4

Improper Integrals

In Chapter 3, we defined definite integral of a function f for the case when f is a bounded function defined on a closed interval $[a, b]$. can we still have a notion of integral even when the above assumptions on f and the domain of integration are not satisfied? We consider a notion of integral, called improper integral, in a few cases.

4.1 Definitions

4.1.1 Integrals over infinite intervals

First we consider integrals of functions defined over infinite integrals of the form $[a, \infty),(-\infty, b]$ and $(-\infty, \infty)$. Recall that Rieman integral was defined over intervals of the form $[a, b]$.

Definition 4.1 (i) Suppose f is defined on $[a, \infty)$ and integrable on $[a, t]$ for all $t>a$. If $\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x$ exists, then we define the improper integral of f over $[a, \infty)$ as

$$
\int_{a}^{\infty} f(x) d x:=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x
$$

(ii) Suppose f is defined on $(-\infty, b]$ and integrable on $[t, b]$ for all $t<b$. If $\lim _{\substack{t \rightarrow-\infty \\ \mathrm{as}}} \int_{t}^{b} f(x) d x$ exists, then we define the improper integral of f over $(-\infty, b]$

$$
\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x
$$

(iii) Suppose f is defined on $\mathbb{R}:=(-\infty, \infty)$ and integrable on $[a, b]$ for every closed and bounded interval $[a, b] \subseteq \mathbb{R}$. If $\int_{-\infty}^{c} f(x) d x$ and $\int_{c}^{\infty} f(x) d x$ exist for some $c \in \mathbb{R}$, then we define the improper integral of f over $(-\infty, \infty)$ as

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x
$$

In Definition 4.1, the following results is used without mentioning:

- Suppose f is defined on $(-\infty, \infty)$ and integrable on $[a, b]$ for every closed and bounded interval $[a, b] \subseteq \mathbb{R}$. If the integrals $\int_{-\infty}^{c} f(x) d x$ and $\int_{c}^{\infty} f(x) d x$ exist for some $c \in \mathbb{R}$, then they exist for every $c \in \mathbb{R}$, and

$$
\int_{-\infty}^{c} f(x) d x+\int_{c}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

for every $a \in \mathbb{R}$.
Exercise 4.1 Prove the above result.

Remark 4.1 We may observe that the existence of $\lim _{t \rightarrow \infty} \int_{-t}^{t} f(x) d x$ does not, in general, imply the existence of $\int_{-\infty}^{\infty} f(x) d x$. To see this, consider the function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(x)=x, \quad x \in \mathbb{R}
$$

Then we have $\int_{-t}^{t} f(x) d x=0$ for every $t \in \mathbb{R}$, but the integrals $\int_{-\infty}^{c} f(x) d x$ and $\int_{c}^{\infty} f(x) d x$ do not exist for any $c \in \mathbb{R}$.

Next we consider integrals of functions defined over infinite integrals of the form (a, ∞) and $(-\infty, b)$.

Definition 4.2 (i) Suppose f is defined on (a, ∞) and $\int_{t}^{\infty} f(x) d x$ exists for all $t>a$. If $\lim _{t \rightarrow a} \int_{t}^{\infty} f(x) d x$ exists, then we define the improper integral of f over (a, ∞) as

$$
\int_{a}^{\infty} f(x) d x:=\lim _{t \rightarrow a} \int_{t}^{\infty} f(x) d x
$$

(ii) Suppose f is defined on $(-\infty, b)$ and $\int_{-\infty}^{t} f(x) d x$ exists for all $t<b$. If $\lim _{\substack{t \rightarrow b \\ \text { as }}} \int_{-\infty}^{t} f(x) d x$ exists, then we define the improper integral of f over $(-\infty, b)$

$$
\int_{a}^{\infty} f(x) d x:=\lim _{t \rightarrow b} \int_{-\infty}^{t} f(x) d x
$$

Remark 4.2 In the case of (a, ∞), the function may not be defined at the point a or may be unbounded on $(a, a+\delta)$ for some $\delta>0$ so that we cannot talk about the Riemann integral over $[a, a+\delta]$ for $\delta>0$. Analogous remark holds for functions defined on $(-\infty, b)$.

