In Chapter 3, we defined definite integral of a function f for the case when f is a bounded function defined on a closed interval [a, b]. can we still have a notion of integral even when the above assumptions on f and the domain of integration are not satisfied? We consider a notion of integral, called *improper integral*, in a few cases.

4.1 Definitions

4.1.1 Integrals over infinite intervals

First we consider integrals of functions defined over infinite integrals of the form $[a, \infty), (-\infty, b]$ and $(-\infty, \infty)$. Recall that Rieman integral was defined over intervals of the form [a, b].

Definition 4.1 (i) Suppose f is defined on $[a, \infty)$ and integrable on [a, t] for all t > a. If $\lim_{t\to\infty} \int_a^t f(x) dx$ exists, then we define the **improper integral of** f over $[a, \infty)$ as

$$\int_{a}^{\infty} f(x) \, dx := \lim_{t \to \infty} \int_{a}^{t} f(x) \, dx.$$

(ii) Suppose f is defined on $(-\infty, b]$ and integrable on [t, b] for all t < b. If $\lim_{t \to -\infty} \int_{t}^{b} f(x) dx$ exists, then we define the **improper integral of** f over $(-\infty, b]$ as

$$\int_{-\infty}^{b} f(x) \, dx = \lim_{t \to -\infty} \int_{t}^{b} f(x) \, dx.$$

(iii) Suppose f is defined on $\mathbb{R} := (-\infty, \infty)$ and integrable on [a, b] for every closed and bounded interval $[a, b] \subseteq \mathbb{R}$. If $\int_{-\infty}^{c} f(x) dx$ and $\int_{c}^{\infty} f(x) dx$ exist for some $c \in \mathbb{R}$, then we define the **improper integral of** f **over** $(-\infty, \infty)$ as

$$\int_{-\infty}^{\infty} f(x) \, dx = \int_{-\infty}^{c} f(x) \, dx + \int_{c}^{\infty} f(x) \, dx$$

In Definition 4.1, the following results is used without mentioning:

• Suppose f is defined on $(-\infty, \infty)$ and integrable on [a, b] for every closed and bounded interval $[a, b] \subseteq \mathbb{R}$. If the integrals $\int_{-\infty}^{c} f(x) dx$ and $\int_{c}^{\infty} f(x) dx$ exist for some $c \in \mathbb{R}$, then they exist for every $c \in \mathbb{R}$, and

$$\int_{-\infty}^{c} f(x) \, dx + \int_{c}^{\infty} f(x) \, dx = \int_{-\infty}^{a} f(x) \, dx + \int_{a}^{\infty} f(x) \, dx$$

for every $a \in \mathbb{R}$.

Exercise 4.1 Prove the above result.

Remark 4.1 We may observe that the existence of $\lim_{t\to\infty} \int_{-t}^{t} f(x) dx$ does not, in general, imply the existence of $\int_{-\infty}^{\infty} f(x) dx$. To see this, consider the function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = x, \quad x \in \mathbb{R}$$

Then we have $\int_{-t}^{t} f(x) dx = 0$ for every $t \in \mathbb{R}$, but the integrals $\int_{-\infty}^{c} f(x) dx$ and $\int_{c}^{\infty} f(x) dx$ do not exist for any $c \in \mathbb{R}$.

Next we consider integrals of functions defined over infinite integrals of the form (a, ∞) and $(-\infty, b)$.

Definition 4.2 (i) Suppose f is defined on (a, ∞) and $\int_t^{\infty} f(x) dx$ exists for all t > a. If $\lim_{t \to a} \int_t^{\infty} f(x) dx$ exists, then we define the **improper integral of** f over (a, ∞) as

$$\int_{a}^{\infty} f(x) \, dx := \lim_{t \to a} \int_{t}^{\infty} f(x) \, dx.$$

(ii) Suppose f is defined on $(-\infty, b)$ and $\int_{-\infty}^{t} f(x) dx$ exists for all t < b. If $\lim_{t \to b} \int_{-\infty}^{t} f(x) dx$ exists, then we define the **improper integral of** f over $(-\infty, b)$ as

$$\int_{a}^{\infty} f(x) \, dx := \lim_{t \to b} \int_{-\infty}^{t} f(x) \, dx.$$

Remark 4.2 In the case of (a, ∞) , the function may not be defined at the point a or may be unbounded on $(a, a + \delta)$ for some $\delta > 0$ so that we cannot talk about the Riemann integral over $[a, a + \delta]$ for $\delta > 0$. Analogous remark holds for functions defined on $(-\infty, b)$.

