

Assignment Sheet 3 on Legendre Polynomials
MA2020 Differential Equations (July - November 2012)

1. Using the governing differential equation of the Legendre polynomials show that

(a) $P'_n(1) = \frac{n(n+1)}{2}$

(b) $P'_n(-1) = (-1)^{n-1} \frac{n(n+1)}{2}$

2. Prove the Rodrigue's formula $P_n(x) = \frac{1}{n!2^n} \frac{d^n}{dx^n} (x^2 - 1)^n$

3. Prove that $P_n(x) = \sum_{r=0}^N \frac{(-1)^r (2n-2r)!}{2^r r! (n-r)! (n-2r)!} x^{n-2N}$ where N is $\frac{n}{2}$ or $\frac{n-1}{2}$ depending on n is even or odd

4. Prove that $(1 - 2xt + t^2)^{-\frac{1}{2}} = (1 - t(2x - t))^{-\frac{1}{2}} = \sum_{n=0}^{\infty} t^n P_n(x)$

5. Using the generating function of $p_n(x)$, prove the following

(a) $P_n(-1) = (-1)^n$

(b) $P_n(-x) = (-1)^n P_n(x)$

(c) $P_{2m}(0) = (-1)^m \frac{(2m)!}{2^{2m}(m!)^2}$

(d) $P_{2m+1}(0) = 0$

6. Prove that

$$P_n(0) = \begin{cases} 0, & n \text{ is odd} \\ \frac{(-1)^{1/2}(n!)}{2^n((n/2)!)^2}, & n \text{ is even} \end{cases}$$

7. Prove the following recurrence formulae for $P_n(x)$

(a) $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$

(b) $nP_n(x) = xP'_n(x) - P'_{n-1}(x)$

(c) $(2n+1)P_n(x) = P'_{n+1}(x) - P'_{n-1}(x)$

(d) $P'_n(x) = xP'_{n-1}(x) + nP_{n-1}(x)$

(e) $(1 - x^2)P'_n(x) = n(P_{n-1}(x) - xP_n(x))$

8. If $P_n(\alpha) = 0$ then $P_{n-1}(\alpha)$ and $P_{n+1}(\alpha)$ are of opposite sign

9. Prove the following orthogonal property of the Legendre polynomials $P_n(x)$

$$\int_{-1}^1 P_m(x) P_n(x) dx = \begin{cases} 0, & m \neq n \\ \frac{2}{2n+1}, & m = n \end{cases}$$

10. Prove the following

(a) $\int_{-1}^1 x^2 P_{n-1}(x) P_{n+1}(x) dx = \frac{2n(n+1)}{(2n-1)(2n+1)(2n+3)}$

(b) $\int_{-1}^1 x^2 P_n^2(x) dx = \frac{1}{8(2n-1)} + \frac{3}{4(2n+1)} + \frac{1}{8(2n+3)}$

(c) $\int_{-1}^1 P_3^2(x) dx = \frac{2}{7}$

(d) $\int_{-1}^1 x P_n^2(x) dx = 0$

11. Solve $(1 - x^2)y'' - 2xy' = 0$ (Legendre equation with $n = 0$). Show that its general solution is $y(x) = c_1y_1(x) + c_2y_2(x)$ with $y_1(x) = P_0(x) = 1$ and $y_2(x) = x + \frac{2}{3!}x^3 + \frac{(-3)(-1)2.4}{5!}x^5 + \dots = \frac{1}{2} \ln \frac{1+x}{1-x}$

12. Solve $(1 - x^2)y'' - 2xy' + 2y = 0$. (Legendre equation with $n = 1$)

13. Show that the coefficient of x^n in $P_n(x)$ is $\frac{(2n)!}{2^n(n!)^2}$.

14. Show that there are constants $\alpha_0, \alpha_1, \dots, \alpha_n$ such that

$$x^n = \alpha_0 P_0(x) + \alpha_1 P_1(x) + \dots + \alpha_n P_n(x)$$

15. Show that any polynomial of degree n is a linear combination of $P_0(x), P_1(x), \dots, P_n(x)$.

16. Find the first three terms of the Legendre series of

i) $f(x) = \begin{cases} 0, & -1 \leq x < 0 \\ x, & 0 \leq x \leq 1 \end{cases}$ ii) $f(x) = e^x, -1 \leq x \leq 1$

17. Let $P_n(x)$ be the Legendre polynomial. Show that

(i) $\int_{-1}^1 x^m P_n(x) dx = \begin{cases} 0, & m < n \\ \frac{2^{n+1}(n!)^2}{(2n+1)!}, & m = n \end{cases}$

(ii) $\int_{-1}^1 (1 - x^2) P'_n(x) P'_n(x) dx = \frac{2n(n+1)}{2n+1}$

18. The function on the left side of

$$\frac{1}{\sqrt{1 - 2xt + t^2}} = P_0(x) + P_1(x)t + P_2(x)t^2 + \dots + P_n(x)t^n + \dots$$

is called the generating function of the Legendre polynomials. Assuming that this relation is true and use it

a) To verify that $P_n(1) = 1, P_n(-1) = (-1)^n$.

b) $P_{2n+1}(0) = 0, P_{2n}(0) = (-1)^n \frac{1 \cdot 3 \dots (2n-1)}{2^n(n!)}$

c) Differentiate (1) with respect to t and show that

$$(x - t) \sum_{n=0}^{\infty} P_n(x) t^n = (1 - 2xt + t^2) \sum_{n=1}^{\infty} n P_n(x) t^{n-1}$$

d) Equate the coefficients of t^n in (c) and obtain the recurrence relation

$$(n+1)P_{n+1}(x) = (2n+1)xP_n(x) - nP_{n-1}(x)$$

e) Use recurrence relation in (d) to find $P_2(x), P_3(x), P_4(x)$ and $P_5(x)$ assuming that $P_0(x) = 1, P_1(x) = x$.

19. Find the first few terms of the Fourier-Legendre series.

(a) $f(x) = \cos \frac{\pi}{2}(x)$ (b) $f(x) = \begin{cases} 0, & -1 < x < 0 \\ x, & 0 < x < 1 \end{cases}$