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Information

Lecture notes are available at Moodle site.

It will be complete as far as material is concerned.

But you have to work out the details.

Assignments will also be available in the same page.

Come to the class in time so that class is not disturbed.

There will be problem solving sessions.

Tutors will help us.
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Mark yourself present in the attendance sheet.

Do not mark others present even if they are in the class.

We assume you are honest.

Plagiarism is an offence.

Trust in yourself, you are capable.

You are here to learn and get credits for it.

The sessions will be interactive. Be prepared for it.

You must learn by doing mathematics and not just listening.
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Students: All EE11 students: EE11B001-132

Examination: Quiz-1, Quiz-2, and EndSem, as usual.
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Vectors?

Consider vectors in the plane. Translate each to start from the

origin. Identify a vector with the point on its arrow head. Is this

identification truthful?

For example, let u be the vector starting at (0, 0) and ending at

(2, 1). Let v be the vector starting at (0, 0) and ending at (3, 3).
What is the vector u + v?

If u + v starts at (0, 0) where does it end?

Well, u = 2ı̂+ ̂, v = 3ı̂+ 3̂.
So, u + v = 5ı̂+ 4̂.

Thus, u + v ends at (5, 4).

Let R denote the set of all real numbers. Can you identify the

set of all plane vectors with R2?



Properties of Vectors

The notion of a vector space is an abstraction of the familiar set

of vectors in two or three dimensional Euclidean space.

We first recall certain ’good’ properties of vectors in the real

plane:

Think about the plane vectors and R2.

There exists a vector, namely 0, such that for all

x ∈ R2, x + 0 = x = 0 + x .

For every x ∈ R2, there exists another vector, denoted by −x ,

such that x + (−x) = 0 = (−x) + x .

’Addition’ distributes over ’Multiplication’.

Both addition and multiplication are ’associative’.

For all x ∈ R2, 1 · x = x .



NOTATION

We will always use x , y , z, u, v , w for vectors.

We will use the Greek letters α, β, γ, . . . and a, b, c for scalars

The symbol 0 will stand for the ‘zero vector’ as well as ‘zero

scalar’. From the context, you should know which one it

represents.

R denotes the set of all real numbers and C denotes the set of

all complex numbers.

F denotes either R or C. Whenever needed, we will specifically

mention the set of scalars.



Definition

A non-empty set V with two operations + (addition) and ·
(scalar multiplication) is said to be a vector space over F if it

satisfies the following axioms:

(1) x + y = y + x , ∀ x , y ∈ V .

(2) (x + y) + z = x + (y + z), ∀ x , y , z ∈ V .

(3) ∃ 0 ∈ V such that x + 0 = x ∀ x ∈ V .

(4) for each x ∈ V , ∃ (−x) ∈ V such that x + (−x) = 0.

(5) α · (x + y) = α · x + α · y ∀ α ∈ F and ∀ x , y ∈ V .

(6) (α+ β) · x = α · x + β · x , ∀ α, β ∈ F and ∀ x ∈ V .

(7) (αβ) · x = α · (β · x) ∀ α, β ∈ F, ∀ x ∈ V .

(8) 1 · x = x ∀ x ∈ V .



Examples of vector spaces

1. V = {0} is a vector space over F.

2. R2 = {(a, b) : a, b ∈ R} with

(x1, x2) + (y1, y2) = (x1 + y1, x2 + y2) and c(x1, x2) = (cx1, cx2)
is a vector space over R.

We also write columns instead of rows for the elements of R2,
i.e.,

R2 :=

{[

a

b

]

: a, b ∈ R

}

3. Rn = {(x1, · · · , xn) : x1, . . . , xn ∈ R} with the usual addition

and scalar multiplication is a vector space over R.



Examples

A vector in Rn is also written as a column vector, i.e., in the

form







a1
...

an







4. V = {(x1, x2) ∈ R2 : x2 = 0} is a vector space over R under

the usual addition and scalar multiplication.

5. V = {(x1, x2) ∈ R2 : 2x1 − x2 = 0} is a vector space over R
under the usual addition and scalar multiplication.

6. Is V = {(x1, x2) ∈ R2 : 3x1 + 5x2 = 1} a vector space over

R?



Examples Contd.

7. Pn := {a0 + a1t + · · ·+ antn : ai ∈ F} with the usual

polynomial addition and scalar multiplication is a vector space

over F.

8. The set Mm×n(F) of all m × n matrices with entries from F
with the usual matrix addition and scalar multiplication is a

vector space over F.

9. V = R2, for (a1, a2), (b1, b2) ∈ V and α ∈ R, define

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2),
α(a1, a2) = (0, 0) if α = 0 and

α(a1, a2) = (αa1, a2/α) if α 6= 0.
Is V a vector space over R?



Examples of vector spaces

9. V = {f : [a, b]→ R : f is a function}.
For f , g ∈ V , define f + g to be the map

(f + g)(x) = f (x) + g(x) for all x ∈ R.

For α ∈ R and f ∈ V , define αf to be the map (αf )(x) = αf (x)
for all x ∈ R.

What is the ’zero vector’ in V?

The map f such that f (x) = 0 for all x ∈ [a, b].

For f ∈ V , −f , defined by (−f )(x) = −f (x) is the additive

inverse.

V is a vector space over R.



Examples Contd.

10. V =
{

f : R→ R : d2f
dx2 + f = 0

}

. Define addition and

scalar multiplication as in the previous example.

For f , g ∈ V ,
d2(f+g)

dx2 + (f + g) = ( d2f
dx2 + f ) + (d2g

dx2 + g) = 0

Similarly
d2(αf )

dx2 + (αf ) = α
[

d2f
dx2 + f

]

= 0.

⇒ V is closed under addition and scalar multiplication. Other

properties can easily be verified. Hence V is a vector space

over R.



Basic properties of vector spaces

Let V be a vector space over F. Let α ∈ F, x , y , z ∈ V .

1. The zero element is unique, i.e., if there exists θ1, θ2 such

that x + θ1 = x and x + θ2 = x , ∀ x ∈ V , then θ1 = θ2.

Proof. θ1 = θ1 + θ2 = θ2.

2. Additive inverse for each vector is unique, i.e., for x ∈ V , if

there exist x̃1 & x̃2 such that x + x̃1 = 0 = x + x̃2, then

x̃1 = x̃2.

Proof. x̃1 = 0 + x̃1= (x̃2 + x) + x̃1 = x̃2 + (x + x̃1)
= x̃2 + 0 = x̃2.

We write the additive inverse of x as −x and

abbreviate x + (−y) to x − y .



Basic Properties Contd.

3. If x + z = y + z, then x = y .
Proof. x = x + 0 = x + z − z = y + z − z = y + 0 = y .
Thus, if z + x = z + y , then x = y .

4. 0 · x = 0.

Proof: 0 + 0 · x = 0 · x = (0 + 0) · x = 0 · x + 0 · x
⇒ 0 = 0 · x .

5. (−1) · x = −x .
Proof. x + (−1) · x = 1 · x + (−1) · x
= (1 + (−1)) · x= 0 · x = 0 = x + (−x)
⇒ (−1) · x = −x .

6. α · 0 = 0.
Proof. α · 0 + 0 = α · 0= α · (0 + 0)= α · 0 + α · 0
⇒ α · 0 = 0.



