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Improper Integrals

In Chapter 3, we defined definite integral of a function f for the case when f is a
bounded function defined on a closed interval [a, b]. can we still have a notion of
integral even when the above assumptions on f and the domain of integration are
not satisfied? We consider a notion of integral, called improper integral, in a few
cases.

4.1 Definitions

4.1.1 Integrals over infinite intervals

First we consider integrals of functions defined over infinite integrals of the form
[a,∞), (−∞, b] and (−∞,∞). Recall that Rieman integral was defined over intervals
of the form [a, b].

Definition 4.1 (i) Suppose f is defined on [a,∞) and integrable on [a, t] for all

t > a. If lim
t→∞

∫ t

a
f(x) dx exists, then we define the improper integral of f over

[a,∞) as ∫ ∞
a

f(x) dx := lim
t→∞

∫ t

a
f(x) dx.

(ii) Suppose f is defined on (−∞, b] and integrable on [t, b] for all t < b. If

lim
t→−∞

∫ b

t
f(x) dx exists, then we define the improper integral of f over (−∞, b]

as ∫ b

−∞
f(x) dx = lim

t→−∞

∫ b

t
f(x) dx.

(iii) Suppose f is defined on R := (−∞,∞) and integrable on [a, b] for every

closed and bounded interval [a, b] ⊆ R. If

∫ c

−∞
f(x) dx and

∫ ∞
c

f(x) dx exist for

some c ∈ R, then we define the improper integral of f over (−∞,∞) as∫ ∞
−∞

f(x) dx =

∫ c

−∞
f(x) dx+

∫ ∞
c

f(x) dx.

135
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�

In Definition 4.1, the following results is used without mentioning:

• Suppose f is defined on (−∞,∞) and integrable on [a, b] for every closed and
bounded interval [a, b] ⊆ R. If the integrals

∫ c
−∞ f(x) dx and

∫∞
c f(x) dx exist

for some c ∈ R, then they exist for every c ∈ R, and∫ c

−∞
f(x) dx+

∫ ∞
c

f(x) dx =

∫ a

−∞
f(x) dx+

∫ ∞
a

f(x) dx.

for every a ∈ R.

Exercise 4.1 Prove the above result. J

Remark 4.1 We may observe that the existence of limt→∞
∫ t
−t f(x) dx does not,

in general, imply the existence of
∫∞
−∞ f(x) dx. To see this, consider the function

f : R→ R defined by

f(x) = x, x ∈ R.

Then we have
∫ t
−t f(x) dx = 0 for every t ∈ R, but the integrals

∫ c
−∞ f(x) dx and∫∞

c f(x) dx do not exist for any c ∈ R. �

Next we consider integrals of functions defined over infinite integrals of the form
(a,∞) and (−∞, b).

Definition 4.2 (i) Suppose f is defined on (a,∞) and
∫∞
t f(x)dx exists for all

t > a. If lim
t→a

∫ ∞
t

f(x) dx exists, then we define the improper integral of f over

(a,∞) as ∫ ∞
a

f(x) dx := lim
t→a

∫ ∞
t

f(x) dx.

(ii) Suppose f is defined on (−∞, b) and
∫ t
−∞ f(x)dx exists for all t < b. If

lim
t→b

∫ t

−∞
f(x) dx exists, then we define the improper integral of f over (−∞, b)

as ∫ ∞
a

f(x) dx := lim
t→b

∫ t

−∞
f(x) dx.

�

Remark 4.2 In the case of (a,∞), the function may not be defined at the point
a or may be unbounded on (a, a + δ) for some δ > 0 so that we cannot talk about
the Riemann integral over [a, a+ δ] for δ > 0. Analogous remark holds for functions
defined on (−∞, b). �
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4.1.2 Improper integrals over finite intervals

Now we consider the case when f is defined on a interval J of finite length, but
either the function is not defined at any one of the end points or the function is not
bounded on J .

Definition 4.3 (i) Suppose f is defined on (a, b]. If

∫ b

t
f(x) dx exists for every

t ∈ (a, b), and if lim
t→a

∫ b

t
f(x) dx exists, then we define the improper integral of f

over (a, b] as ∫ b

a
f(x) dx = lim

t→a

∫ b

t
f(x) dx.

(ii) Suppose f is defined on [a, b). If

∫ t

a
f(x) dx exists for every t ∈ (a, b), and

if lim
t→b

∫ t

a
f(x) dx exists, then we define the improper integral of f over [a, b) as

∫ b

a
f(x) dx = lim

t→b

∫ t

a
f(x) dx.