4.1.2 Improper integrals over finite intervals

Now we consider the case when f is defined on a interval J of finite length, but either the function is not defined at any one of the end points or the function is not bounded on J.

Definition 4.3 (i) Suppose f is defined on (a, b]. If $\int_t^b f(x) dx$ exists for every $t \in (a, b)$, and if $\lim_{t \to a} \int_t^b f(x) dx$ exists, then we define the **improper integral of** f **over** (a, b] as

$$\int_{a}^{b} f(x) \, dx = \lim_{t \to a} \int_{t}^{b} f(x) \, dx.$$

(ii) Suppose f is defined on [a, b). If $\int_{a}^{t} f(x) dx$ exists for every $t \in (a, b)$, and if $\lim_{t \to b} \int_{a}^{t} f(x) dx$ exists, then we define the **improper integral of** f **over** [a, b) as

$$\int_{a}^{b} f(x) \, dx = \lim_{t \to b} \int_{a}^{t} f(x) \, dx.$$

(iii) Suppose f is defined on [a, c) and (c, b]. If $\int_a^c f(x) dx$ and $\int_c^b f(x) dx$ exist, then we define the **improper integral of** f **over** [a, b] as

$$\int_a^b f(x) \, dx = \int_a^c f(x) \, dx + \int_c^b f(x) \, dx.$$

Remark 4.3 In the case of improper integrals over (a, b], the function may not be defined at the point a or may be unbounded on $(a, a + \delta)$ for some $\delta > 0$ so that we cannot talk about the Riemann integral over $[a, a+\delta]$ for $\delta > 0$. Analogous statement holds for case of improper integrals over [a, b]. In the case of improper integrals over [a, b], the function may not be defined at the point c or may be unbounded on [a, c) and (c, b] for some $\delta > 0$ so that we cannot have the Riemann integral over [a, b].

Definition 4.4 If improper integral of a function f over an interval J (of finite or infinite length) exists, then we say that the the **improper integral exists** or **improper integral converges**; otherwise we say that the **improper integral does not exist** or **improper integral diverges**.

4.1.3 Typical examples

Example 4.1 Consider the improper integral $\int_1^\infty \frac{1}{x} dx$. Note that

$$\int_{1}^{t} \frac{1}{x} dx = [\ln x]_{1}^{t} = \ln t \to \infty \quad \text{as} \quad t \to \infty.$$

Hence, $\int_1^\infty \frac{1}{x} dx$ diverges.

Example 4.2 Consider the improper integral $\int_1^\infty \frac{1}{x^2} dx$ Note that

$$\int_{1}^{t} \frac{1}{x^2} dx = \left[-\frac{1}{x}\right]_{1}^{t} = 1 - \frac{1}{t} \to 1 \quad \text{as} \quad t \to \infty$$

Hence, $\int_1^\infty \frac{1}{x^2} dx$ converges.

Example 4.3 For $p \neq 1$, consider the improper integral $\int_1^\infty \frac{1}{x^p} dx$. In this case, we have

$$\int_{1}^{t} \frac{1}{x^{p}} dx = \left[\frac{x^{-p+1}}{-p+1}\right]_{1}^{t} = \frac{t^{-p+1}-1}{-p+1}.$$

Note that,

$$p > 1 \implies \frac{t^{-p+1}-1}{-p+1} \to \frac{1}{p-1} \quad \text{as} \quad t \to \infty,$$

and

$$p < 1 \implies \frac{t^{-p+1} - 1}{-p+1} \to \infty \text{ as } t \to \infty$$

The above observations combined with Example 4.1 show that

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx \quad \begin{cases} \text{ converges for } p > 1, \\ \text{ diverges for } p \le 1. \end{cases}$$

Example 4.4 (i) We consider the improper integral $\int_0^1 \frac{1}{x} dx$: Note that for $0 < \delta < 1$,

$$\int_{\delta}^{1} \frac{1}{x} dx = [\log x]_{\delta}^{1} = \log 1 - \log \delta = -\log \delta = \log \left(\frac{1}{\delta}\right) \to \infty \quad \text{as} \quad \delta \to 0.$$

Thus, the integral diverges.

