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Abstract

We show that if ¢ and v are solution of a second order linear homogeneous ordinary
differential equation with continuous coeflicients, then its Wronskian W (p, ) is either

identically zero or nonzero at every point.

Definition 1. Let ¢ and 9 be functions defined and differentiable in an interval I. Then

Wronskian of ¢ and 1 is the function W (g, ) := det 4 Z] on I. &

/

Recall the following theorem from [1].

THEOREM 2. (Existence and uniqueness) Consider the differential equation

Y+ p(x)y + q(x)y =0, (*)

where p and q are continuous function on I. Then for every (a,b) € R? and xo € I, there

exists a unique function ¢ defined and differentiable on I such that

o +pE)e +q(x)p =0, ¢(xo) =a, ¢'(x0)=>.

THEOREM 3. (Wronskian property) Let ¢ and 1 be any two solutions of the dif-

ferential equation
y" +p(2)y +q(z)y =0,

where p and q are continuous function on I. Then one, and only one, of the following
holds:

1. For every x € I, W(p,v)(z) = 0.
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2. For every x € I, W(p,9)(x) # 0.

Proof. Observe that one, and only one, of the following holds:
1. ¢, are linearly dependent.
2. ¢, are linearly independent.

Suppose case 1 occurs. Then there exists A € R such that ¢ = Ap. Clearly, for every
zel, W(p,¥)(x)=0.

Next, suppose case 2 occurs. Assume that there exists ¢ € I such that W (p, ) (zg) =
p(zo)  ¥(z0)
¢'(x0) (w0

0. Then columns of the matrix

] are linearly dependent. Hence, there

exists A € R such that

P(zo) = Ap(0), ¥/ (x0) = Ap'(w0)-
Let
a=¢(zo), b=¢(z0).

Now, by Theorem 2,

e ¢ is the unqiue solution of (x) such that ¢(xg) = a, ¢'(x0) =,

e 1) is the ungiue solution of () such that ¥(xg) = Aa, ¥’ (xg) = Ab,

e 1 :=1/\ is the ungiue solution of () such that v (z) = a, ¥/ (x0) = b,
Note that, in the above we use the fac that A # 0. This is true, because, if A = 0, then

is identically 0, which is not possible since ¢ and ¥ are linearly independent functions.
Again by Theorem 2,

P(x) =) Vrel,
ie.,
Y(x) = Ap(z) Vael.
This is a contradiction to the fact that ¢ and v are linearly independent functions. Thus,

our assumption that that there exists zg € I such that W (p,9)(xg) = 0 is wrong. Hence,
case 2 implies that for every « € I, W(p,¢)(z # 0. O

Another proof for Theorem 3. Let xg € I. By Theorem 2, there exists a unique solution
@ for (%) such that

p(xo) =1, ¢'(x0) =0,

and there exists a unique solution v for (%) such that
(o) =0, ' (xo) = 1.
p(zo)  ¥(zo)

/

¢ (x0)  Y(wo)
and ® are linearly independent. Let

Since columns of the matrix [ 1 are linearly independent, the functions ¢

S:={y e C*(I): () holds }.



Note that S is a subspace of C1(I) and ¢, € S. We claim that dim(S) = 2. For this,
let f€S. Let

a= f(zo), b= f(xo)
Since
(a,b) = a(1,0) + b(0,1),

and since g := ap + S is the unique solution of (x) satisfying

g(wo) = a, g'(x0) =0,

by Theorem 2, g(z) = f(x) for all z € I. Thus, we have shown that {¢,} is a basis of
S.
Now, consider the function T : S — R? defined by

Tf = (f(xo), f'(0), fES.

Clearly, T is a linear transformation. Also, by Theorem 2, for every (a,b) € R?, there
exists a unique f € S such that
Tf = (a,b).

Hence, T is onto. Since dim(S) = dim(R?) = 2, T is one-one as well. Hence, for any two
functions f,g € S,
{f, g} linearly independent in S <= {T'f, Tg} linearly independent in R
In other words
W(f,9)(x) =0 Veel < W(f g)(xo) =0.

From this the proof follows. Indeed, for 7 € I, one and only one of the following can hold:

o W(f,9)(r) =0,

o W(f,g)(1)#0.

Note that W (f,g)(r) = 0 implies, by taking o = 7, that W(f,g)(z) = 0 for all z €
I. Next suppose W(f,g)(t) # 0. If W(f,g)(x1) = 0 for some z1, then by taking
xg = 21 W(f,g)(z) = 0 for all x € I; in particular, W(f, g)(7) = 0. Hence, we obtain
W (f,g)(T) # 0 implies W(f,g)(x) =0 for all z € I. O
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