(iii) Suppose f is defined on [a, c) and (c, b]. If

∫ c

a
f(x) dx and

∫ b

c
f(x) dx exist,

then we define the improper integral of f over [a, b] as

∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

�

Remark 4.3 In the case of improper integrals over (a, b], the function may not be
defined at the point a or may be unbounded on (a, a+ δ) for some δ > 0 so that we
cannot talk about the Riemann integral over [a, a+δ] for δ > 0. Analogous statement
holds for case of improper integrals over [a, b). In the case of improper integrals over
[a, b], the function may not be defined at the point c or may be unbounded on [a, c)
and (c, b] for some δ > 0 so that we cannot have the Riemann integral over [a, b]. �

Definition 4.4 If improper integral of a function f over an interval J (of finite
or infinite length) exists, then we say that the the improper integral exists or
improper integral converges; otherwise we say that the improper integral
does not exist or improper integral diverges. �
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4.1.3 Typical examples

Example 4.1 Consider the improper integral

∫ ∞
1

1

x
dx. Note that

∫ t

1

1

x
dx = [lnx]t1 = ln t→∞ as t→∞.

Hence,
∫∞
1

1
x dx diverges. �

Example 4.2 Consider the improper integral

∫ ∞
1

1

x2
dx Note that

∫ t

1

1

x2
dx =

[
−1

x

]t
1

= 1− 1

t
→ 1 as t→∞.

Hence,
∫∞
1

1
x2
dx converges. �

Example 4.3 For p 6= 1, consider the improper integral

∫ ∞
1

1

xp
dx. In this case,

we have ∫ t

1

1

xp
dx =

[
x−p+1

−p+ 1

]t
1

=
t−p+1 − 1

−p+ 1
.

Note that,

p > 1 =⇒ t−p+1 − 1

−p+ 1
→ 1

p− 1
as t→∞,

and

p < 1 =⇒ t−p+1 − 1

−p+ 1
→∞ as t→∞,

The above observations combined with Example 4.1 show that∫ ∞
1

1

xp
dx

{
converges for p > 1,
diverges for p ≤ 1.

�

Example 4.4 (i) We consider the improper integral

∫ 1

0

1

x
dx: Note that for 0 <

δ < 1,∫ 1

δ

1

x
dx = [log x]1δ = log 1− log δ = − log δ = log

(1

δ

)
→∞ as δ → 0.

Thus, the integral diverges.

(ii) For p 6= 1, consider the improper integral

∫ 1

0

1

xp
dx. In this case, we have

∫ 1

δ

1

xp
dx =

[
x−p+1

−p+ 1

]1
δ

=
1− δ−p+1

−p+ 1
.
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Note that,

p > 1 =⇒ δ−p+1 − 1

−p+ 1
→∞ as δ → 0,

and

p < 1 =⇒ δ−p+1 − 1

−p+ 1
→ 1

1− p
as δ → 0.

The above observations combined with (i) above give∫ 1

0

1

xp
dx

{
converges for p < 1,
diverges for p ≥ 1.

�

Example 4.5 Let a < b and α < 1. Then
∫ b
a

dx
(b−x)α converges:

We observe that for a < t < b,∫ t

a

dx

(b− x)α
=

∫ b−a

b−t

du

uα
.

Now,

lim
t→b

∫ t

a

dx

(b− x)α
exists ⇐⇒ lim

t→b

∫ b−a

b−t

du

uα
exists

⇐⇒ lim
ε→0

∫ b−a

ε

du

uα
exists

⇐⇒ α < 1.

�

Exercise 4.2 Suppose f ≥ 0 on [a, b) and the integral
∫ t
a f(x)dx exists for every

t ∈ [a, b). If lim
x→b

(b − x)αf(x) converges for some α < 1, then show that
∫ b
a f(x)dx

also converges.

[Hint: Observe that for any ε > 0, there exists x0 ∈ [a, b) such that the number
β := limx→b(b− x)αf(x) satisfies 0 ≤ f(x) ≤ β+ε

(b−x)α for all x ∈ [x0, b).]

4.2 Integrability by Comparison

We state a result which will be useful in asserting the existence of certain improper
integral by comparing it with certain other improper integral.

Suppose J is either an interval of finite or infinite length. Suppose f is defined
on J , except possibly at a finite number of point in J . We denote the improper
integral of f over J by ∫

J
f(x) dx.
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We say that the improper integral
∫
J f(x) dx converges whenever it exists, and

diverges if it does not exist.

For example, if J = [a, b], then f may not be defined at a or at b or at some
point c ∈ (a, b), and the corresponding improper integrals, by definition, are

lim
t→a

∫ b

t
f(x) dx, lim

t→b

∫ t

a
f(x) dx, lim

t→c−

∫ t

a
f(x) dx+ lim

t→c+

∫ b

t
f(x) dx

respectively.

Theorem 4.1 Suppose f and g are defined on J .