Vector Subspaces

Subspace of a vector space is a subset which follow the ’same

structure’.

We have seen that: W = {(x1, x2) ∈ R2 : 2x1 + x2 = 0} is a

vector space.

P3 is a vector space and is a subset of the vector space P4

Definition: Let W be a subset of a vector space V . Then W is

called a subspace of V if W is a vector space with respect to

the operations of addition and scalar multiplication as in V .



Examples of subspaces

1. {0} ⊆ V is a subspace for any vector space V .

2. W = {(x1, x2, x3) ∈ R3 : 2x1 − x2 + x3 = 0} is a subspace of

R3.

More generally, if A is an m × n matrix and x = (x1, · · · , xn),
then the set of all solutions of the equation Ax = 0 is a

subspace of Rn. (Prove it!)

3. Pn is a subspace of Pm for n ≤ m.

4. C[a, b] := {f : [a, b]→ R : f is a continuous function} is a

vector subspace of F [a, b] := {f : [a, b]→ R : f is a function}.
5. R[a, b] := {f : [a, b]→ R : f is integrable } is a vector

subspace of C[a, b].

6. Ck [a, b] := {f : [a, b]→ R : dk f
dxk exists } is a vector

subspace of C[a, b].



Any Shortcut?

7. Pn can also be seen as a subspace of C[a, b].

Do we have to verify all 8 conditions to check whether a given

subset of a vector space is a subspace?

Theorem: Let W be a non-empty subset of a vector space V .

Then W is a subspace of V if and only if W is non-empty and

x + αy ∈ W for all x , y ∈ W and α,∈ F.

Proof: If W is a subspace, then obviously the given condition is

satisfied.

Conversely suppose W is a subset which satisfies the given

condition.

The commutativity and associativity of addition, distributive

properties and scalar multiplication with 1 are satisfied in V and

hence true in W too.



Proof Contd.

Therefore, we only need to verify the existence of ‘zero vector’

and ‘additive inverse’.

W 6= ∅ ⇒ ∃ x ∈ W ⇒ x + (−1)x = 0 ∈ W . Hence the

additive identity exists.

Now for y ∈ W , take x = 0 and α = −1 in the given condition.

We get 0 + (−1)y = −y ∈ W . Hence additive inverse exists.

Therefore, W is a subspace of V .

Given two vector subspaces, what are the other possibilities of

obtaining new vector subspaces from them?



Intersection of Subspaces

Take two planes passing through the origin. Is it a subspace of

R3?

Theorem: Let V1 and V2 are subspace of a vector space V .

Then V1 ∩ V2 is a subspace of V .

Proof: V1 & V2 are subspaces ⇒ 0 ∈ V1 ∩ V2. Therefore

V1 ∩ V2 6= ∅.
Suppose x , y ∈ V1 ∩ V2 and α ∈ F, then x + αy belong to both

V1 and V2 (since they are subspaces) and hence they belong to

V1 ∩ V2

⇒ V1 ∩ V2 is a subspace.

If V1 and V2 are subspaces, then is V1 ∪ V2 a subspace?

Is the union of x-axis and y -axis a subspace of R2?



Is Union a Subspace?

Theorem: Let V1 and V2 be subspaces of a vector space. Then

V1 ∪ V2 is a subspace if and only if either V1 ⊆ V2 or V2 ⊆ V1.

Proof: If V1 ⊆ V2 (V2 ⊆ V1), then V1 ∪ V2 = V2 (V1). Then it is

a subspace.

Conversely, assume that V1 ∪ V2 is a subspace and V1 * V2.

We want to show that V2 ⊆ V1.

Let x ∈ V2. Since V1 * V2, ∃ y ∈ V1 \ V2.

⇒ x , y ∈ V1 ∪ V2, ⇒ x + y ∈ V1 ∪ V2, since V1 ∪ V2 is a

subspace.

If x + y ∈ V2, then y ∈ V2, which is a contradiction.

⇒ x + y ∈ V1 ⇒ x ∈ V1 ⇒ V2 ⊆ V1.



More Subspace Examples

Check if V0 is a subspace of V :

1. Let V = C[−1, 1] and V0 = {f ∈ V : f is an odd function }.
Solution: The zero vector belongs to V0 ⇒ V0 6= ∅.
If f , g ∈ V0 and α ∈ R, then (f + αg)(−x) = f (−x) + αg(−x) =
−f (x) + α(−g(x)) = −(f + αg)(x) ⇒ f + αg is an odd function.

2. Let V = P3 and V0 = {a0 + a1t + a2t2 + a3t3 : a0 = 0}.
3. Let V = P3 and

V0 = {a0 + a1t + a2t2 + a3t3 : a1 + a2 + a3 + a4 = 0}.



Examples Contd.

4. Let V be a vector space and v ∈ V . Let V0 = {αv : α ∈ F}.
Then V0 is a vector space.

More generally, if v1, . . . , vn ∈ V and

V0 = {α1v1 + · · ·+ αnvn : αi ∈ F ∀ i = 1, . . . , n},
then V0 is a subspace of V .

Exercise: Non-zero subspace of R2 are the straight lines

passing through the origin.



Assignment-1

1. Let V be a vector space over F. Show the following:

(a) For all x , y , z ∈ V , x + y = z + y implies x = z.
(b) For all α, β ∈ F, x ∈ V , x 6= 0, αx 6= βx iff α 6= β.
(c) V must have an infinite number of elements.

2. In each of the following a non-empty set V is given and
some operations are defined. Check whether V is a vector
space with these operations.

(a) V = {(x1, 0) : x1 ∈ R} with addition and scalar multiplication

as in R3.
(b) V = {(x1, x2) ∈ R2 : 2x1 + 3x2 = 0} with addition and scalar

multiplication as in R3.
(c) V = {(x1, x2) ∈ R2 : x1 + x2 = 1} with addition and scalar

multiplication as in R3.
(d) V = R2, for (a1, a2), (b1, b2) ∈ V and α ∈ R, define

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2); 0 (a1, a2) = (0, 0)
and for α 6= 0, α(a1, a2) = (αa1, a2/α).



Assignment-1

2.

(e) V = C2, for (a1, a2), (b1, b2) ∈ V and α ∈ C, define

(a1, a2) + (b1, b2) = (a1 + 2b1, a2 + 3b2),
α(a1, a2) = (αa1, αa2).

(f) V = R2, for (a1, a2), (b1, b2) ∈ V and α ∈ R define

(a1, a2) + (b1, b2) = (a1 + b1, a2 + b2), α(a1, a2) = (a1, 0).
(g) V = [0,∞). For x , y ∈ V , α ∈ R, define

x + y = xy , αx = |α|x .
(h) V = [0,∞). For x , y ∈ V , α ∈ R, define x + y = xy and

αx = xα.

3. Is R[a, b], the set of all real valued Riemann integrable

functions on [a, b], a vector space?

4. Is the set of all polynomials of degree 5 with usual addition

and scalar multiplication of polynomials a vector space?

5. Let S be a non-empty set, s ∈ S. Let V be the set of all

functions f : S → R with f (s) = 0. Is V a vector space over

R with the usual addition and scalar multiplication of

functions?



Assignment-1

6. In each of the following, a vector space V and a subset W
are given. Check whether W is a subspace of V .

(a) V = R2; W = {(x1, x2) : x2 = 2x1 − 1}.
(b) V = R2 and V0 = any straight line passing through the

origin.