4.1.2 Improper integrals over finite intervals

Now we consider the case when f is defined on a interval J of finite length, but either the function is not defined at any one of the end points or the function is not bounded on J.

Definition 4.3 (i) Suppose f is defined on ($a, b]$. If $\int_{t}^{b} f(x) d x$ exists for every $t \in(a, b)$, and if $\lim _{t \rightarrow a} \int_{t}^{b} f(x) d x$ exists, then we define the improper integral of f over $(a, b]$ as

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a} \int_{t}^{b} f(x) d x .
$$

(ii) Suppose f is defined on $[a, b)$. If $\int_{a}^{t} f(x) d x$ exists for every $t \in(a, b)$, and if $\lim _{t \rightarrow b} \int_{a}^{t} f(x) d x$ exists, then we define the improper integral of f over $[a, b)$ as

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b} \int_{a}^{t} f(x) d x .
$$

(iii) Suppose f is defined on $[a, c)$ and ($c, b]$. If $\int_{a}^{c} f(x) d x$ and $\int_{c}^{b} f(x) d x$ exist, then we define the improper integral of f over $[a, b]$ as

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x .
$$

Remark 4.3 In the case of improper integrals over $(a, b]$, the function may not be defined at the point a or may be unbounded on $(a, a+\delta)$ for some $\delta>0$ so that we cannot talk about the Riemann integral over $[a, a+\delta]$ for $\delta>0$. Analogous statement holds for case of improper integrals over $[a, b)$. In the case of improper integrals over $[a, b]$, the function may not be defined at the point c or may be unbounded on $[a, c)$ and $(c, b]$ for some $\delta>0$ so that we cannot have the Riemann integral over $[a, b]$.

Definition 4.4 If improper integral of a function f over an interval J (of finite or infinite length) exists, then we say that the the improper integral exists or improper integral converges; otherwise we say that the improper integral does not exist or improper integral diverges.

4.1.3 Typical examples

Example 4.1 Consider the improper integral $\int_{1}^{\infty} \frac{1}{x} d x$. Note that

$$
\int_{1}^{t} \frac{1}{x} d x=[\ln x]_{1}^{t}=\ln t \rightarrow \infty \quad \text { as } \quad t \rightarrow \infty
$$

Hence, $\int_{1}^{\infty} \frac{1}{x} d x$ diverges.
Example 4.2 Consider the improper integral $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ Note that

$$
\int_{1}^{t} \frac{1}{x^{2}} d x=\left[-\frac{1}{x}\right]_{1}^{t}=1-\frac{1}{t} \rightarrow 1 \quad \text { as } \quad t \rightarrow \infty
$$

Hence, $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ converges.
Example 4.3 For $p \neq 1$, consider the improper integral $\int_{1}^{\infty} \frac{1}{x^{p}} d x$. In this case, we have

$$
\int_{1}^{t} \frac{1}{x^{p}} d x=\left[\frac{x^{-p+1}}{-p+1}\right]_{1}^{t}=\frac{t^{-p+1}-1}{-p+1}
$$

Note that,

$$
p>1 \quad \Longrightarrow \quad \frac{t^{-p+1}-1}{-p+1} \rightarrow \frac{1}{p-1} \quad \text { as } \quad t \rightarrow \infty
$$

and

$$
p<1 \quad \Longrightarrow \quad \frac{t^{-p+1}-1}{-p+1} \rightarrow \infty \quad \text { as } \quad t \rightarrow \infty
$$

The above observations combined with Example 4.1 show that

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x \quad\left\{\begin{array}{l}
\text { converges for } p>1 \\
\text { diverges for } p \leq 1
\end{array}\right.
$$

Example 4.4 (i) We consider the improper integral $\int_{0}^{1} \frac{1}{x} d x$: Note that for $0<$ $\delta<1$,

$$
\int_{\delta}^{1} \frac{1}{x} d x=[\log x]_{\delta}^{1}=\log 1-\log \delta=-\log \delta=\log \left(\frac{1}{\delta}\right) \rightarrow \infty \quad \text { as } \quad \delta \rightarrow 0
$$