(i) If 0 ≤ f(x) ≤ g(x) for all x ∈ J , and
∫
J g(x) dx exists, then

∫
J f(x) dx

exists.

(ii) If
∫
J |f(x)| dx exists, then

∫
J f(x) dx exists.

Example 4.6 Since ∣∣∣∣sinxxp
∣∣∣∣ ≤ 1

xp
,

∣∣∣cosx

xp

∣∣∣ ≤ 1

xp

it follows from Example 4.3 and Theorem 4.1(ii) that the improper integrals∫ ∞
1

sinx

xp
dx and

∫ ∞
1

cosx

xp
dx

converge for all p > 1. �

In fact
∫∞
1

sinx
xp dx and

∫∞
1

cosx
xp dx converge for all p > 0 as we see in the next

example.

Example 4.7 Let p > 0. Then for t > 0,∫ t

1

sinx

xp
dx =

[
1

xp
(− cosx)

]t
1

− p
∫ t

1

1

xp+1
cosx dx

=

[
cos 1− cos t

tp

]
− p

∫ t

1

cosx

xp+1
dx.

By the result in Example 4.6,

∫ ∞
1

cosx

xp+1
dx converges for all p > 0. Also, cos t

tp →
0 as t→∞. Hence, ∫ ∞

1

sinx

xp
dx converges for all p > 0.

Similarly, we see that∫ ∞
1

cosx

xp
dx converges for all p > 0.

�
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Example 4.8 Since∣∣∣∣sinxxp
∣∣∣∣ =

∣∣∣∣sinxx
∣∣∣∣ 1

xp−1
≤ 1

xp−1
,

∣∣∣cosx

xp

∣∣∣ ≤ 1

xp

it follows from Example 4.4 above and Theorem 4.1(ii)that∫ 1

0

sinx

xp
dx converges for all p < 2,

∫ 1

0

cosx

xp
dx converges for all p < 1.

�

Example 4.9 Observe that

sinx

xp
=

sinx

x

1

xp−1
≥ sin 1

xp−1
∀x ∈ (0, 1].

Since
∫ 1
0

1
xp−1 dx diverges for p− 1 ≥ 1, i.e., for p ≥ 2, it follows that∫ 1

0

sinx

xp
dx diverges for all p ≥ 2,

�

Example 4.10 From Examples 4.8, 4.9, 4.7,∫ ∞
0

sinx

xp
dx converges for 0 < p < 2.

�

4.3 Integrability Using Limits

Now some more results which facilitate the assertion of convergence/divergence of
improper integrals, whose proofs follow from the definition of limits.

Theorem 4.2 Suppose f(x) ≥ 0, g(x) ≥ 0 for all x ∈ [a,∞),
∫ b
a f(x)dx and∫ b

a g(x)dx exists for every b > a. Suppose further that
f(x)

g(x)
→ ` as x→∞ for some

` ≥ 0.

(i) If ` 6= 0, then
∫∞
a f(x)dx converges ⇐⇒

∫∞
a g(x)dx converges.

(ii) If ` = 0, then
∫∞
a g(x)dx converges =⇒

∫∞
a f(x)dx converges.

Further, if
f(x)

g(x)
→∞ as x→∞, then∫ ∞

a
g(x)dx converges =⇒

∫ ∞
a

f(x)dx converges.
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Proof. Suppose further that
f(x)

g(x)
→ ` as x→∞ for some ` ≥ 0.

(i) Suppose ` 6= 0. Then ` > 0, and for ε > 0 with `− ε > 0, there exists x0 ≥ a
such that

`− ε < f(x)

g(x)
< `+ ε ∀x ≥ x0.

Hence
(`− ε)g(x) < f(x) < (`+ ε)g(x) ∀x ≥ x0.

Consequently,
∫∞
x0
f(x)dx converges iff

∫∞
x0
g(x)dx converges. As

∫ x0
a f(x)dx and∫ x0

a g(x)dx exist, the result in (i) follows.

(ii) Suppose ` = 0. Then for ε > 0, there exists x0 ≥ a such that

f(x)

g(x)
< ε ∀x ≥ x0.

Thus, f(x) < εg(x) for all x ≥ x0. Hence, convergence of
∫∞
x0
g(x)dx implies the

convergence of
∫∞
x0
f(x)dx. From this the result in (ii) follows.

Next, suppose further that
f(x)

g(x)
→∞ as x→∞. Then for M > 0, there exists

x0 ≥ a such that

0 ≤ f(x)

g(x)
≤M ∀x ≥ x0.

Hence
0 ≤ f(x) ≤Mg(x) ∀x ≥ x0.

Consequently,
∫∞
x0
g(x)dx converges implies

∫∞
x0
f(x)dx converges. As

∫ x0
a f(x)dx

and
∫ x0
a g(x)dx exist, the proof is over.

