BASIC OPERATOR THEORY - ASSIGNMENT PROBLEMS

In the following X denotes a normed linear space over \mathbb{K} .

- 1. Show that $X' := \mathcal{B}(\mathcal{X}, \mathbb{K})$ is a Banach space.
- 2. For each $x \in X$, let $\varphi_x(f) = f(x)$ for $f \in X'$. Show that $\varphi_x \in X''$, $||f_x|| = ||x||$ for every $x \in X$ and the map $x \mapsto \varphi_x$ is linear.
- 3. Let D be a dense subset of X' and (φ_n) be a sequence in X" such that $(\|\varphi_n\|)$ is bounded and $(\varphi_n(f))$ converges for every $f \in D$. Show that $(\varphi_n(f))$ converges for every $f \in X'$, and φ defined by $\varphi(f) := \lim_{n \to \infty} \varphi_n(f), f \in X'$, belongs to X".
- 4. Let X be a finite dimensional normed linear space and $\{u_1, \ldots, u_k\}$ be a basis of X. For each $j \in \{1, \ldots, k\}$ and $(\alpha, \ldots, \alpha_k) \in \mathbb{R}^k$, let $f_j\left(\sum_{i=1}^k \alpha_i u_i\right) := \alpha_j$. Show that $f_j \in X'$.
- 5. Let X and f_j be as in Problem 4. Let (x_n) be a sequence in X and $x \in X$. Show that $f_j(x_n) \to f_j(x)$ for each j if and only if $||x_n x|| \to 0$.
- 6. Let X be a finite dimensional normed linear space, (x_n) be a sequence in X and $x \in X$. Show that $f(x_n) \to f(x)$ for each $f \in X'$ if and only if $||x_n x|| \to 0$.
- 7. If X is an infinite dimensional Hilbert space, show that there exist a sequence (x_n) in X and $x \in X$ such that $f(x_n) \to f(x)$ for every $f \in X$, but $||x_n x|| \neq 0$.
- 8. If $1 \le p < \infty$ and $x \in \ell^p$, then show that $\sum_{j=1}^{\infty} x(j)e_j$ converges. Is the conclusion true if $p = \infty$? Justify your answer.
- 9. Let $1 . For each <math>j \in \mathbb{N}$, let $f_j(x) = x(j)$ for $x \in \ell^p$ and $j \in \mathbb{N}$. Show that $f_j \in (\ell^p)'$ for every $j \in \mathbb{N}$. Show also that $\{f_j : j \in \mathbb{N}\}$ a Schauder basis of $(\ell^p)'$.
- 10. Let X be a Hilbert space. If (x_n) in X is such that (x_n) converges weakly to x and $||x_n|| \to ||x||$, then prove that $||x_n x|| \to 0$.
- 11. Show that

(i) if X is a normed linear space having a dense separable subspace, then X is separable;

- (ii) if X is having a Schauder basis, then X is separable.
- 12. Let X be an inner product space having a countable orthonormal basis. Is X separable? (see¹)

 $^{^1\}rm Example$ of a nonseparable inner product space with all its orthonormal sets countable, http://mat.iitm.ac.in/home/mtnair/public_html/

13. Show that the following spaces are separable:

(i) ℓ^p for $1 \le p < \infty$, (ii) C[a, b] with $1 \le p \le \infty$.

- 14. Show that the following spaces are not separable:
 (i) ℓ[∞] (ii) L[∞][a, b], (iii) NBV[a, b].
- 15. Show that every normed liner space which is linearly isometric with a separable space is separable.
- 16. If X is reflexive, then X' is reflexive. Is the converse true? Justify your answer.
- 17. Show that the following spaces are not reflexive:
 (i) ℓ¹, (ii) ℓ[∞], (iii) C[a, b], (iv) L^{[a}, b], (v) L[∞][a, b], (vi) NBV[a, b].
- 18. Does every bounded sequence in ℓ^1 has a weakly convergent subsequence?
- 19. Let (x_n) is a bounded sequence in ℓ^p with $1 , such that there exists <math>x \in \ell^p$ satisfying $x_n(j) \to x(j)$ for each $j \in \mathbb{N}$. Then (x_n) converges weakly to x Why?
- 20. Let X and Y be normed linear spaces and $A : X \to Y$ be a linear operator. Prove:

(i) If A is continuous then for every (x_n) which converges weakly to x, the sequence (Ax_n) converges weakly to Ax.