(ii) For $p \neq 1$, consider the improper integral $\int_0^1 \frac{1}{x^p} dx$. In this case, we have

$$\int_{\delta}^{1} \frac{1}{x^{p}} dx = \left[\frac{x^{-p+1}}{-p+1}\right]_{\delta}^{1} = \frac{1-\delta^{-p+1}}{-p+1}$$

M.T. Nair

Note that,

$$p>1 \quad \Longrightarrow \quad \frac{\delta^{-p+1}-1}{-p+1} \to \infty \quad \text{as} \quad \delta \to 0,$$

and

$$p < 1 \implies \frac{\delta^{-p+1} - 1}{-p+1} \to \frac{1}{1-p} \quad \text{as} \quad \delta \to 0$$

The above observations combined with (i) above give

$$\int_0^1 \frac{1}{x^p} dx \quad \left\{ \begin{array}{l} \text{converges for } p < 1, \\ \text{diverges for } p \ge 1. \end{array} \right.$$

Example 4.5 Let a < b and $\alpha < 1$. Then $\int_a^b \frac{dx}{(b-x)^{\alpha}}$ converges:

We observe that for a < t < b,

$$\int_{a}^{t} \frac{dx}{(b-x)^{\alpha}} = \int_{b-t}^{b-a} \frac{du}{u^{\alpha}}.$$

Now,

$$\lim_{t \to b} \int_{a}^{t} \frac{dx}{(b-x)^{\alpha}} \text{ exists } \iff \lim_{t \to b} \int_{b-t}^{b-a} \frac{du}{u^{\alpha}} \text{ exists}$$
$$\iff \lim_{\varepsilon \to 0} \int_{\varepsilon}^{b-a} \frac{du}{u^{\alpha}} \text{ exists}$$
$$\iff \alpha < 1.$$

Exercise 4.2 Suppose $f \ge 0$ on [a, b) and the integral $\int_a^t f(x) dx$ exists for every $t \in [a, b)$. If $\lim_{x \to b} (b - x)^{\alpha} f(x)$ converges for some $\alpha < 1$, then show that $\int_a^b f(x) dx$ also converges.

[*Hint:* Observe that for any $\varepsilon > 0$, there exists $x_0 \in [a, b)$ such that the number $\beta := \lim_{x \to b} (b - x)^{\alpha} f(x)$ satisfies $0 \le f(x) \le \frac{\beta + \varepsilon}{(b - x)^{\alpha}}$ for all $x \in [x_0, b)$.]

4.2 Integrability by Comparison

We state a result which will be useful in asserting the existence of certain improper integral by comparing it with certain other improper integral.

Suppose J is either an interval of finite or infinite length. Suppose f is defined on J, except possibly at a finite number of point in J. We denote the improper integral of f over J by

$$\int_J f(x) \, dx.$$

For example, if J = [a, b], then f may not be defined at a or at b or at some point $c \in (a, b)$, and the corresponding improper integrals, by definition, are

$$\lim_{t \to a} \int_t^b f(x) \, dx, \quad \lim_{t \to b} \int_a^t f(x) \, dx, \quad \lim_{t \to c^-} \int_a^t f(x) \, dx + \lim_{t \to c^+} \int_t^b f(x) \, dx$$

respectively.

Theorem 4.1 Suppose f and g are defined on J.

(i) If $0 \leq f(x) \leq g(x)$ for all $x \in J$, and $\int_J g(x) dx$ exists, then $\int_J f(x) dx$ exists.