Exercise 4.3 Suppose f and g are non-negative continuous functions on J . Then∫ b

a
f(x)dx exists ⇐⇒

∫ b

a
g(x)dx exists

in the following cases:

1. J = (a, b] and lim
x→a

f(x)

g(x)
= ` and ` > 0.

2. J = [a, b) and lim
x→b

f(x)

g(x)
= ` and ` > 0.

3. J = [a,∞) and lim
x→∞

f(x)

g(x)
= ` and ` > 0.

4. J = (−∞, b] and lim
x→−∞

f(x)

g(x)
= ` and ` > 0.

In 1-4 above, if ` = 0, then

∫ b

a
g(x)dx exists =⇒

∫ b

a
g(x)dx exists . J
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4.4 Gamma and Beta Functions

Gamma and Beta Functions are certain improper integrals which appear in many
applications.

Gamma function

We show that for x > 0, the improper integral

Γ(x) :=

∫ ∞
0

tx−1e−t dt

converges. The function Γ(x), x > 0, is called the gamma function.

Note that for tx−1e−t ≤ tx−1 for all t > 0, and
∫ 1
0 t

x−1 dt converges for x > 0.
Hence, by Theorem 4.1,∫ 1

0
tx−1e−t dt converges for x > 0.

Also, we observe that
tx−1e−t

t−2
→ 0 as t → ∞, and

∫∞
1 t−2dt converges. Hence, by

Theorem 4.2,
∫∞
1 tx−1e−t dt converges. Thus,

Γ(x) :=

∫ ∞
0

tx−1e−t dt =

∫ 1

0
tx−1e−t dt+

∫ ∞
1

tx−1e−t dt

converges for every x > 0.

Beta function

We show that for x > 0, y > 0, the improper integral

β(x, y) :=

∫ 1

0
tx−1(1− t)y−1 dt

converges. The function β(x, y) for x > 0, y > 0 is called the beta function.

Clearly, the above integral is proper for x ≥ 1, y ≥ 1. Hence it is enough to
consider the case of 0 < x < 1, 0 < y < 1. In this case both the points t = 0 and
t = 1 are problematic. hence, we consider the integrals∫ 1/2

0
tx−1(1− t)y−1 dt,

∫ 1

1/2
tx−1(1− t)y−1 dt.

We note that if 0 < t ≤ 1/2, then (1−t)y−1 ≤ 21−y so that tx−1(1−t)y−1 ≤ 21−ytx−1.

Since
∫ 1/2
0 tx−1 dt converges it follows that

∫ 1/2
0 tx−1(1− t)y−1 dt converges. To deal

with the second integral, consider the change of variable u = 1− t. Then∫ 1

1/2
tx−1(1− t)y−1 dt =

∫ 1/2

0
uy−1(1− u)x−1 du
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which converges by the above argument. Hence,

β(x, y) :=

∫ 1

0
tx−1(1− t)1−y dt, x > 0, y > 0

converges for every x > 0, y > 0.

4.5 Additional Exercises

1. Does

∫ ∞
1

sin

(
1

x2

)
dx converge?

[ Hint: Note that
∣∣sin ( 1

x2

)∣∣ ≤ 1
x2

.]

2. Does

∫ ∞
2

cosx

x(log x)2
dx converge?

[Hint: Observe
∣∣∣ cosx
x(log x)2

∣∣∣ ≤ 1
x(log x)2

and use the change of variable t = log x.]

3. Does

∫ ∞
0

sin2 x

x2
dx converge?

[Hint: Observe sin2 x
x2
≤ 1

x2
for x ≥ 1 and sin2 x

x2
, 0 < x ≤ 1 has a continuous

extension on [0, 1].]

4. Does

∫ 1

0

sinx

x2
dx converge?

[Hint: Observe sinx
x2

=
(
sinx
x

)
1
x ≥

(
sin 1
1

)
.]

5. Does

∫ ∞
a0

f(x)dx exists implies

∫ b

a
f(x)dx→ 0 as a, b→∞.

[Hint: Note that
∫ b
a f(x)dx =

∫ b
a0
f(x)dx−

∫ a
a0
f(x)dx→ 0 as a, b→∞.]

6. Does

∫ ∞
0

e−x
2
dx converge?

[Hint: Note that e−x
2

is continuous on [0, 1], and e−x
2 ≤ 1

x2
for 1 ≤ x ≤ ∞.]

7. Does

∫ ∞
2

sin(log x)

x
dx converge?

[Hint: Use the change of variable t = log x, and the fact that
∫∞
log 2 sin t dt

diverges.]

8. Does

∫ 1

0
lnxdx converge?

[Hint: Use the change of variable t = log x.]


