V7 and V5. Show that T is of finite rank if and only if
there exists {vi,...,v,} C Vo and {f1,..., fn} € L(V1,F) such
that Az = > ", fj(x)v; for all x € V.
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65. Check whether the following are inner product on the given
vector spaces:

(a) (A, B) := trace(A + B) on R?>*?
(b) (A, B) := trace(A” B) on R3*3
(¢) (z,y) := [y «'(t)y(t) dt on P, or on C'[0,1]
() (z,y) = [y a()y(t)dt+ [, '(t)y'(t) dt on C*[0,1]
66. If {u1,...,u,} is an orthonormal basis of an inner product

space V, then show that, for every xz,y € V,

n

() = 3w (i, ).

=1

Let F” be endowed with the usual inner product. Then, deduce
that there is a linear isometry from V onto F”, i.e., a linear
operator T : V' — F™ such that | T(x)| = ||z|| for all z € V.

67. Let Vi and V5 be inner product spaces with inner products
(,-)1 and (-, -)2 respectively. One V =V} x Vs, define

(@1, 22), (Y1, 92))v = (e, +(w2,52)2, V(21,22), (y1,92) € V.
Show that (-,-)y is an inner product on V.

68. Let (-,-)1 and (-,-)2 are inner products on a vector space V.
Show that

(z,y) == (z,yh + (x,y)2,  Va,yeV
defines another inner product on V.

69. Let V be an n-dimensional inner product space and {u1, ..., u,}
be an orthonormal basis of V. Show that every linear func-
tional f : V — F can be written as f = Z?:l f(uj)f;, where,
for each j € {1,...,n}, f; : V — F is the linear functional
defined by fj(z) = (z,u;), z € V.

70. For z,y in an inner product space V', show that (z+y) L (x—y)
if and only if ||z| = ||y||.
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71. Let V be an inner product space. For S C V, let
St={zxeV:(z,u)y=0 VYucS}.

Show that

)
b) V+={0}, {0}+t=V.
(c) S c S+t
(d) If V is finite dimensional and V} is a subspace of V, then

V'OLL — Vb
72. Find the best approximation of z € V from V;; where

(a) V=R3 z:=(1,2,1), Vp:=span{(3,1,2),1,0,1)}.
(b) V =R3, x:=(1,2,1), and Vj is the set of all (a1, a2, a3)
in R* such that a; 4+ as + a3 = 0}.
() V=R* x:=(1,0,-1,1) V; := span {(1,0,—1,1), (0,0,1,1)}.
(d) V =C[-1,1], a(t) = ', Vo = Ps.

73. Let A € R™"™ and y € R™. Show that, there exists x € R"
such that ||[Az — y|| < [[Au = y|| for all u € R", if and only if
AT Az = ATy,

74. Let A € R™" and y € R™. If columns of A are linearly
independent, then show that there exists a unique z € R" such
that AT Az = ATy.

75. Find the best approximate solution (least square solution) for
the system Az = y in each of the following:

(3 1 1
(a) A=1]1 2 |[; Y= 0
2 -1 —2
11 1 0
-1 0 1 1
BrA=1 0 0 o YT
0 1 -1 —2
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76.

e

78.

79.

80.

81.

Additional Exercises

1 1 3
-1 0 5 -

e A=| 0 1 —2|; y=| 3

1 -1 1 —2

1 0 1 0

(a) Show that ||ze < [|z]|2 < ||z||1 for every z € R¥.

(b) Find ¢y, ¢o,c3, ¢4 > 0 such that

cillzll2 < fzlloo < e2llzll2,  esllzlli < 7]l < callrllo

for all x € R,
(c) Compute |7 oo, [|]l2, |z]1 for = = (1,1,1) € R3.

Let || - || be a norm on R™ and and A € R"*™. Suppose ¢ > 0 is
such that ||Az|| < ¢||z|| for all z € R™, and there exists xy # 0
in R™ such that ||Azg|| = ¢||zo]|. Then show that [|A|| = c.

