

Assignment Sheet 1
MA2020 Differential Equations (July - November 2012)

1. Solve the following first order differential equations

- (a) $x \frac{dy}{dx} + y = x^3 y^6$
- (b) $xy^2 \frac{dy}{dx} + y^3 = x \cos(x)$
- (c) $x \frac{dy}{dx} + y = y^2 \log(x)$
- (d) $(x^2 y^3 + xy) \frac{dy}{dx} = 1$
- (e) $\frac{dy}{dx} + (2x \tan^{-1} y - x^3)(1 + y^2) = 0$
- (f) $(x^2 + y)dx + (y^3 + x)dy = 0$
- (g) $(1 + e^{\frac{x}{y}})dx + e^{\frac{x}{y}}(1 - \frac{x}{y})dy = 0$
- (h) $(y^2 e^{xy^2} + 4x^3)dx + (2xye^{xy^2} - 3y^2)dy = 0$
- (i) $(xdx + ydy)(x^2 + y^2) = ydx - xdy$
- (j) $y \cos(x)dx + 2 \sin(x)dy = 0$
- (k) $xdy + ydx + 3x^3 y^4 dy = 0$
- (l) $(1 + xy)ydx + (1 - xy)xdy = 0$
- (m) $(y^4 + 2y)dx + (xy^3 + 2y^4 - 4x)dy = 0$
- (n) $(xy - 1)dx + (x^2 - xy)dy = 0$

2. Find the curve passing through the point $(1, 0)$ and having at each of its points the slope $-\frac{x}{y}$

3. Solve the following Initial Value Problems (IVP)

- (a) $\frac{dy}{dx} = 2y + e^{2x}$, $y(0) = 3$
- (b) $\frac{dy}{dx} = 3y + 2e^{3x}$, $y(0) = 2$
- (c) $\frac{dy}{dx} = y \tan(x) + \sec x$, $y(0) = -1$
- (d) $\frac{dy}{dx} = \frac{2}{x}y + x$, $y(1) = 2$

4. Define the Wronskian $w(y_1, y_2)$ of any two continuous function y_1 and y_2 defined in an interval $(a, b) \subset R$. Show that $w(y_1, y_2) = 0$ if y_1 and y_2 are linearly dependent.

5. If y_1 and y_2 are any two solutions of a second order linear homogeneous ordinary differential equation which has been defined in an interval $(a, b) \subset R$, then $w(y_1, y_2)$ is either identically zero or non-zero at any point of the interval (a, b) .

6. If y_1 and y_2 are two linearly independent solutions of a second order linear homogeneous ordinary differential equation then prove that $y = c_1 y_1 + c_2 y_2$, where c_1 and c_2 are constants, is a general solution.

7. Find the general solution of the following second order equations using the given known solution y_1 .

- (a) $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - y = 0$ where $y_1(x) = x$.
- (b) $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} - 4y = 0$ where $y_1(x) = x^2$.
- (c) $(x-1) \frac{d^2y}{dx^2} - x \frac{dy}{dx} + y = 0$ where $y_1(x) = x$.
- (d) $x \frac{d^2y}{dx^2} - (2x+1) \frac{dy}{dx} + (x+1)y = 0$ where $y_1(x) = e^x$.

8. Find the general solution of each of the following equations ($D^n \equiv \frac{d^n}{dx^n}$)

- (a) $(D^4 - 81)y = 0$
- (b) $(D^3 - 4D^2 + 5D - 2)y = 0$
- (c) $(D^4 - 7D^3 + 18D^2 - 20D + 8)y = 0$
- (d) $(D^4 + 2D^3 + 3D^2 + 2D + 1)y = 0$
- (e) $(D^2 - 3D - 6)y = 3 \sin 2x$
- (f) $(D^2 + 1)y = 2 \cos x$
- (g) $(D^2 - 3D + 2)y = (4x + 5)e^{3x}$
- (h) $(D^2 - 1)y = 3e^{2x} \cos 2x$
- (i) $(D^2 - 2D + 3)y = 3e^{-x} \cos x$

9. Solve the following using the method of variation of parameters ($D^n \equiv \frac{d^n}{dx^n}$)

- (a) $(D^2 + 1)y = \operatorname{cosec} x$
- (b) $(D^2 - D - 6)y = e^{-x}$
- (c) $(D^2 + a^2)y = \tan ax$
- (d) $(D^2 + a^2)y = \sec 2x$
- (e) $x^2 y'' - 4xy' + 6y = 21x^{-4}$
- (f) $4x^2 y'' + 8xy' - 3y = 7x^2 - 15x^3$
- (g) $x^2 y'' - 2xy' + 2y = x^3 \cos x$
- (h) $xy'' - y' = (3+x)x^2 e^x$

10. Solve the following problems using method of undetermined coefficients ($D^n \equiv \frac{d^n}{dx^n}$)

- (a) $(D^3 - 2D^2 - 5D + 6)y = 18e^x$
- (b) $(D^2 + 25)y = 50 \cos 5x + 30 \sin 5x$
- (c) $(D^3 - 2D^2 + 4D - 8)y = 8(x^2 + \cos 2x)$
- (d) $(D^3 + 3D^2 - 4)y = 12e^{-2x} + 9e^x$

11. Show that the general solution of $L(y) = f_1(x) + f_2(x)$, where $L(y)$ is a linear differential operator, is $y = \bar{y} + y^*$, where \bar{y} is the general solution of the $L(y) = 0$ and y^* is the sum of the any particular solutions of $L(y) = f_1(x)$ and $L(y) = f_2(x)$.