Thus, the integral diverges.
(ii) For $p \neq 1$, consider the improper integral $\int_{0}^{1} \frac{1}{x^{p}} d x$. In this case, we have

$$
\int_{\delta}^{1} \frac{1}{x^{p}} d x=\left[\frac{x^{-p+1}}{-p+1}\right]_{\delta}^{1}=\frac{1-\delta^{-p+1}}{-p+1}
$$

Note that,

$$
p>1 \quad \Longrightarrow \quad \frac{\delta^{-p+1}-1}{-p+1} \rightarrow \infty \quad \text { as } \quad \delta \rightarrow 0
$$

and

$$
p<1 \quad \Longrightarrow \quad \frac{\delta^{-p+1}-1}{-p+1} \rightarrow \frac{1}{1-p} \quad \text { as } \quad \delta \rightarrow 0
$$

The above observations combined with (i) above give

$$
\int_{0}^{1} \frac{1}{x^{p}} d x \quad\left\{\begin{array}{l}
\text { converges for } p<1 \\
\text { diverges for } p \geq 1
\end{array}\right.
$$

Example 4.5 Let $a<b$ and $\alpha<1$. Then $\int_{a}^{b} \frac{d x}{(b-x)^{\alpha}}$ converges:
We observe that for $a<t<b$,

$$
\int_{a}^{t} \frac{d x}{(b-x)^{\alpha}}=\int_{b-t}^{b-a} \frac{d u}{u^{\alpha}}
$$

Now,

$$
\begin{aligned}
\lim _{t \rightarrow b} \int_{a}^{t} \frac{d x}{(b-x)^{\alpha}} \text { exists } & \Longleftrightarrow \lim _{t \rightarrow b} \int_{b-t}^{b-a} \frac{d u}{u^{\alpha}} \text { exists } \\
& \Longleftrightarrow \lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{b-a} \frac{d u}{u^{\alpha}} \text { exists } \\
& \Longleftrightarrow \alpha<1
\end{aligned}
$$

Exercise 4.2 Suppose $f \geq 0$ on $[a, b)$ and the integral $\int_{a}^{t} f(x) d x$ exists for every $t \in[a, b)$. If $\lim _{x \rightarrow b}(b-x)^{\alpha} f(x)$ converges for some $\alpha<1$, then show that $\int_{a}^{b} f(x) d x$ also converges.
[Hint: Observe that for any $\varepsilon>0$, there exists $x_{0} \in[a, b)$ such that the number $\beta:=\lim _{x \rightarrow b}(b-x)^{\alpha} f(x)$ satisfies $0 \leq f(x) \leq \frac{\beta+\varepsilon}{(b-x)^{\alpha}}$ for all $x \in\left[x_{0}, b\right)$.]

4.2 Integrability by Comparison

We state a result which will be useful in asserting the existence of certain improper integral by comparing it with certain other improper integral.

Suppose J is either an interval of finite or infinite length. Suppose f is defined on J, except possibly at a finite number of point in J. We denote the improper integral of f over J by

$$
\int_{J} f(x) d x
$$

We say that the improper integral $\int_{J} f(x) d x$ converges whenever it exists, and diverges if it does not exist.

For example, if $J=[a, b]$, then f may not be defined at a or at b or at some point $c \in(a, b)$, and the corresponding improper integrals, by definition, are

$$
\lim _{t \rightarrow a} \int_{t}^{b} f(x) d x, \quad \lim _{t \rightarrow b} \int_{a}^{t} f(x) d x, \quad \lim _{t \rightarrow c^{-}} \int_{a}^{t} f(x) d x+\lim _{t \rightarrow c^{+}} \int_{t}^{b} f(x) d x
$$

respectively.
Theorem 4.1 Suppose f and g are defined on J.
(i) If $0 \leq f(x) \leq g(x)$ for all $x \in J$, and $\int_{J} g(x) d x$ exists, then $\int_{J} f(x) d x$ exists.
(ii) If $\int_{J}|f(x)| d x$ exists, then $\int_{J} f(x) d x$ exists.