(ii) A is continuous if and only if for (x_n) in X, $||x_n - x|| \to 0$ implies (Ax_n) converges weakly to Ax.

21. Let X be Banach space, Y be a normed linear space and (A_n) be a sequence in BL(X,Y). If for every $x \in X$, there exists a $y \in Y$ denoted by y = A(x) such that $(A_n x)$ converges weakly to y, then prove that

$$A \in BL(X, Y)$$
 and $||A|| \le \sup_{n} ||A_n|| < \infty.$

22. Let X be a normed linear space . For $S \subseteq X'$, let

$$S^a = \{ x \in X : f(x) = 0 \ \forall f \in S \}.$$

Show, if X is reflexive and $S^a = \{0\}$, then span(S) is dense in X'.

- 23. Suppose (f_n) is a sequence in x' which converges weakly to $f \in X'$. Show that $f_n(x) \to f(x)$ for every $x \in X$.
- 24. Is the converse of the assertion in Problem 23 true?
- 25. Is c_0 with $\|\cdot\|_{\infty}$ reflexive? Why?

- 26. State whether the operator $A: \ell^p \to \ell^p, 1 \le p \le \infty$, in each of the following is compact or not. Justify the answer.
 - (i) $A: (a_1, a_2, a_3, \ldots) \mapsto (\alpha_1 + \alpha_2, \alpha_2 + \frac{1}{2}\alpha_3, \alpha_3 + \frac{1}{3}\alpha_4, \ldots).$
 - (ii) $A: (\alpha_1, \alpha_2, \alpha_3, \ldots) \mapsto \left(\frac{1}{2}\alpha_1, \frac{2}{3}\alpha_2, \frac{3}{4}\alpha_3, \ldots\right).$
- 27. Suppose $P \in BL(X)$ be a projection operator, i.e., $P^2 = P$. Then prove that P is compact if and only if rank $P < \infty$.
- 28. Let (a_{ij}) be an infinite matrix of scalars such that $\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|^2 < \infty$. Show that the map $(\alpha_i) \mapsto (\beta_i)$ with $\beta_i = \sum_j k_{ij} \alpha_j$, $i = 1, 2, \ldots$, defines a compact operator on ℓ^2 .
- 29. Let X and Y be normed linear spaces and $A: X \to Y$ be an injective compact operator. Show that $A^{-1}: R(A) \to X$ is continuous iff A is of finite rank.
- 30. Is the set $\{(\alpha_1\alpha_2,\ldots) \in \ell^2 : \sum_{n=1}^{\infty} n^2 |\alpha_n|^2 < \infty\}$ a closed subspace of ℓ^2 ? Justify the answer.
- 31. State whether the operator in each of the following is compact or not. Justify your answer:
 - (i) The diagonal operator on ℓ^p associated with the sequence $(\frac{1}{n})$.
 - (ii) The operator I + K, where K is a compact operator.
- 32. Suppose $A: X \to Y$ is a compact operator of infinite rank. Then show that there exists a sequence (x_n) in X such that $||x_n|| = 1$ for all $n \in \mathbb{N}$, and $||Ax_n|| \to 0$ as $n \to \infty$.
- 33. Give an example of a bounded operator on a complex Banach space having no eigenvalues. Justify your claim.
- 34. Give an example of a normal operator A on ℓ^2 such that $\sigma_{app}(A) = [0, 1]$. Justify your claim.
- 35. If $P: X \to X$ is a projection operator on a Banach space X, and if $0 \neq P \neq I$, then show that $\sigma(P) = \{0, 1\}$.
- 36. Let X be a complex Banach space, $A \in BL(X)$. Prove the following.
 - (i) For every $\mu \in \rho(A)$, $\sigma(A \mu I)^{-1} = \{\frac{1}{\lambda \mu} : \lambda \in \sigma(A)\}.$
 - (ii) If X is over \mathbb{C} and p(t) is a polynomial, then $\{p(\lambda) : \lambda \in \sigma(A)\} = \sigma(p(A))$.
- 37. Let A be a normal operator on a Hilbert space X. Show that if $\mu \in \rho(A)$, then $||A \mu I|^{-1}|| = 1/\text{dist}(\mu, \sigma(A)).$
- 38. Let H be a Hilbert space, S be the set of all self adjoint operators on H, N be the set of all normal operators on H, and \mathcal{U} be the set of all unitary operators on H. Show that