(ii) If $\int_J |f(x)| dx$ exists, then $\int_J f(x) dx$ exists.

Example 4.6 Since

$$\left|\frac{\sin x}{x^p}\right| \le \frac{1}{x^p}, \qquad \left|\frac{\cos x}{x^p}\right| \le \frac{1}{x^p}$$

it follows from Example 4.3 and Theorem 4.1(ii) that the improper integrals

$$\int_{1}^{\infty} \frac{\sin x}{x^{p}} dx \quad \text{and} \quad \int_{1}^{\infty} \frac{\cos x}{x^{p}} dx$$

converge for all p > 1.

In fact $\int_1^\infty \frac{\sin x}{x^p} dx$ and $\int_1^\infty \frac{\cos x}{x^p} dx$ converge for all p > 0 as we see in the next example.

Example 4.7 Let p > 0. Then for t > 0,

$$\int_{1}^{t} \frac{\sin x}{x^{p}} dx = \left[\frac{1}{x^{p}}(-\cos x)\right]_{1}^{t} - p \int_{1}^{t} \frac{1}{x^{p+1}} \cos x dx$$
$$= \left[\cos 1 - \frac{\cos t}{t^{p}}\right] - p \int_{1}^{t} \frac{\cos x}{x^{p+1}} dx.$$

By the result in Example 4.6, $\int_{1}^{\infty} \frac{\cos x}{x^{p+1}} dx$ converges for all p > 0. Also, $\frac{\cos t}{t^p} \to 0$ as $t \to \infty$. Hence,

$$\int_{1}^{\infty} \frac{\sin x}{x^{p}} dx \quad \text{converges for all} \quad p > 0.$$

Similarly, we see that

$$\int_{1}^{\infty} \frac{\cos x}{x^{p}} dx \quad \text{converges for all} \quad p > 0.$$

-	_	_	
L			L
L			L

Example 4.8 Since

$$\left|\frac{\sin x}{x^p}\right| = \left|\frac{\sin x}{x}\right| \frac{1}{x^{p-1}} \le \frac{1}{x^{p-1}}, \qquad \left|\frac{\cos x}{x^p}\right| \le \frac{1}{x^p}$$

it follows from Example 4.4 above and Theorem 4.1(ii)that

$$\int_0^1 \frac{\sin x}{x^p} \, dx \quad \text{converges for all} \quad p < 2,$$
$$\int_0^1 \frac{\cos x}{x^p} \, dx \quad \text{converges for all} \quad p < 1.$$

Example 4.9 Observe that

$$\frac{\sin x}{x^p} = \frac{\sin x}{x} \frac{1}{x^{p-1}} \ge \frac{\sin 1}{x^{p-1}} \quad \forall x \in (0,1].$$

Since $\int_0^1 \frac{1}{x^{p-1}} dx$ diverges for $p-1 \ge 1$, i.e., for $p \ge 2$, it follows that

$$\int_0^1 \frac{\sin x}{x^p} \, dx \quad \text{diverges for all} \quad p \ge 2,$$

Example 4.10 From Examples 4.8, 4.9, 4.7,

$$\int_0^\infty \frac{\sin x}{x^p} \, dx \quad \text{converges for} \quad 0$$

4.3 Integrability Using Limits

Now some more results which facilitate the assertion of convergence/divergence of improper integrals, whose proofs follow from the definition of limits.

Theorem 4.2 Suppose $f(x) \ge 0$, $g(x) \ge 0$ for all $x \in [a, \infty)$, $\int_a^b f(x)dx$ and $\int_a^b g(x)dx$ exists for every b > a. Suppose further that $\frac{f(x)}{g(x)} \to \ell$ as $x \to \infty$ for some $\ell \ge 0$.

(i) If
$$\ell \neq 0$$
, then $\int_{a}^{\infty} f(x)dx$ converges $\iff \int_{a}^{\infty} g(x)dx$ converges.
(ii) If $\ell = 0$, then $\int_{a}^{\infty} g(x)dx$ converges $\implies \int_{a}^{\infty} f(x)dx$ converges.
Further, if $\frac{f(x)}{g(x)} \to \infty$ as $x \to \infty$, then
 $\int_{a}^{\infty} g(x)dx$ converges $\implies \int_{a}^{\infty} f(x)dx$ converges.

