

Ans 1. The given differential equation can be written as $\frac{dy}{dx} + \frac{y}{x} = \frac{y^2 \log x}{x}$.

Dividing by y^2 on both sides and substituting $z = \frac{1}{y}$, we get

$$\frac{dz}{dx} - \frac{z}{x} = -\frac{\log x}{x^2}. \quad [1]$$

Therefore, using the method for non-linear

$$\begin{aligned} \frac{z}{x} &= - \int \frac{\log x}{x^2} dx + c \\ &= \frac{1 + \log x}{x} + c \\ &= \frac{1 + \log x + cx}{x}. \end{aligned}$$

Therefore

$$y = \frac{1}{1 + \log x + cx}$$

One mark for arriving at the first line in the above array and then one mark for completing the rest.

Remark 1. If one has made a sign error in the above mentioned integration and the final answer is correct modulo the sign, one mark is cut.

$$\text{Ans. 2 } \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N} = \frac{3}{x} \quad [1]$$

Therefore, the integrating factor $\mu = x^3$. [1]

$$\text{Therefore } u = \int M dx + \phi(y) = \frac{1}{2}x^4 \sin y^2 + \phi(y) \quad [1]$$

Comparing with $\frac{\partial u}{\partial y} = N = x^4 y \cos y^2$, one gets $\phi'(y) = 0$ and hence the solution is $x^4 \sin y^2 = c$. [1]

$$\text{Ans. 3 } \frac{d^2y}{dx^2} + \frac{2}{x} \frac{dy}{dx} - \frac{2y}{x^2} = 0. \text{ Given that } y_1(x) = x. \text{ Then}$$

$$y_2 = y_1 \int \frac{1}{y_1^2} e^{-\int a_1 dx} dx \quad [1]$$

$$= x \int \frac{1}{x^4} dx \quad [1]$$

$$= \frac{-1}{3x^2}.$$

Therefore, the general solution is $y = c_1 x + \frac{c_2}{x^2}$. [1]

Q. No. 4:

(General solution by the method of variation of parameters):

Solutions $\sin x$ and $\cos x$ for the homogeneous equation. (1 mark)

Showing that the Wronskian equals 1. (1 mark)

$A'(x) = -1$ and $B'(x) = \cot x$. (1 mark)

(Here a particular integral is sought in the form $y = A(x)\cos x + B(x)\sin x$)

$A(x) = -x + c_1$, $B(x) = \log \sin x + c_2$. (1 mark)

General solution. (1 mark)

Remarks 0.1. When a student obtains correct expressions for one of $A'(x)$ and $B'(x)$ as above, but not both, and goes on to obtain the correct expression after integration, he gets three marks. A student who obtains A and B correctly, but writes four constants in the general solution, forfeits one mark.

Q. No. 5:

(Solution of simultaneous equations):

Obtaining the equation $y'' - 4y' - 5y' = 0$ for y_1 or y_2 . (1 mark)

$y_1(x) = Ae^{-x} + Be^{5x}$. (1 mark)

$y_2(x) = -Ae^{-x} + \frac{1}{2}Be^{5x}$. (1 mark)

$A = -1$, $B = 2$. (2 marks)

Remarks 0.2. Students making a mistake in the auxiliary equation (the characteristic equation) get no marks. Students obtaining correct eigen values and correct eigen vectors, but do not write the correct expressions for y_1 or y_2 get three marks.