(c) V = R3; W = {(x1, x2, x3) : 2x1 − x2 − x3 = 0}.
(d) V = C[0, 1]; W = {f ∈ V : f is differentiable}.
(e) V = C[−1, 1]; W = {f ∈ V : f is an odd function }.
(f) V = C[0, 1]; W = {f ∈ V : f (x) ≥ 0 for all x}.

(g) V = P3(R) and W = {a0 + a1t + a2t2 + a3t3 : a0 = 0}.
(h) V = P3(R) and

W = {a0 + a1t + a2t2 + a3t3 : a1 + a2 + a3 + a4 = 0}.
(i) V = P3(R); W = {at + bt2 + ct3 : a, b, c ∈ R}.
(j) V = P3(C);

W = {a + bt + ct2 + dt3 : a, b, c, d ∈ C, a + b + c + d = 0}.
(k) V = P3(C); W = {a + bt + ct2 + dt3 : a, b, c, d integers }.



Assignment-1

7. Let A ∈ Rn×n. Let 0 ∈ Rn×1 be the zero vector. Is the set of

all x ∈ Rn×1 with Ax = 0 a subspace of Rn×1?

8. Suppose U is a subspace of V and V is a subspace of W .
Is U a subspace of W?

9. Let ℓ1(N) be the set of all absolutely convergent

sequences and ℓ∞(N) be the set of all bounded sequences

with entries from F. Show that ℓ1(N) and ℓ∞(N) are vector

spaces over F.



Span

Definition: Let V be a vector space. A linear combination of

vectors v1, . . . , vn ∈ V is an element of V which is in the form

α1v1 + · · ·+ αnvn with αj ∈ F, j = 1, . . . , n.

If the vector v = α1v1 + · · ·+ αnvn, for some scalars αi , then we

say that v can be expressed as a linear combination of vectors

v1, . . . , vn.

Let S be a nonempty subset of V . Then the set of all linear

combinations of elements of S is called the span of S, and is

denoted by span(S).

Span of the empty set is taken to be {0}.



Span Examples

1. span{0} = span(∅) = {0}.
2. C = span{1, i} with scalars from R.

3. Let e1 = (1, 0), e2 = (0, 1). Then R2 = span{e1, e2}
4. More generally, if ei denotes the vector having 1 at the i-th

place and 0 everywhere else, then Rn = span{e1, . . . , en}.
5. P3 = span{1, t , t2, t3}.



Examples Contd.

6. Let P denote the set of all polynomials of all degree. Then

P = span{1, t , t2, . . .}.
But 1 + t + t2 + t3 + · · · 6∈ P.
Caution: The set S can have infinitely many elements, but a

linear combination has only finitely many elements.

Theorem: Let V be a vector space and S ⊆ V . Then span(S)
is a subspace of V and it is the smallest subspace containing S.

Proof: If S = ∅, then span(S) = {0}.
If S 6= ∅, x , y ∈ span(S), then x = α1x1 + · · ·+ αnxn and

y = β1y1 + · · ·+ βmym for some αi , βj ∈ F and xi , yj ∈ S.



Proof Contd.

Then for α ∈ F,

x + αy = a1x1 + · · ·+ anxn + αβ1y1 + · · ·αβmym ∈ span(S).

Hence span(S) is a subspace of V .

For minimality, suppose S ⊆ V0, a subspace of V .
V0 contains all linear combination of elements of S.

That is, span(S) ⊆ V0.
Hence, span(S) is the smallest subspace containing S.

Exercise: S is a subspace of V if and only if span(S) = S.

Exercise: If S is a subset of a vector space V , then prove that

span(S) =
⋂{Y : Y is a subspace of V containing S}.



Another Exercise

Consider the system of linear equations:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

· · · + · · · + · · · + · · · = · · ·
am1x1 + am2x2 + · · · + amnxn = bm.

Let u1 = (a11, . . . , am1), u2 = (a12, . . . , am2), . . .. Show that the

above system has a solution vector x = (x1, . . . , xn) if and only

if b = (b1, . . . , bn) is in the span of {u1, . . . , un}.
Recall: If V1,V2 are subspaces of V , then so is V1 ∩ V2. But

V1 ∪ V2 need not be a subspace of V .



Sum and Span

Let V1 and V2 be subspaces of a vector space V . Define

V1 + V2 = {u + v : u ∈ V1 and v ∈ V2}.

Theorem: V1 + V2 = span(V1 ∪ V2).

Proof: Let u ∈ V1, v ∈ V2. Then u + v ∈ span(V1 ∪ V2).
Thus, V1 + V2 ⊆ span(V1 ∪ V2).
Conversely, any linear combination of elements of V1 ∪ V2 is a

sum of linear combinations of elements of V1 and a linear

combination of elements of V2. Since V1,V2 are vector spaces,

the last sum is a sum of an element of V1 and an element of V2.
Therefore, span(V1 ∪ V2) ⊆ V1 + V2.

Sum can be defined for subsets instead of subspaces, but we

do not require it now.



Sum?

Note: x-axis + y -axis = ?

Exercise: Suppose V1 ∩ V2 = {0}. Then every element of

V1 + V2 can be written uniquely as x1 + x2 with x1 ∈ V1 and

x2 ∈ V2.

Reason: If x1 + x2 = y1 + y2 and x1, y1 ∈ V1, x2, y2 ∈ V2, then

x1 − y1 = y2 − x2. Now, on is in V1 and the other is in V2. But

the only common element is 0. hence, both are equal to 0. That

is, x1 = y1 and x2 = y2.

Note: Any vector (x , y) ∈ R2 can be uniquely written as

x(1, 0) + y(0, 1).

Suppose we take u = (1, 1), v = (−1, 2), w = (1, 0). Then

(2, 3) = 3(1, 1) + 0(−1, 2) +−1(1, 0)

= 1(1, 1) + 1(−1, 2) + 2(1, 0).

When can we ensure the uniqueness?



Assignment-2

1. Do the polynomials t3 − 2t2 + 1, 4t2 − t + 3, and

3t − 2 spanP3? Justify your answer.

2. What is span{tn : n = 0, 2, 4, 6, . . .}?
3. m Let u, v1, v2, . . . , vn be n + 1 distinct vectors in a real

vector space V .
Take S1 = {v1, v2, . . . , vn} and S2 = {u, v1, v2, . . . , vn}.
Prove that

(a) If span(S1) = span(S2), then u ∈ span(S1).
(b) If u ∈ span(S1), then span(S1) = span(S2).

4. Let S be a subset of a vector space V . Show that S is a

subspace if and only if S = span(S).

5. Let U be a subspace of V , v ∈ V \ U. Show that for every

x ∈ span({v} ∪ U), there exists a unique pair

(α, y) ∈ F× U such that x = αv + y .



Assignment-2

6. Show that span{e1 + e2, e2 + e3, e3 + e1} is R3, where

e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1).

7. Let V be a vector space and A,B be subsets of V . Prove
or disprove the following:

(a) A is a subspace of V if and only if span(A) = A.

(b) If A ⊆ B, then span(A) ⊆ span(B).
(c) span(A ∪ B) = span(A) + span(B).
(d) span(A ∩ B) ⊆ span(A) ∩ span(B).

