MA 6150: BASIC OPERATOR THEORY – ASSIGNMENT SHEET-2

- 1. Justify the following statements:
 - (a) Every bounded operator of finite rank is a compact operator.
 - (b) The identity operator on a normed linear space is a compact operator if and only if the space is of finite dimension.
 - (c) If X_0 is a subspace of a normed linear space X, then the inclusion operator $I_0: X_0 \to X$, i.e., $I_0 x = x$ for all $x \in X_0$, is a compact operator if and only if X_0 is finite dimensional.
 - (d) If $P: X \to X$ is a bounded projection operator, then it is compact if and only if $rankP < \infty$.
- 2. Show that the right-shift and left-shift operators from ℓ^p to itself are not compact operators.
- 3. Let (λ_n) be a bounded sequence in \mathbb{K} such that $\lambda_n \to \lambda \neq 0$, and let $A : \ell^p \to \ell^p$ be the *diagonal operator* associated with this sequence, i.e., A is defined by

$$(Ax)(i) = \lambda_i x(i), \quad i \in \mathbb{N}; \ x \in \ell^p.$$

Show that A is compact if and only if $\lambda = 0$.

4. For $k(\cdot, \cdot) \in C([a, b] \times [a, b])$, consider the integral operator K defined by

$$(Kx)(s) = \int_{a}^{b} k(s,t)x(t) \, d\mu(t), \quad x \in L^{1}[a,b].$$

Show that, if X, Y any of the spaces C[a, b], $L^p[a, b]$, $K : X \to Y$ is a compact operator.

- 5. Let X and Y be normed linear spaces $A \in \mathbb{K}(\mathbb{X}, \mathbb{Y})$ and X_0 be a subspace of X.
 - (i) If A_0 is the restriction of A to X_0 , i.e., $A_0 := A_{|X_0|}$, then show that $A_0 : X_0 \to Y$ is a compact operator.
 - (ii) Suppose $\|\cdot\|_0$ is a stronger norm on X_0 , i.e., there exists $c_0 > 0$ such that $\|x\|_X \leq c \|x\|_0$ for all $x \in X_0$. If $\widetilde{X}_0 := X_0$ with $\|\cdot\|_0$ and \widetilde{A}_0 is the restriction of A to \widetilde{X}_0 , then show that $\widetilde{A}_0 : \widetilde{X}_0 \to Y$ is a compact operator.
 - (iii) Suppose \widehat{Y} be a normed linear space such that Y is a subspace of \widehat{Y} and with a norm weaker than that in Y, i.e., there exists c > 0 such that $\|y\|_{\widehat{Y}} \leq c\|y\|_{Y}$ for all $y \in Y$. If $\widehat{A} : X \to \widehat{Y}$ is the operator defined by $\widehat{A}x = Ax$ for all $x \in X$, then show that $\widehat{A} : X \to \widehat{Y}$ is a compact operator.

- 6. Let $A: X \to Y$ be an injective compact operator. Prove that $A^{-1}: R(A) \to X$ is continuous if and only if $rankA < \infty$.
- 7. Let $A: X \to Y$ be a compact operator of infinite rank. Then prove that A is not bounded below.
- 8. Let X and Y be Banach spaces, and $A : X \to Y$ be a compact operator. Then prove that R(A) closed in Y if and only if A is of finite rank.
- 9. If X is an infinite dimensional normed linear space and $K \in \mathbb{K}(\mathbb{X})$, then show that, if λ is a nonzero scalar, then $\lambda I K$ is not a compact operator. Deduce that the operator

$$A: (\alpha_1, \alpha_2, \ldots) \mapsto \left(\alpha_1 + \alpha_2, \ \alpha_2 + \frac{\alpha_3}{2}, \ \alpha_3 + \frac{\alpha_4}{3}, \ \ldots\right)$$

is not a compact operator on ℓ^p , $1 \le p \le \infty$.

10. For $1 \leq p \leq \infty$, let q be the conjugate exponent of p. Let (a_{ij}) be an infinite matrix with $a_{ij} \in \mathbb{K}$, $i, j \in \mathbb{N}$. Show, in each of the following cases, that $(Ax)(i) = \sum_{j=1}^{\infty} a_{ij}x(j), x \in \ell^p, i \in \mathbb{N}$, is well defined and $A : \ell^p \to \ell^r$ is a compact operator.

(a)
$$1 \le p \le \infty, 1 \le r \le \infty$$
 and $\sum_{i=1}^{\infty} |a_{ij}| \to 0$ as $i \to \infty$.