Proof. Suppose further that $\frac{f(x)}{g(x)} \to \ell$ as $x \to \infty$ for some $\ell \ge 0$.

(i) Suppose $\ell \neq 0$. Then $\ell > 0$, and for $\varepsilon > 0$ with $\ell - \varepsilon > 0$, there exists $x_0 \ge a$ such that

$$\ell - \varepsilon < \frac{f(x)}{g(x)} < \ell + \varepsilon \quad \forall x \ge x_0.$$

Hence

$$(\ell - \varepsilon)g(x) < f(x) < (\ell + \varepsilon)g(x) \quad \forall x \ge x_0.$$

Consequently, $\int_{x_0}^{\infty} f(x)dx$ converges iff $\int_{x_0}^{\infty} g(x)dx$ converges. As $\int_{a}^{x_0} f(x)dx$ and $\int_{a}^{x_0} g(x)dx$ exist, the result in (i) follows.

(ii) Suppose $\ell = 0$. Then for $\varepsilon > 0$, there exists $x_0 \ge a$ such that

$$\frac{f(x)}{g(x)} < \varepsilon \quad \forall \, x \ge x_0$$

Thus, $f(x) < \varepsilon g(x)$ for all $x \ge x_0$. Hence, convergence of $\int_{x_0}^{\infty} g(x) dx$ implies the convergence of $\int_{x_0}^{\infty} f(x) dx$. From this the result in (ii) follows.

Next, suppose further that $\frac{f(x)}{g(x)} \to \infty$ as $x \to \infty$. Then for M > 0, there exists $x_0 \ge a$ such that $\frac{f(x)}{g(x)} \ge a$

$$0 \le \frac{f(x)}{g(x)} \le M \quad \forall x \ge x_0.$$

Hence

$$0 \le f(x) \le Mg(x) \quad \forall x \ge x_0.$$

Consequently, $\int_{x_0}^{\infty} g(x)dx$ converges implies $\int_{x_0}^{\infty} f(x)dx$ converges. As $\int_{a}^{x_0} f(x)dx$ and $\int_{a}^{x_0} g(x)dx$ exist, the proof is over.

Exercise 4.3 Suppose f and g are non-negative continuous functions on J. Then

$$\int_{a}^{b} f(x)dx \text{ exists } \iff \int_{a}^{b} g(x)dx \text{ exists}$$

in the following cases:

1. J = (a, b] and $\lim_{x \to a} \frac{f(x)}{g(x)} = \ell$ and $\ell > 0$. 2. J = [a, b) and $\lim_{x \to b} \frac{f(x)}{g(x)} = \ell$ and $\ell > 0$. 3. $J = [a, \infty)$ and $\lim_{x \to \infty} \frac{f(x)}{g(x)} = \ell$ and $\ell > 0$. 4. $J = (-\infty, b]$ and $\lim_{x \to -\infty} \frac{f(x)}{g(x)} = \ell$ and $\ell > 0$.

In 1-4 above, if $\ell = 0$, then $\int_a^b g(x)dx$ exists $\implies \int_a^b g(x)dx$ exists .

M.T. Nair

4.4 Gamma and Beta Functions

Gamma and Beta Functions are certain improper integrals which appear in many applications.

Gamma function

We show that for x > 0, the improper integral

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt$$

converges. The function $\Gamma(x)$, x > 0, is called the **gamma function**.

Note that for $t^{x-1}e^{-t} \leq t^{x-1}$ for all t > 0, and $\int_0^1 t^{x-1} dt$ converges for x > 0. Hence, by Theorem 4.1,

$$\int_0^1 t^{x-1} e^{-t} dt \quad \text{converges for} \quad x > 0.$$

Also, we observe that $\frac{t^{x-1}e^{-t}}{t^{-2}} \to 0$ as $t \to \infty$, and $\int_1^\infty t^{-2} dt$ converges. Hence, by Theorem 4.2, $\int_1^\infty t^{x-1}e^{-t} dt$ converges. Thus,

$$\Gamma(x) := \int_0^\infty t^{x-1} e^{-t} dt = \int_0^1 t^{x-1} e^{-t} dt + \int_1^\infty t^{x-1} e^{-t} dt$$

converges for every x > 0.