8. Let U,V be subspaces of a vector space W over F. Prove
or disprove the following:

(a) U ∩ V and U + V are subspaces of W .

(b) U + V = V iff U ⊆ V .
(c) U ∪ V is a subspace if and only if U ⊆ V or V ⊆ U.
(d) Let U ∩ V = {0}. If x ∈ U + V , then there are unique

u ∈ U, v ∈ V such that x = u + v .



Assignment-2

9. Let u1(t) = 1, and for j = 2, 3, . . . , let

uj(t) = 1 + t + . . .+ t j−1. Show that span{u1, . . . , un} is

Pn−1, and span{u1, u2, . . .} is P.

10. Let U,V ,W be subspaces of a real vector space X .

(a) Prove that (U ∩ V ) + (U ∩W ) ⊆ U ∩ (V + W ).
(b) Give an example with appropriate U,V ,W ,X to show that

U ∩ (V + W ) 6⊆ (U ∩ V ) + (U ∩W ).



Linear Independence

Definition: A set of vectors {v1, . . . , vn} is said to be linearly

dependent if one of the vectors can be written as a linear

combination of others, i.e., for some j ∈ {1, . . . , n},
vj = α1v1 + · · ·+ αj−1vj−1 + αj+1vj+1 + · · ·+ αnvn.

Equivalently, {v1, . . . , vn} is linearly dependent if ∃ j such that

vj ∈ span{vi : i 6= j}.
Definition: A set of vectors {v1, . . . , vn} is said to be linearly

independent if the set is not linearly dependent, i.e., none of the

vectors can be written as a linear combination of the others.

Given a set of vectors, how do we verify these properties?

{v1, . . . , vn} is linearly dependent

⇒ vj = α1v1 + · · ·+ αj−1vj−1 + αj+1vj+1 + · · ·+ αnvn.

⇒ α1v1 + · · ·+ αnvn = 0 taking αj = −1.



How to Know?

Conversely, suppose α1v1 + · · ·+ αnvn = 0 for some αi ∈ F.

Suppose αj 6= 0 for at least one j . Then

vj =
α1

−αj
v1 + · · ·+

αn

−αj
vn.

⇒ {v1, . . . , vn} is linearly dependent.

So we conclude:

{v1, . . . , vn} is linearly dependent if and only if ∃ α1, . . . , αn ∈ F,

not all zero, such that α1v1 + · · ·+ αnvn = 0.



Working Rule

To show: {v1, . . . , vn} is linearly independent.

We start:

Assume α1v1 + · · ·+ αnvn = 0.
Do something here, and prove that

Each αi = 0. We end here.

To show: {v1, . . . , vn} is linearly dependent.

We start:

We give at least one of α1, . . . , αn non-zero.

Do something here, and show that

α1v1 + · · ·+ αnvn = 0. We end here.



Determining Linear Independence

Examples: 1. {(1, 0), (0, 1)} is linearly independent in R2.

Solution: Assume α(1, 0) + β(0, 1) = 0. Then (α, β) = (0, 0).
Then α = 0, β = 0.
Therefore, {(1, 0), (0, 1)} is linearly independent.

2. {(1, 0, 0), (1, 1, 0), (1, 1, 1)} is linearly independent in R3.

Solution: Suppose α(1, 0, 0) + β(1, 1, 0) + γ(1, 1, 1) = (0, 0, 0).
⇒ α+ β + γ = 0; β + γ = 0; γ = 0.

⇒ α = β = γ = 0

Therefore, the vectors are linearly independent.



Examples Contd.

3. {1, t , t2} ⊆ P2 is linearly independent.

Solution: Let α · 1 + βt + γt2 = 0.
The right side is the zero polynomial. Two polynomials are

equal only when the respective coefficients are equal. So,

α = β = γ = 0.
Therefore, {1, t , t2} is linearly independent.

4. {sin x , cos x} ⊆ C[−π, π] is linearly independent.

Solution: Suppose α sin x + β cos x = 0.

Putting x = 0 we get β = 0.

Now putting x = π
2 , we get α = 0.

Note: Any set containing the zero vector is linearly dependent.



Examples Contd.

Caution: {v1, . . . , vn} is linearly dependent DOES NOT IMPLY

that each vector is in the span of the remaining vectors.

5. {(1, 0), (1, 1), (2, 2)} is linearly dependent and

(1, 0) /∈ span{(1, 1), (2, 2)}.
6. {u, v} is linearly dependent if and only if one of them is a

scalar multiple of the other.

Solution: If {u, v} is linearly dependent, then either

u ∈ span{v} or v ∈ span{u}, i.e., either u = αv or v = βu.

Conversely suppose one of them is a scalar multiple of the

other, say u = αv . Then u ∈ span{v} ⇒ {u, v} is linearly

dependent.



Linear Independence - Facts

1. Each superset of a linearly dependent set is linearly

dependent.

Proof. Suppose A ⊆ B ⊆ V , where V is a vector space. If A is

linearly dependent, then we have α1u1 + · · ·+ αnun = 0 with

αi 6= 0 for at least one i , for some vectors u1, . . . , un ∈ A.
However, these u1, . . . , un are also vectors of B.
Hence B is linearly dependent.

2. Each subset of a linearly independent set is linearly

independent.

Proof. It follows from (1).

Exercise: Suppose {u1, . . . , un} is linearly independent and Y

is a subspace of V such that span{u1, . . . , un} ∩ Y = {0}.
Prove that every vector x in the span of {u1, . . . , un} ∪ Y can be

written uniquely as x = α1u1 + · · ·+ αnun + y with

α1, . . . , αn ∈ F and y ∈ Y .



Ordered Set

Theorem: Let {v1, v2, . . . , vn} be a linearly dependent ordered

set in a vector space V . Then some vk is a linear combination

of the previous ones.

Proof. If v1 is the zero vector, then 0 ∈ span(∅) does the job.

Assume thus v1 6= 0. Linear dependence implies: we have

scalars α1, . . . , αn not all zero such that

α1v1 + α2v2 + · · ·+ αnvn = 0.

Let k be the maximum integer in {1, 2, . . . , n} such that αk 6= 0.
Then

α1v1 + α2v2 + · · ·+ αkvk = 0, αk 6= 0.

In that case, vk = − 1
αk
(α1v1 + α2v2 + · · ·+ αk−1vk−1).

That is, vk ∈ span{v1, . . . , vk−1}.



A Secret

Theorem: Let A = {u1, . . . , um}, B = {v1, . . . , vn} be subsets

of a vector space V . Suppose that A is linearly independent

and B spans V . Then m ≤ n.

Proof. Assume that m > n. Then we have vectors un+1, . . . , um

in A. Since B is a spanning set, u1 ∈ span(B). Thus, the set

B1 = {u1, v1, v2, . . . , vn}

is linearly dependent. Now, consider B1 as an ordered set. We

have a vector vk such that vk ∈ span{u1, v1, . . . , vk−1}. Remove

this vk from B1 to obtain the set

C1 = {u1, v1, . . . , vk−1, vk+1, . . . , vn}.

Notice that span(C1) = span(B1) = span(B) = V .



Proof Contd.

Add u2 to the set C1 to form the set

B2 = {u2, u1, v1, . . . , vk−1, vk+1, . . . , vn}.

Again, B2 is linearly dependent.