1 2
Find [|A||1, ||Al|co, for the matrix A= | 2 3
3 2

o W

Suppose A, B in R™" are invertible matrices, and b, Z) are in
R™. Let x,Z are in R™ be such that Ax = b and B = b. Show
that

[z — ]

lA=BJ Hb—bH)
] 1Al 2]

[Hint: Use the fact that B(x — %) = (B — A)z + (b — l~)),~and
use the fact that |[(B — A)z| < ||B — Al|||lz][, and [|b — b =
16— ol[[[Az[|/[bll < 1o — bILA[l fl=[/1[b]]-]

< Jlanns=(

Let B € R™*™. If ||B|| < 1, then show that I — B is invertible,
and [|(I - B)~!| < 1/(1 — || B]).

[Hint: Show that I — B is injective, by showing that for every
z, |[(I — B)z|| > (1 — ||B]|)||z||, and then deduce the result.]

Let A, B € R™"™ be such that A is invertible, and [|[A — B|| <
1/]|A71]|. Then, show that, B is invertible, and

Ay
[4 =B TA~T]

1B~ <
1—
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[Hint: Observe that B = A — (A — B) = [I — (A — B)A 1A,
and use the previous problem.]
Let A, B € R™*" be such that A is invertible, and ||A — B|| <

1/2||A7Y|. Let b, b, z, % be as in Problem 79. Then, show that,
B is invertible, and

: lA-B| b3
< 2x(A + .
w2 )

[Hint: Apply conclusion in Problem 81 to that in Problem 79]

Consider the system Az = b with

9 1 1
A=12 10 3
3 4 11

(a) Show that the Jacobi method and Gauss-Siedel method
for the above system converges.

(b) Obtain an error estimate for the k the iterate (for both
the methods) w.r.t. the norms ||-||; and || - ||oc With initial
approximation as 2 as the zero vector.

Suppose uq, ..., u, are functions defined on [a, b], and t1, ..., ¢,
are points in [a,b]. Let f1,...,03, are real numbers. Then
show that there exists a unique ¢ € span{uy,...,u,} satisfying
o(t;) = p; for i = 1,...,n if and only if the matrix [u;(t;)] is
invertible.

Suppose uq, . .., uy are functions defined on [a, b], and t1, ..., ¢,
are points in [a, b]. Show that, if the matrix [u;(¢;)] is invertible,
then uq,...,u, are linearly independent.

[Hint: A square matrix is invertible if and only if its columns
are linearly independent. |

Suppose uq, . .., uy are functions defined on [a, b], and t1, ..., ¢,
are points in [a, b] such that the matrix [u;(t;)] is invertible. If
v1,. .., Uy are linearly independent functions in span {uy, ..., uy},

then show that the matrix [v;(¢;)] is also invertible.

[Hint: Let Xo := span{ui,...,un} and [u;(¢;)] is invertible.
Then observe that, the function J : Xy — R™ defined by J(x) =
[z(t1), ..., z(t,])T is bijective. ]
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87.

88.

89.

90.

Additional Exercises

Let t1,...,%, be distinct points in R, and let

t—t;
ti—t;

6 =1]
i#

j=1,2,...,n.

Then show that {¢1,...,¢,} is a basis of P,_1, and it satisfies
li(t;) = &;5 for all 4,5 = 1,...,n. Deduce from the previous

exercise that the matrix [té-_l] is invertible.

Let ti,...,t, be distinct points in [a,b] and w1, ..., u, are in
Cla,b] such that u;(t;) = 6;; for i, =1,...,n. Show that

Pz = Zx(tj)uj, z € Cla,b],
j=1

defines a linear transformation Cfa, b] into itself, and it satisfies
(a) (Pz)(t;) = x(t;), (b) Px = x for all x € R(P) amd (c)
P?=P.

Let t1,...,t, be distinct points in [a,b]. Show that for every
x € Cla,bl], there exists a unique polynomial p(t) of degree
atmost n — 1 such that p(t;) = x(t;) for j =1,...,n.

Apply trapezoidal rule, composite trapezoidal rule, Simpson’s
rule, and composite Simpson’s rule for approximating the the
following integrals:

1 4 dt 2 dt
[eta, [ a [T
0 0 1 —+ t 0 2 + COS(t)