(i) $\mathcal{S} \subseteq \mathcal{N}$ and (ii) $\mathcal{U} \subseteq \mathcal{N}$.

Give examples to show that the inclusions are proper if $\dim(H) \ge 2$.

39. Let $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 2 & 0 & 2 \\ 3 & 0 & 3 & 1 \\ 4 & 2 & 1 & 4 \end{bmatrix}$. State whether the following statements are true or

false, and justify the answers :

(i) There exists an eigenvalue λ of A such that $\lambda \leq 1$

- (ii) If λ is an eigenvalue of A, then $\lambda \leq 1$.
- (iii) There exists an eigenvalue λ of A such that $\lambda \geq 4$
- (iv) If λ is an eigenvalue of A, then $\lambda \geq 4$.
- 40. Show that the approximate eigen spectrum of a bounded operator is a closed set.
- 41. Find the eigen-spectrum, approximate eigen-spectrum, and spectrum of the operator A defined below: X = C[a, b] with $\|\cdot\|_{\infty}$, and (Ax)(t) = tx(t) for $t \in [a, b]$, $x \in X$.
- 42. In each f the following, give an example and justify your claim:
 - (i) An approximate eigenvalue (of an operator) which is neither an eigenvalue nor the limit of a sequence of eigenvalues.
 - (ii) A self adjoint operator having no eigenvalues.
 - (iii) A compact operator on $L^2[0,1]$ having no eigenvalues.
 - (iv) A bounded operator on an inner product space having no adjoint.
- 43. If A is a compact operator on a Hilbert space and $\lambda \neq 0$, then show that there exists c > 0 such that $||Ax \lambda x|| \ge c||x||$ for all $x \in N(A \lambda I)^{\perp}$.
- 44. Let X and Y be Hilbert spaces and $T \in \mathcal{K}(X, Y)$. Show that there exists a sequence (T_n) in $\mathcal{B}(X, Y)$ of finite rank operators such that $||T T_n|| \to 0$ as $n \to \infty$.
- 45. Let X and Y be Hilbert spaces, $T \in BL(X, Y)$ and $y \in Y$. Show that there exists $x \in X$ such that $||Tx y|| = \inf\{||Tu y|| : u \in X\}$ if and only if there exists $x_0 \in X$ such that $T^*Tx_0 = T^*y$.
- 46. Let X and Y be Hilbert spaces and $T \in BL(X, Y)$. Let $P : Y \to Y$ be the orthogonal projection onto the closure of R(A). Prove the following:
 - (i) $D := \{y \in Y : Py \in R(A)\}$ is dense in Y.
 - (ii) For each $y \in D$, there exists a unique $x^{\dagger} \in N(A)^{\perp}$ such that $Tx^{\dagger} = Py$.
 - (iii) The map $T^{\dagger}: D \to X$ defined by $T^{\dagger}y = x^{\dagger}(y), y \in D$ is a closed operator.
 - (iv) T^{\dagger} is continuous iff and only if R(A) is closed in Y.