Then, for some j , vj ∈ span{u2, u1, v1, . . . , vj−1}.
Notice that due to linear independence of {u1, . . . , un}, u2 is not

in the linear span of u1; only a v can be in the linear span of the

previous vectors.

Remove this vj from B2 to obtain a set C2. Again,

span(C2) = span(B2) = span(B) = V .
Continue this process of introducing a u and removing a v for n

steps. Finally, vn is removed and we end up with the set

Cn = {un, un−1, . . . , u2, u1} which spans V .
Then un+1 ∈ span(Cn). This is a contradiction since A is

linearly independent. Therefore, our assumption that m > n is

wrong.



Assignment-3
1. Answer the following questions with justification:

(a) Is every subset of a linearly independent set linearly

independent?

(a) Is every subset of a linearly dependent set linearly

dependent?

(b) Is every superset of a linearly independent set linearly

independent?

(c) Is every superset of a linearly dependent set linearly

dependent?

(d) Is union of two linearly independent sets linearly

independent?

(e) Is union of two linearly dependent sets linearly dependent?

(f) Is intersection of two linearly independent sets linearly

independent?

(g) Is intersection of two linearly dependent sets linearly

dependent?

2. Give three vectors in R2 such that none of the three is a

scalar multiple of another.

3. Suppose S is a set of vectors and some v ∈ S is not a

linear combination of other vectors in S. Is S lin. ind.?



Assignment-3

4. In each of the following, a vector space V and A ⊆ V are
given. Determine whether A is linearly dependent and if it
is, express one of the vectors in A as a linear combination
of the remaining vectors.

(a) V = R3, A = {(1, 0,−1), (2, 5, 1), (0,−4, 3)}.
(b) V = R3, A = {(1, 2, 3), (4, 5, 6), (7, 8, 9)}.
(c) V = R3, A = {(1,−3,−2), (−3, 1, 3), (2, 5, 7)}.
(d) V = P3, A = {t2 − 3t + 5, t3 + 2t2 − t + 1, t3 + 3t2 − 1}.
(e) V = P3,

A = {−2t3−11t2+3t+2, t3−2t2+3t+1, 2t3+ t2+3t−2}.
(f) V = P3,

A = {6t3 − 3t2 + t + 2, t3 − t2 + 2t + 3, 2t3 + t2 − 3t + 1}.
(g) V = F2×2, A =

{[

1 0

0 1

]

,

[

0 0

0 1

]

,

[

0 1

1 0

]}

.

(h) V = {f : R→ R}, A = {2, sin2 t , cos2 t}.
(i) V = {f : R→ R}, A = {1, sin t , sin 2t}.
(j) V = C([−π, π]), A = {sin t , sin 2t , . . . , sin nt} where n is

some natural number.



Assignment-3
5. Show that two vectors (a, b) and (c, d) in R2 are linearly

independent if and only if ad − bc 6= 0.
6. Let A = (a1j) ∈ Rn×n and let w1, . . . ,wn be the n columns

of A. Let {u1, . . . , un} be linearly independent in Rn. Define

vectors v1, . . . , vn by

vj = a1ju1 + . . .+ anjun, for j = 1, 2, . . . , n.
Show that {v1, v2, . . . , vn} is linearly independent iff

{w1,w2, . . . ,wn} is linearly independent.

7. Let A,B be subsets of a vector space V . Prove or disprove:

span(A) ∩ span(B) = {0} iff A ∪ B is linearly independent.

8. Suppose V1 and V2 are subspaces of a vector space V

such that V1 ∩ V2 = {0}. Show that every x ∈ V1 + V2 can

be written uniquely as x = x1 + x2 with x1 ∈ V1 and

x2 ∈ V2.

9. Let p1(t) = 1+ t + 3t2, p2(t) = 2+ 4t + t2, p3(t) = 2t + 5t2.

Are the polynomials p1, p2, p3 linearly independent?

10. Prove that in the vector space of all real valued functions,

the set of functions {ex , xex , x3ex} is linearly independent.



Basis

Note: The set {e1, . . . , en} is linearly independent and

span{e1, . . . , en} = Rn.

The set {1, t , . . . , tn} is linearly independent and

Pn = span{1, t , . . . , tn}.
Definition: Let V be a vector space over F. A subset B of V is

called a basis for V if B is linearly independent and

span(B) = V .

Basis is NOT unique: For example, both {1} and {2} are

R-bases of R. In fact {x}, for any non-zero x ∈ R, is an basis of

R.

Verify if {(1, 1), (1, 2)} is an basis of R2.



Examples

Since neither of them is a scalar multiple of the other, the set is

linearly independent.

1. span{(1, 1), (1, 2)} = R2?

Does the equation (x , y) = α(1, 1) + β(1, 2) has a solution in

α, β?

⇒ α+ β = x ; α+ 2β = y .

⇒ β = y − x and α = 2x − y .

⇒ span{(1, 1), (1, 2)} = R2

{(1, 1), (1, 2)} is an basis of R2.



Examples

2. {e1, . . . , en} is an basis of Rn. This basis is called Standard

Basis of Rn.

Consider set {Mij : i = 1, . . . ,m; j = 1, . . . , n}, where Mij is the

matrix with (i , j)-th entry 1 and all other entries 0. Then this is a

basis of Mm×n(F), called the standard basis.

Exercise: Prove that the set {1, 1 + t , 1 + t + t2} is a basis for

P2. Find a similar basis for Pn.

Exercise: If {p1(t), . . . , pr (t)} ⊆ P be set of polynomials such

that deg p1 < deg p2 < · · · < deg pr , then prove that

{p1(t), . . . , pr (t)} is linearly independent.

Exercise: Can you find a basis for R2 consisting of 3 vectors?



A Result

Theorem: Let V be a vector space and B ⊆ V . Then the

following are equivalent:

1. B is a basis of V

2. B is a maximal linearly independent set in V ,

i.e., B is linearly independent and every proper superset of

B is linearly dependent.

3. B is a minimal spanning set of V ,

i.e., span(B) = V and no proper subset of B spans V .

Proof:

(1) ⇒ (2): Since B is a basis, span(B) = V . If v ∈ V \ B, then v

is a linear combination of elements of B. Then B ∪ {v} is

linearly dependent. Then B is a maximal linearly independent

subset of V .



Prof Contd.

(2) ⇒ (3): Since B is linearly independent, for any

v ∈ B, v 6∈ span(B \ {v}). So, no proper subset of B can span

V .

If v ∈ V \ span(B), then B ∪ {v} is linearly independent, which

contradicts the assumption. So, span(B) = V .

(3) ⇒ (1): Assume that B is a minimal spanning set of V

⇒ span(B) = V . Suppose B is linearly dependent, i.e., ∃ u ∈ B

such that u ∈ span(B \ {u}).
⇒ span(B \ {u}) = V which contradicts the assumption that B

is minimal spanning set.

Definition: A vector space V is said to be finite dimensional if

there exists a finite basis for V . A vector space which is not

finite dimensional is called infinite dimensional vector space.



Another Result

Example: Fn,Pn,Mm×n(F) are finite dimensional vector spaces

over F.

Theorem: If a vector space has a finite spanning set, then it

has a finite basis.

Proof: Let V = span(S) for some finite subset S of V . If S is

linearly independent, then S is a basis.