Example 4.6 Since

$$
\left|\frac{\sin x}{x^{p}}\right| \leq \frac{1}{x^{p}}, \quad\left|\frac{\cos x}{x^{p}}\right| \leq \frac{1}{x^{p}}
$$

it follows from Example 4.3 and Theorem 4.1(ii) that the improper integrals

$$
\int_{1}^{\infty} \frac{\sin x}{x^{p}} d x \text { and } \int_{1}^{\infty} \frac{\cos x}{x^{p}} d x
$$

converge for all $p>1$.
In fact $\int_{1}^{\infty} \frac{\sin x}{x^{p}} d x$ and $\int_{1}^{\infty} \frac{\cos x}{x^{p}} d x$ converge for all $p>0$ as we see in the next example.

Example 4.7 Let $p>0$. Then for $t>0$,

$$
\begin{aligned}
\int_{1}^{t} \frac{\sin x}{x^{p}} d x & =\left[\frac{1}{x^{p}}(-\cos x)\right]_{1}^{t}-p \int_{1}^{t} \frac{1}{x^{p+1}} \cos x d x \\
& =\left[\cos 1-\frac{\cos t}{t^{p}}\right]-p \int_{1}^{t} \frac{\cos x}{x^{p+1}} d x .
\end{aligned}
$$

By the result in Example 4.6, $\int_{1}^{\infty} \frac{\cos x}{x^{p+1}} d x$ converges for all $p>0$. Also, $\frac{\cos t}{t^{p}} \rightarrow$ 0 as $t \rightarrow \infty$. Hence,

$$
\int_{1}^{\infty} \frac{\sin x}{x^{p}} d x \quad \text { converges for all } \quad p>0 .
$$

Similarly, we see that

$$
\int_{1}^{\infty} \frac{\cos x}{x^{p}} d x \quad \text { converges for all } \quad p>0 .
$$

Example 4.8 Since

$$
\left|\frac{\sin x}{x^{p}}\right|=\left|\frac{\sin x}{x}\right| \frac{1}{x^{p-1}} \leq \frac{1}{x^{p-1}}, \quad\left|\frac{\cos x}{x^{p}}\right| \leq \frac{1}{x^{p}}
$$

it follows from Example 4.4 above and Theorem 4.1(ii)that

$$
\begin{aligned}
& \int_{0}^{1} \frac{\sin x}{x^{p}} d x \text { converges for all } p<2 \\
& \int_{0}^{1} \frac{\cos x}{x^{p}} d x \text { converges for all } p<1
\end{aligned}
$$

Example 4.9 Observe that

$$
\frac{\sin x}{x^{p}}=\frac{\sin x}{x} \frac{1}{x^{p-1}} \geq \frac{\sin 1}{x^{p-1}} \quad \forall x \in(0,1] .
$$

Since $\int_{0}^{1} \frac{1}{x^{p-1}} d x$ diverges for $p-1 \geq 1$, i.e., for $p \geq 2$, it follows that

$$
\int_{0}^{1} \frac{\sin x}{x^{p}} d x \quad \text { diverges for all } \quad p \geq 2
$$

Example 4.10 From Examples 4.8, 4.9, 4.7,

$$
\int_{0}^{\infty} \frac{\sin x}{x^{p}} d x \quad \text { converges for } \quad 0<p<2
$$

4.3 Integrability Using Limits

Now some more results which facilitate the assertion of convergence/divergence of improper integrals, whose proofs follow from the definition of limits.
Theorem 4.2 Suppose $f(x) \geq 0, g(x) \geq 0$ for all $x \in[a, \infty), \int_{a}^{b} f(x) d x$ and $\int_{a}^{b} g(x) d x$ exists for every $b>a$. Suppose further that $\frac{f(x)}{g(x)} \rightarrow \ell$ as $x \rightarrow \infty$ for some $\ell \geq 0$.
(i) If $\ell \neq 0$, then $\int_{a}^{\infty} f(x) d x$ converges $\Longleftrightarrow \int_{a}^{\infty} g(x) d x$ converges.
(ii) If $\ell=0$, then $\int_{a}^{\infty} g(x) d x$ converges $\Longrightarrow \int_{a}^{\infty} f(x) d x$ converges.