Beta function

We show that for x > 0, y > 0, the improper integral

$$\beta(x,y) := \int_0^1 t^{x-1} (1-t)^{y-1} dt$$

converges. The function $\beta(x, y)$ for x > 0, y > 0 is called the **beta function**.

Clearly, the above integral is proper for $x \ge 1$, $y \ge 1$. Hence it is enough to consider the case of 0 < x < 1, 0 < y < 1. In this case both the points t = 0 and t = 1 are problematic. hence, we consider the integrals

$$\int_0^{1/2} t^{x-1} (1-t)^{y-1} dt, \qquad \int_{1/2}^1 t^{x-1} (1-t)^{y-1} dt.$$

We note that if $0 < t \le 1/2$, then $(1-t)^{y-1} \le 2^{1-y}$ so that $t^{x-1}(1-t)^{y-1} \le 2^{1-y}t^{x-1}$. Since $\int_0^{1/2} t^{x-1} dt$ converges it follows that $\int_0^{1/2} t^{x-1}(1-t)^{y-1} dt$ converges. To deal with the second integral, consider the change of variable u = 1 - t. Then

$$\int_{1/2}^{1} t^{x-1} (1-t)^{y-1} dt = \int_{0}^{1/2} u^{y-1} (1-u)^{x-1} du$$

which converges by the above argument. Hence,

$$\beta(x,y) := \int_0^1 t^{x-1} (1-t)^{1-y} dt, \qquad x > 0, \, y > 0$$

converges for every x > 0, y > 0.

4.5 Additional Exercises

- 1. Does $\int_{1}^{\infty} \sin\left(\frac{1}{x^2}\right) dx$ converge? [*Hint*: Note that $\left|\sin\left(\frac{1}{x^2}\right)\right| \leq \frac{1}{x^2}$.] 2. Does $\int_{2}^{\infty} \frac{\cos x}{x(\log x)^2} dx$ converge? [*Hint*: Observe $\left|\frac{\cos x}{x(\log x)^2}\right| \le \frac{1}{x(\log x)^2}$ and use the change of variable $t = \log x$.] 3. Does $\int_{0}^{\infty} \frac{\sin^2 x}{r^2} dx$ converge? [*Hint*: Observe $\frac{\sin^2 x}{x^2} \leq \frac{1}{x^2}$ for $x \geq 1$ and $\frac{\sin^2 x}{x^2}$, $0 < x \leq 1$ has a continuous extension on [0, 1].] 4. Does $\int_{0}^{1} \frac{\sin x}{x^2} dx$ converge? [*Hint*: Observe $\frac{\sin x}{x^2} = \left(\frac{\sin x}{x}\right) \frac{1}{x} \ge \left(\frac{\sin 1}{1}\right)$.] 5. Does $\int_{a}^{\infty} f(x)dx$ exists implies $\int_{a}^{b} f(x)dx \to 0$ as $a, b \to \infty$. [*Hint*: Note that $\int_a^b f(x)dx = \int_{a_0}^b f(x)dx - \int_{a_0}^a f(x)dx \to 0$ as $a, b \to \infty$.] 6. Does $\int_{0}^{\infty} e^{-x^2} dx$ converge? [*Hint*: Note that e^{-x^2} is continuous on [0, 1], and $e^{-x^2} \leq \frac{1}{x^2}$ for $1 \leq x \leq \infty$.] 7. Does $\int_{2}^{\infty} \frac{\sin(\log x)}{x} dx$ converge? [*Hint*: Use the change of variable $t = \log x$, and the fact that $\int_{\log 2}^{\infty} \sin t \, dt$ diverges.]
- 8. Does $\int_0^1 \ln x dx$ converge? [*Hint*: Use the change of variable $t = \log x$.]