Otherwise, ∃ u1 ∈ S such that u1 ∈ span(S \ {u1}). Therefore,

span(S \ {u1}) = V . If S1 = S \ {u1} is linearly independent,

then S1 is a basis.

Otherwise, one can repeat the process. The process has to

stop since S is a finite set and we end up with a subset Sk of S

such that Sk is linearly independent and span(Sk ) = V .



Examples

1. Compute a basis of V = {(x , y) ∈ R2 : 2x − y = 0}.
Solution: (x , y) ∈ V ⇒ y = 2x ⇒ (x , y) = (x , 2x) = x(1, 2)
⇒ V = span{(1, 2)}.
Since {(1, 2)} is linearly independent, it is a basis for V .

2. Compute a basis of V = {(x , y , z) ∈ R3 : x − 2y + z = 0}.
Solution: (x , y , z) ∈ V ⇒ x = 2y − z

⇒ (x , y , z) = (2y − z, y , z) = y(2, 1, 0) + z(−1, 0, 1)
⇒ V = span{(2, 1, 0), (−1, 0, 1)}.
[Check whether these vectors are linearly independent.]

⇒ {(2, 1, 0), (−1, 0, 1)} is a basis of V .

3. Compute a basis of

V = {(x1, . . . , x5) ∈ R5 : x1 + x3 − x5 = 0 and x2 − x4 = 0}.



A Result

Note: In R, any two real numbers are linearly dependent.

Exercise: Try to show:

(a) In R2, any three vectors are linearly dependent.

(b) Any 4 polynomials in P2 are linearly dependent.

Given a vector space, do we have an upper limit for the

cardinality of linearly independent set?

Theorem: Let V be a vector space with a basis consisting of n

elements. Then each basis of V has n elements.

Proof: Let A be a basis of V having n elements. Let B be any

other basis having m elements. Since A is a spanning set and

B is linearly independent, m ≤ n.
Since A is linearly independent and B is a spanning set,

n ≤ m.



Consequences

Corollary 1: If V has a basis of n elements, then any set of

n + 1 or more vectors is linearly dependent.

Corollary 2: If a vector space contains an infinite linearly

independent subset, then it is an infinite dimensional space.

Corollary 3: If a vector space has a basis of n vectors, then all

bases for V have n vectors.

Exercise: Let M = (aij) be an m × n matrix with aij ∈ F and

n > m, then there exists (α1, . . . , αn) ∈ Fn such that

ai1α1 + ai2α2 + · · ·+ ainαn = 0, for all i = 1, . . . ,m.



Dimension

Definition: Suppose V is a finite dimensional vector space.

Then the cardinality of a basis is said to be the dimension of V ,

denoted by dim V .

Observation: Let V be a vector space of dimension n and A

be a subset of V containing m vectors.

(a) If A is linearly independent, then m ≤ n.

(b) If m > n, then A is linearly dependent.

(c) If A is linearly independent & m = n, then A is a basis of V .

Examples:

1. dimR = 1;

2. dimRn = n.

3. C considered as an R-vector space, dimC = 2.

4. Consider Cn as an R-vector space. What is dimC? Can you

produce an basis for Cn?



Examples Contd.

5. dimPn = n + 1

6. What is the dimension of Mm×n(R)?

7. The set of all polynomials of all degrees, P, is an infinite

dimensional vector space.

Solution: Suppose the dimension is finite, say dimP = n ⇒
any set of n + 1 vectors are linearly dependent.

⇒ {1, t , . . . , tn} is linearly dependent, which is a contradiction.

⇒ the dimension can not be finite.

8. What is the dimension of {0}? Ans: dim{0} = 0.



In R2

9. C[a, b] is an infinite dimensional vector space.

Solution: Take the collection of functions

{fn : fn(x) = xn ∀ x ∈ [a, b]; n = 0, 1, 2, . . .}.
Then {f0, f1, . . . , fn} is linearly independent for every n

⇒ C[a, b] can not have a finite basis.

Let {u, v} ⊆ R2 be linearly independent. Then can span{u, v}
be a proper subset of R2?

Let {u, v ,w} ⊆ R3 be linearly independent. Then, can

span{u, v ,w} be a proper subset of R3?

Note: If V is a finite dimensional vector space, then so is any

subspace of V .

For, if a subspace W contains an infinite linearly independent

set, then that set will remain linearly independent in V as well.

⇒ V is infinite dimensional, which contradicts our assumption.



Dimension of Subspace

Theorem: If V is a finite dimensional vector space and W is a

proper subspace of V , then dim W < dim V .

Proof: Since V is finite dimensional, so is W .

Let {w1, . . . ,wm} be a basis of W and v ∈ V \W .

⇒ {w1, . . . ,wn, v} is linearly independent in V . Prove this!

⇒ V contains n + 1 vectors which are linearly independent.

If a basis of V contains n or less number of vectors, then there

can not be a set with cardinality n + 1 which is linearly

independent.

⇒ dim V ≥ n + 1.



Bases

Let W be a subspace of a finite dimensional vector space V .
Can we say that BW ⊆ BV ?

Let W = {(x , 0) : x ∈ R2 and V = R2. Then {2, 0} is a basis of

W and {(1, 0), (0, 1)} is a basis of V .

Theorem: Let W be a subspace of a finite dimensional vector

space V and BW = {u1, . . . , um} be a basis of V . Then there

exists a basis BV of V such that BW ⊆ BV .

Proof: If W = V , then there is nothing to prove. Suppose W is

properly contained in V .

Let um+1 ∈ V \W . Then {u1, . . . , um, um+1} is linearly

independent in V .



Proof Contd.

Let W1 = span{u1, . . . , um, um+1}. If dim V = m + 1, then

W1 = V and hence we are done.

If not, then W1 is properly contained in V and hence there

exists um+2 ∈ V \W1.

⇒ {u1, . . . , um+2} is linearly independent in V .

If dim V = m + 2, then we are done. Otherwise continue as

before.

If dim V = n, then Wn−m = span{u1, . . . , um, um+1, . . . , un} will

be equal to V .



Sum & Intersection

Given two subspaces V1 and V2 of a finite dimensional vector

spaces, we have two other subspaces,

span(V1 ∪ V2) = V1 + V2 and V1 ∩ V2.

How are the dimensions of these spaces related with the

dimensions of the individual spaces?

We can easily say that dim(V1 ∩ V2) ≤ dim Vi for each i = 1, 2.

If V1 ⊆ V2, then V1 ∩ V2 = V1 and hence, it can be equality in

the above inequality for one of the i ’s.

Exercise: Prove that if dim(V1 ∩ V2) = dim V1, then V1 ⊆ V2.

Can we relate dim V1 + V2 to dim V1 and dim V2?



Work Out

Let V1 = {(x , y) ∈ R2 : 2x − y = 0} and

V2 = {(x , y) ∈ R2 : x + y = 0}.
What is dim V1 + V2?

Let V1 = {(x , y , z) ∈ R3 : x + y + z = 0} and

V2 = {(x , y , z) ∈ R3 : x − y − z = 0}.
What is dim(V1 + V2)?

{(1, 0,−1), (1,−1, 0)} is a basis of V1 and

{(1, 1, 0), (1, 0, 1)} is basis of V2.

Then V1 + V2 = R3

⇒ dim(V1 + V2) = 3 < dim V1 + dim V2.

Are we counting something twice?