Further, if $\frac{f(x)}{g(x)} \rightarrow \infty$ as $x \rightarrow \infty$, then

$$
\int_{a}^{\infty} g(x) d x \text { converges } \Longrightarrow \int_{a}^{\infty} f(x) d x \text { converges. }
$$

Proof. Suppose further that $\frac{f(x)}{g(x)} \rightarrow \ell$ as $x \rightarrow \infty$ for some $\ell \geq 0$.
(i) Suppose $\ell \neq 0$. Then $\ell>0$, and for $\varepsilon>0$ with $\ell-\varepsilon>0$, there exists $x_{0} \geq a$ such that

$$
\ell-\varepsilon<\frac{f(x)}{g(x)}<\ell+\varepsilon \quad \forall x \geq x_{0} .
$$

Hence

$$
(\ell-\varepsilon) g(x)<f(x)<(\ell+\varepsilon) g(x) \quad \forall x \geq x_{0} .
$$

Consequently, $\int_{x_{0}}^{\infty} f(x) d x$ converges iff $\int_{x_{0}}^{\infty} g(x) d x$ converges. As $\int_{a}^{x_{0}} f(x) d x$ and $\int_{a}^{x_{0}} g(x) d x$ exist, the result in (i) follows.
(ii) Suppose $\ell=0$. Then for $\varepsilon>0$, there exists $x_{0} \geq a$ such that

$$
\frac{f(x)}{g(x)}<\varepsilon \quad \forall x \geq x_{0} .
$$

Thus, $f(x)<\varepsilon g(x)$ for all $x \geq x_{0}$. Hence, convergence of $\int_{x_{0}}^{\infty} g(x) d x$ implies the convergence of $\int_{x_{0}}^{\infty} f(x) d x$. From this the result in (ii) follows.

Next, suppose further that $\frac{f(x)}{g(x)} \rightarrow \infty$ as $x \rightarrow \infty$. Then for $M>0$, there exists $x_{0} \geq a$ such that

$$
0 \leq \frac{f(x)}{g(x)} \leq M \quad \forall x \geq x_{0} .
$$

Hence

$$
0 \leq f(x) \leq M g(x) \quad \forall x \geq x_{0} .
$$

Consequently, $\int_{x_{0}}^{\infty} g(x) d x$ converges implies $\int_{x_{0}}^{\infty} f(x) d x$ converges. As $\int_{a}^{x_{0}} f(x) d x$ and $\int_{a}^{x_{0}} g(x) d x$ exist, the proof is over.
Exercise 4.3 Suppose f and g are non-negative continuous functions on J. Then

$$
\int_{a}^{b} f(x) d x \text { exists } \Longleftrightarrow \int_{a}^{b} g(x) d x \text { exists }
$$

in the following cases:

1. $J=(a, b]$ and $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\ell$ and $\ell>0$.
2. $J=[a, b)$ and $\lim _{x \rightarrow b} \frac{f(x)}{g(x)}=\ell$ and $\ell>0$.
3. $J=[a, \infty)$ and $\lim _{x \rightarrow \infty} \frac{f(x)}{g(x)}=\ell$ and $\ell>0$.
4. $J=(-\infty, b]$ and $\lim _{x \rightarrow-\infty} \frac{f(x)}{g(x)}=\ell$ and $\ell>0$.

In 1-4 above, if $\ell=0$, then $\int_{a}^{b} g(x) d x$ exists $\Longrightarrow \int_{a}^{b} g(x) d x$ exists .

4.4 Gamma and Beta Functions

Gamma and Beta Functions are certain improper integrals which appear in many applications.

Gamma function

We show that for $x>0$, the improper integral

$$
\Gamma(x):=\int_{0}^{\infty} t^{x-1} e^{-t} d t
$$

converges. The function $\Gamma(x), x>0$, is called the gamma function.
Note that for $t^{x-1} e^{-t} \leq t^{x-1}$ for all $t>0$, and $\int_{0}^{1} t^{x-1} d t$ converges for $x>0$. Hence, by Theorem 4.1,

$$
\int_{0}^{1} t^{x-1} e^{-t} d t \quad \text { converges for } \quad x>0
$$

Also, we observe that $\frac{t^{x-1} e^{-t}}{t^{-2}} \rightarrow 0$ as $t \rightarrow \infty$, and $\int_{1}^{\infty} t^{-2} d t$ converges. Hence, by Theorem 4.2, $\int_{1}^{\infty} t^{x-1} e^{-t} d t$ converges. Thus,

$$
\Gamma(x):=\int_{0}^{\infty} t^{x-1} e^{-t} d t=\int_{0}^{1} t^{x-1} e^{-t} d t+\int_{1}^{\infty} t^{x-1} e^{-t} d t
$$

converges for every $x>0$.