- (b) $1 \le p \le \infty, \ 1 \le r < \infty \text{ and } \sum_{i=1}^{\infty} (\sum_{j=1}^{\infty} |a_{ij}|)^r < \infty.$
- (c) $1 , <math>1 \le r \le \infty$ and $\sum_{j=1}^{\infty} |a_{ij}|^q \to 0$ as $i \to \infty$.
- (d) $1 and <math>\sum_{i=1}^{\infty} (\sum_{j=1}^{\infty} |a_{ij}|^q)^{r/q} < \infty.$
- 11. Let (λ_n) be a bounded sequence in \mathbb{K} such that $\{\lambda_n : n \in \mathbb{N}\}$ has a nonzero accumulation point and $A : \ell^p \to \ell^p$ be the diagonal operator associated (λ_n) , i.e., $(Ax)(i) = \lambda_i x(i)$ for every $i \in \mathbb{N}$ and $x \in \ell^p$. Show that A is not a compact operator.
- 12. Show that the range of a compact operator is separable.

[*Hint*: Use the facts (to be proved) that totally bounded sets are separable, and the range of a compact operator is a countable union of totally bounded sets.]

13. Let X_0 , X_1 , X_2 , X_3 be normed linear spaces such that $X_0 \subseteq X_1$ and $X_2 \subseteq X_3$. Suppose further that the above inclusions are imbedings, i.e., there exists c > 0 and c' such that

 $||x||_1 \le c ||x||_0, \quad ||y||_3 \le c' ||y||_2 \quad \forall x \in X_0, \ y \in X_2.$

If $A : X_1 \to X_2$ is a compact operator, then prove that A as an operator from X_0 to , X_2 , from X_1 to X_3 and from X_0 to X_3 are compact.

14. Show that the Volterra integral operator V defined by V

$$(Vx)(s) = \int_{a}^{s} x(t) dt, \quad x \in C[a, b], \ s \in [a, b]$$

is a compact operator from C[a, b] into itself with respect to the norm $\|\cdot\|_{\infty}$.

15. Let $X_0 = C^1[a, b]$ with $||x||_0 := ||x||_{\infty} + ||x'||_{\infty}$ for $x \in X_0$ and X = C[a, b] with $|| \cdot ||_{\infty}$. Let $A_0 : X_0 \to X$ be defined by

$$A_0 x = x(a)u_0, \quad x \in X_0,$$

where $u_0(t) = 1$ for all $t \in [a, b]$, and $B : X_0 \to X$ be the differential operator, i.e., Bx = x' for every $x \in X_0$.

(a) Show that A_0 is a compact operator and B is a bounded operator.

(b) If $I_0: X_0 \to X$ is the inclusion operator, i.e., $I_0 x = x$ for all $x \in X_0$, and V is the Volterra operator on C[a, b] defined as in Problem 14, then show that $I_0 = A_0 + VB$.

- 16. Does compactness of I_0 follow from the above representation?
- 17. Let X be a separable (infinite dimensional) Hilbert space and $\{u_n : n \in \mathbb{N}\}$ be an orthonomal basis for X. Let (λ_n) be bounded sequence in K. Let $A : X \to X$ be defined by

$$Ax = \sum_{j=1}^{\infty} \lambda_n \langle x, u_j \rangle u_j, \quad x \in H.$$

Show that A is a compact operator if and only if $\lim_{n\to\infty} \lambda_n = 0$.

18. Let X = C[a, b] with $\|\cdot\|_{\infty}$ and $u \in X$. Show that the multiplication operator $A: X \to X$ defined by (Ax)(t) = u(t)x(t) for $x \in X$ and $t \in [a, b]$ is not a compact operator, unless u is identically zero.

[*Hint:* Construct an appropriate subspace X_0 of X such that the restriction of A to X_0 is bounded below.]

19. Suppose X is a Hilbert space and $A \in \mathcal{B}(X)$. Show that $A : X \to X$ is compact if and only if for every sequence (x_n) in X,

$$\langle x_n, u \rangle \to \langle x, u \rangle \quad \forall \, u \in X \implies Ax_n \to Ax.$$

20. Let $1 \leq p < \infty$. Is the set

$$\left\{x = (\alpha_1 \alpha_2, \ldots) \in \ell^p : \sum_{j=1}^{\infty} j^p |\alpha_j|^p < \infty\right\}$$

a closed subspace of ℓ^p ?