Sum & Intersection

Theorem: Let V1 and V2 be finite dimensional subspaces of a

vector space V . Then

dim(V1 + V2) = dim V1 + dim V2 − dim(V1 ∩ V2).

Proof: V1 ∩ V2 has finite dimension. Let {x1, . . . , xn} be a basis

of V1 ∩ V2. Notice that if V1 ∩ V2 = {0}, we take its basis as ∅.
Note that V1 ∩ V2 is a subspace of V1 as well as V2. We extend

the basis of V1 ∩ V2 to bases of V1 and of V2.

Let {x1, . . . , xn, y1, . . . , ym} be a basis of V1.
Let {x1, . . . , xn,w1, . . . ,wk} be a basis of V2.



Proof Contd.

CLAIM: B = {x1, . . . , xn, y1, . . . , ym,w1, . . . ,wk} is a basis of

V1 + V2.

Proof of the Claim: First we show that span(B) = V1 + V2.

Let v1 + v2 ∈ V1 + V2. Then

v1 = α1x1 + · · ·+ αnxn + αn+1y1 + · · ·+ αn+mym;

v2 = β1x1 + · · ·+ βnxn + βn+1w1 + · · ·+ βn+kwk .

⇒ v1 + v2 =
n

∑

i=1

(αi + βi)xi +
m
∑

j=1

αn+jyj +
k

∑

l=1

βn+lwl

⇒ V1 + V2 ⊆ span(B) ⇒ span(B) = V1 + V2.

We now prove that B is linearly independent.



Proof Contd.

Suppose

α1x1 + · · ·+ αnxn + β1y1 + · · ·+ βmym + γ1w1 + · · ·+ γkwk = 0.

⇒ α1x1 + · · ·+αnxn + β1y1 + · · ·+ βmym = −γ1w1 − · · · − γkwk

⇒ −γ1w1 − · · · − γkwk ∈ V1 ∩ V2.

⇒ −γ1w1 − · · · − γkwk = a1x1 + · · ·+ anxn

⇒ a1x1 + · · ·+ anxn + γ1w1 + · · ·+ γkwk = 0.

{x1, . . . , xn,w1, . . . ,wk} is a basis of V2 ⇒ they are linearly

independent

⇒ a1 = · · · = an = γ1 = · · · = γk = 0.

Substituting the values of γi ’s, we get

α1x1 + · · ·+ αnxn + β1y1 + · · ·+ βmym = 0.



Proof Contd.

Since {x1, . . . , xn, y1, . . . , ym} is linearly independent,

α1 = · · · = αn = β1 = · · · = βm = 0.

⇒ {x1, . . . , xn, y1, . . . , ym,w1, . . . ,wk} is a basis for V1 + V2

Therefore

dim(V1 + V2) = n + m + k = (n + k) + (m + k)− k

= dim V1 + dim V2 − dim(V1 ∩ V2).

Corollary: Two distinct planes through origin in R3 intersect on

a line.

Exercise: If V1 and V2 are subspace of R9 such that

dim V1 = 5 = dim V2, then V1 ∩ V2 6= ∅.



Assignment-4

1. Determine which of the following sets form bases for P2.

(a) {−1− t − 2t2, 2 + t − 2t2, 1− 2t + 4t2}.
(b) {1 + 2t + t2, 3 + t2, t + t2}.
(c) {1 + 2t + 3t2, 4− 5t + 6t2, 3t + t2}.

2. Let {x , y , z} be a basis for a vector space V . Is

{x + y , y + z, z + x} also a basis for V?

3. Extend the set {1 + t2, 1− t2} to a basis of P3.

4. Find a basis for the subspace

{(x1, x2, x3) ∈ R3 : x1 + x2 + x3 = 0} of R3.

5. Is {1 + tn, t + tn, . . . , tn−1 + tn, tn} a basis for Pn?

6. Let u1 = 1 and let uj = 1 + t + t2 + · · ·+ t j−1 for

j = 2, 3, 4, . . .
Is span{u1, . . . , un} = Pn? Is span{u1, u2, . . .} = P?

7. Prove that the only proper subspaces of R2 are the straight

lines passing through the origin.



Assignment-4

8. Find bases and dimensions of the following subspaces of
R5:

(a) {(x1, x2, x3, x4, x5) ∈ R5 : x1 − x3 − x4 = 0}.
(b) {(x1, x2, x3, x4, x5) ∈ R5 : x2 = x3 = x4, x1 + x5 = 0}.
(c) span{(1,−1, 0, 2, 1), (2, 1,−2, 0, 0), (0,−3, 2, 4, 2),

(3, 3,−4,−2,−1), (2, 4, 1, 0, 1), (5, 7,−3,−2, 0)}.
9. Find the dimension of the subspace

span{1 + t2,−1 + t + t2,−6 + 3t , 1 + t2 + t3, t3} of P3.

10. Find a basis, and hence dimension, for each of the
following subspaces of the vector space of all twice
differentiable functions from R to R:

(a) {x ∈ V : x ′′ + x = 0}.
(b) {x ∈ V : x ′′ − 4x ′ + 3x = 0}.
(c) {x ∈ V : x ′′′ − 6x ′′ + 11x ′ − 6x = 0}.



Assignment-4

11. Let U =

{[

a −a

b c

]

: a, b, c ∈ R

}

,

V =

{[

a b

−a c

]

: a, b, c ∈ R

}

.

(a) Prove that U and V are subspaces of R2×2.
(b) Find bases, and hence dimensions, for U ∩ V , U, V , and

U + V .

12. Show that if V1 and V2 are subspace of R9 such that

dim V1 = 5 = dim V2, then V1 ∩ V2 6= ∅.
13. Let {e1, e2, e3} be the standard basis of R3. What is

span{e1 + e2, e2 + e3, e3 + e1}?
14. Given a0, a1, . . . , an ∈ R, let V = {x(t) ∈ Ck [0, 1] :

anx (n)(t) + · · ·+ a1x (1)(t) + a0x(t) = 0}.
Show that V is a subspace of Ck [0, 1], and find its

dimension.



Assignment-4

15. Let V = span{(1, 2, 3), (2, 1, 1)} and

W = span{(1, 0, 1), (3, 0,−1)}. Find a basis for V ∩W .
Also, find dim(V + W ).

16. Given real numbers a0, a1, . . . , ak , let V be the set of all

solutions x ∈ Ck [a, b] of the differential equation

a0
dkx

dtk
+ a1

dk−1x

dtk−1
+ · · ·+ akx = 0.

Show that V is a vector space over R. What is dim V?

17. Consider each polynomial in P as a function from the set

{0, 1, 2} to R. Is the set of vectors {t , t2, t3, t4, t5} linearly

independent?



Structure Preserving Maps

What are the important maps in real variables?

In R the important sets are the intervals.

So, what are the maps that take intervals to intervals?

In vector spaces, what are themaps that take subspaces to

subspaces?

They must be those, which preserve the addition and scalar

multiplication.



Definition & Examples

Definition: Let U and V be vector spaces over F.

A function T : U → V is said to be a linear transformation (or a

linear map) if

T (x + y) = T (x) + T (y) and T (αx) = αT (x)

for every x , y ∈ U and for every α ∈ F.

Examples:

1. T : V → V , T (v) = 0 for all v ∈ V .

2. T : V → V , T (v) = v .

3. Let A denote an m × n matrix with real entries. Then for any

vector x = (x1, . . . , xn)
t ∈ Rn, Ax is a vector in Rm.