Beta function

We show that for $x>0, y>0$, the improper integral

$$
\beta(x, y):=\int_{0}^{1} t^{x-1}(1-t)^{y-1} d t
$$

converges. The function $\beta(x, y)$ for $x>0, y>0$ is called the beta function.
Clearly, the above integral is proper for $x \geq 1, y \geq 1$. Hence it is enough to consider the case of $0<x<1,0<y<1$. In this case both the points $t=0$ and $t=1$ are problematic. hence, we consider the integrals

$$
\int_{0}^{1 / 2} t^{x-1}(1-t)^{y-1} d t, \quad \int_{1 / 2}^{1} t^{x-1}(1-t)^{y-1} d t
$$

We note that if $0<t \leq 1 / 2$, then $(1-t)^{y-1} \leq 2^{1-y}$ so that $t^{x-1}(1-t)^{y-1} \leq 2^{1-y} t^{x-1}$. Since $\int_{0}^{1 / 2} t^{x-1} d t$ converges it follows that $\int_{0}^{1 / 2} t^{x-1}(1-t)^{y-1} d t$ converges. To deal with the second integral, consider the change of variable $u=1-t$. Then

$$
\int_{1 / 2}^{1} t^{x-1}(1-t)^{y-1} d t=\int_{0}^{1 / 2} u^{y-1}(1-u)^{x-1} d u
$$

which converges by the above argument. Hence,

$$
\beta(x, y):=\int_{0}^{1} t^{x-1}(1-t)^{1-y} d t, \quad x>0, y>0
$$

converges for every $x>0, y>0$.

4.5 Additional Exercises

1. Does $\int_{1}^{\infty} \sin \left(\frac{1}{x^{2}}\right) d x$ converge?
[Hint: Note that $\left|\sin \left(\frac{1}{x^{2}}\right)\right| \leq \frac{1}{x^{2}}$.]
2. Does $\int_{2}^{\infty} \frac{\cos x}{x(\log x)^{2}} d x$ converge?
[Hint: Observe $\left|\frac{\cos x}{x(\log x)^{2}}\right| \leq \frac{1}{x(\log x)^{2}}$ and use the change of variable $t=\log x$.]
3. Does $\int_{0}^{\infty} \frac{\sin ^{2} x}{x^{2}} d x$ converge?
[Hint: Observe $\frac{\sin ^{2} x}{x^{2}} \leq \frac{1}{x^{2}}$ for $x \geq 1$ and $\frac{\sin ^{2} x}{x^{2}}, 0<x \leq 1$ has a continuous extension on $[0,1]$.]
4. Does $\int_{0}^{1} \frac{\sin x}{x^{2}} d x$ converge?
[Hint: Observe $\frac{\sin x}{x^{2}}=\left(\frac{\sin x}{x}\right) \frac{1}{x} \geq\left(\frac{\sin 1}{1}\right)$.]
5. Does $\int_{a_{0}}^{\infty} f(x) d x$ exists implies $\int_{a}^{b} f(x) d x \rightarrow 0$ as $a, b \rightarrow \infty$.
[Hint: Note that $\int_{a}^{b} f(x) d x=\int_{a_{0}}^{b} f(x) d x-\int_{a_{0}}^{a} f(x) d x \rightarrow 0$ as $a, b \rightarrow \infty$.]
6. Does $\int_{0}^{\infty} e^{-x^{2}} d x$ converge?
[Hint: Note that $e^{-x^{2}}$ is continuous on $[0,1]$, and $e^{-x^{2}} \leq \frac{1}{x^{2}}$ for $1 \leq x \leq \infty$.]
7. Does $\int_{2}^{\infty} \frac{\sin (\log x)}{x} d x$ converge?
[Hint: Use the change of variable $t=\log x$, and the fact that $\int_{\log 2}^{\infty} \sin t d t$ diverges.]
8. Does $\int_{0}^{1} \ln x d x$ converge?
[Hint: Use the change of variable $t=\log x$.]
