OPERATOR THEORY – ASSIGNMENT SHEET-I

In the following X denotes a normed linear space over \mathbb{K} which is either \mathbb{R} or \mathbb{C} .

- 1. For each $x \in X$, let $\varphi_x(f) = f(x)$ for $f \in X'$. Show that $\varphi_x \in X''$, $||f_x|| = ||x||$ for every $x \in X$ and the map $x \mapsto \varphi_x$ is linear.
- 2. Let *D* be a dense subset of *X'* and (φ_n) be a sequence in *X''* such that $(\|\varphi_n\|)$ is bounded and $(\varphi_n(f))$ converges for every $f \in D$. Show that $(\varphi_n(f))$ converges for every $f \in X'$, and φ defined by $\varphi(f) := \lim_{n \to \infty} \varphi_n(f), f \in X'$, belongs to *X''*.
- 3. Let X be a finite dimensional normed linear space and $\{u_1, \ldots, u_k\}$ be a basis of X. For each $j \in \{1, \ldots, k\}$ and $(\alpha_1, \ldots, \alpha_k) \in \mathbb{R}^k$, let $f_j\left(\sum_{i=1}^k \alpha_i u_i\right) := \alpha_j$. Show that $f_j \in X'$.
- 4. Let X and f_j be as in Problem 3. Let (x_n) be a sequence in X and $x \in X$. Show that the following are equivalent:
 - (a) f_j(x_n) → f_j(x) for each j.
 (b) f(x_n) → f(x) for every f ∈ X'.
 (c) ||x_n x|| → 0.
- 5. If X is an infinite dimensional Hilbert space, show that there exists a sequence (x_n) in X and $x \in X$ such that $f(x_n) \to f(x) \forall f \in X'$ but $x_n \not\to x$.
- 6. If $1 \le p < \infty$ and $x \in \ell^p$, then show that $\sum_{j=1}^{\infty} x(j)e_j$ converges. Is the conclusion true if $p = \infty$? Justify your answer.
- 7. Let $1 . For each <math>j \in \mathbb{N}$, let $f_j(x) = x(j)$ for $x \in \ell^p$ and $j \in \mathbb{N}$. Show that $f_j \in (\ell^p)'$ for every $j \in \mathbb{N}$, and $\{f_j : j \in \mathbb{N}\}$ is a Schauder basis of $(\ell^p)'$.
- 8. Let $X = c_0$ with $\|\cdot\|_{\infty}$ and $x \in X$. For each $j \in \mathbb{N}$, let $f_j(x) = x(j)$ for $x \in X$ and $j \in \mathbb{N}$. Show that $f_j \in X'$ for every $j \in \mathbb{N}$, and $\{f_j : j \in \mathbb{N}\}$ is a Schauder basis of X'.
- 9. Let X be a Hilbert space. If (x_n) in X is such that (x_n) converges weakly to x and $||x_n|| \to ||x||$, then prove that $||x_n x|| \to 0$.
- 10. Let X_0 be a subspace of X and (x_n) be a sequence in X which converges weakly to x in X_0 . Show that (x_n) converges weakly to x in X.
- 11. If (x_n) in X is such that $(f(x_n))$ converges for every $f \in X'$, then (x_n) need not converge weakly Justify.
- 12. Prove that, if X is reflexive and (x_n) in X is such that $(f(x_n))$ converges for every $f \in X'$, then (x_n) converges weakly.

 $^{^1\}mathrm{MA}$ 615: January-May
(2009), MA 6150: January-May(2016)

13. Prove:

- (a) If X is a normed linear space having a dense separable subspace, then X is separable;
- (b) If X is having a Schauder basis, then X is separable.
- 14. Let X be an inner product space having a countable orthonormal basis. Is X separable?
- 15. Show that the following spaces are separable:

(i) ℓ^p for $1 \le p < \infty$, (ii) C[a, b] with $1 \le p \le \infty$.

- 16. Show that the following spaces are not separable: (i) ℓ^{∞} (ii) $L^{\infty}[a, b]$, (iii) NBV[a, b].
- 17. Show that every normed liner space which is linearly isometric with a separable space is separable.
- 18. If X is reflexive, then X' is reflexive. Is the converse true? Justify your answer.
- 19. The following spaces are not reflexive. Why?
 (i) ℓ¹, (ii) ℓ[∞], (iii) C[a, b], (iv) L¹[a, b], (v) L[∞][a, b], (vi) NBV[a, b].
- 20. Does every bounded sequence in ℓ^1 has a weakly convergent subsequence?
- 21. Let X be ℓ^p with $1 or <math>c_0$ with $\cdot \|_{\infty}$. Let (x_n) be a bounded sequence in X such that there exists $x \in X$ satisfying $x_n(j) \to x(j)$ for each $j \in \mathbb{N}$. Prove that (x_n) converges weakly to x.

Show that the conclusion need not hold if X is either ℓ^1 or ℓ^{∞} .

22. Let X and Y be normed linear spaces and $A: X \to Y$ be a linear operator. Prove that

(i) If A is continuous then for every (x_n) which converges weakly to x, the sequence (Ax_n) converges weakly to Ax.

(ii) A is continuous if and only if for (x_n) in X,

 $||x_n - x|| \to 0$ implies (Ax_n) converges weakly to Ax.

23. Let X be Banach space, Y be a normed linear space and (A_n) be a sequence in BL(X,Y) such that for every $x \in X$, (A_nx) converges weakly, to say y_x . Let $Ax = y_x, x \in X$. Prove that

$$A \in BL(X, Y)$$
 and $||A|| \le \sup_{n} ||A_n|| < \infty$.

- 24. Let X be a normed linear space. For $S \subseteq X'$, let $S^a = \{x \in X : f(x) = 0 \forall f \in S\}$. Show, if X is reflexive and $S^a = \{0\}$, then span(S) is dense in X'.
- 25. Suppose (f_n) is a sequence in X' which converges weakly to $f \in X'$. Show that $f_n(x) \to f(x)$ for every $x \in X$.

Is the converse of the assertion in Problem 25 true?