It satisfies the properties that A(x + y) = Ax + Ay and

A(αx) = αAx for x , y ∈ Rn and α ∈ R.



Examples

4. Let V be any vector space and α ∈ F. Then the map

T : V → V defined by T (v) = αv is linear.

5. If f and g are two differentiable functions from an interval

[a, b] to R, then d
dt (f + g) = df

dt +
dg
dt and d

dt (αf ) = αdf
dt .

6. If f and g are two real valued continuous function from [a, b]

to R, then
∫ b

a
(f + g)(t)dt =

∫ n
a

f (t)dt +
∫ b

a
g(t)dt and

∫ b
a
(αf )(t)dt = α

∫ b
a

f (t)dt .

7. Define Tj : Rn → R by Tj(x1, . . . , xn) = xj . Then Tj is linear.

More generally, for α1, . . . , αn ∈ R, T (x1, . . . , xn) =
∑n

i=1 αixi is

a linear transformation.



Examples Contd.

8. Let V be a vector space with basis {u1, . . . , un}. Give any

vector, there exist unique coefficients α1, . . . , αn ∈ F such that

u = α1u1 + · · ·+ αnun. Define a map T : V → F, Ti(u) = αi .

Then T is a linear map.

Solution: Let u, v ∈ V .
Let u = α1u1 + · · ·+ αnun and v = β1u1 + · · ·+ βnun.

⇒ u + v =
∑n

i=1(αi + βi)ui .

This is a representation of u + v as a linear combination of

{u1, . . . , un}. Since {u1, . . . , un} is a basis, this is THE unique

representation for u + v .

⇒ Ti(u + v) = αi + βi = Ti(u) + Ti(v).
Similarly the other condition can be verified.



Examples Contd.

9. Let α ∈ [a, b]. Define Tα : C[a, b]→ F by

Tα(f ) = f (α).

Verify that Tα is a linear transformation.

10. Let T : C1[a, b]→ C[a, b] be defined by

T (f ) = f ′.

Then T is linear.

11. Let T : C1[a, b]→ C[a, b] be defined by

T (f ) = αf + βf ′.

Then verify that T is linear.



Examples Contd.

12. If T1 and T2 are linear transformations from V1 to V2, then

the map T : V1 → V2 defined by

T (v) = αT1(v) + βT2(v)

is a linear trasnformation.

13. Let A =

[

cosφ sinφ
− sinφ cosφ

]

. Then for any

x = (r cos θ, r sin θ) ∈ R2, the map T : R2 → R2 defined by

Tx = Ax is the rotation by an angle φ. We have already seen

that this is a linear map.

Caution: Every map that ‘looks linear’ need not be linear:

T : R→ R defined by T (x) = 2x + 3.



Properties of Linearity

Theorem: Let T : V → W be a linear transformation, then for

all vectors u, v , v1, . . . , vn ∈ V and scalars α1, . . . , αn ∈ F:

(i) T (0) = 0

(ii) T (u − v) = T (u)− T (v)

(iii) T (α1v1 + · · ·+ αnvn) = α1T (v1) + · · ·+ αnT (vn).

Proof:

(i) T (0) = T (0 + 0) = T (0) + T (0) ⇒ T (0) = 0.

(ii) T (u − v) = T (u + (−1)v) = T (u) + T (−1(v))
= T (u) + (−1)T (v) = T (u)− T (v).

(iii) Apply induction on n.



Examples

1. Consider the ‘differential map’, D : P3 → P2, defined by

D(p(t)) = p′(t).
In this map, we know that D(t3) = 3t2; D(t2) = 2t ; D(t) = 1

and D(1) = 0 and use the linearity of differential operator to

obtain D(p(t)) for any polynomial p(t) ∈ P3.

2. Suppose T : R2 → R be a linear map such that T (1, 0) = 2

and T (0, 1) = −1, then what is T (2, 3)? What is T (a, b)?

3. Let T : R3 → R2 be linear such that T (1, 0, 0) = (2, 3),
T (0, 1, 0) = (−1, 4) and T (0, 0, 1) = (5,−3). Then

T (3,−4, 5) = 3T (1, 0, 0) + (−4)T (0, 1, 0) + 5T (0, 0, 1)

= 3(2, 3) + (−4)(−1, 4) + 5(5,−3)

= (35,−22).



A Question

4. Let T : R2 → R2 be a map such that T (1, 1) = (1,−1),
T (0, 1) = (−1, 1) and T (2,−1) = (1, 0). Can T be a linear

transformation?

Solution: (2,−1) = 2(1, 1)− 3(0, 1)
⇒ T (2,−1) = 2(1,−1)− 3(−1, 1) = (5,−5) 6= (1, 0).
Hence T is not a linear map.

What are the information required to describe a linear map T?

Suppose we take a basis {v1, . . . , vn} of V ; chose n vectors

w1, . . . ,wn ∈ W randomly. Does there exists a linear map

T : V → W such that T (vi) = wi?



Action on a Basis Enough?

Theorem: Let V and W be vector spaces.

Let B = {v1, . . . , vn} be a basis for V .
Suppose w1, . . . ,wn ∈ W . Then,

there exists a unique linear map T : V → W such that

T (v1) = w1, T (v2) = w2, . . . , T (vn) = wn.

Proof: We need to construct a map from V to W and prove that

this map is linear. Secondly, we show that if two linear maps

take the vis to wis respectively, then they are the same map.

Let v ∈ V . Then v = α1v1 + · · ·+ αnvn for some α1, . . . , αn ∈ F.

Define T (v) = α1w1 + · · ·+ αnwn. Since, {v1, . . . , vn} is a

basis, given a vector v , the scalars α1, . . . , αn are unique.

Therefore, this map is well-defined.



Proof Contd.

Linearity: Let u, v ∈ V . Then

u = α1v1 + · · ·+ αnvn and v = β1v1 + · · ·+ βnvn

⇒ u + v = (α1 + β1)v1 + · · ·+ (αn + βn)vn.

Therefore

T (u + v) = (α1 + β1)w1 + · · ·+ (αn + βn)wn

= (α1w1 + · · ·+ αnwn) + (β1w1 + · · ·+ βnwn)

= T (u) + T (v).

Similarly,

T (αu) = T (αα1v1 + · · ·+ ααnvn)

= αα1w1 + · · ·+ ααnwn = α(α1w1 + · · ·+ αnwn)

= αT (u).

Therefore T is a linear transformation.



Proof Contd.

Uniqueness: Assume that T1(vi) = wi = T2(vi) for each i .
Let v = α1v1 + · · ·+ αnvn for some αi ’s ∈ F. Then

T1(v) = T1(α1v1 + · · ·+ αnvn)

= α1T1(v1) + · · ·+ αnT1(vn) (linearity)

= α1w1 + · · ·+ αnwn

= α1T2(v1) + · · ·+ αnT2(vn)

= T2(α1v2 + · · ·+ αnvn)

= T2(v).

Remark: Thus a linear transformation is completely

determined by its action on any basis. Notice that the vectors

w1, . . . ,wn, images of the basis vectors, need not be distinct or

not even be linearly independent.



Examples

1. Construct a linear map T : R2 → W , where

W = {(x1, x2, x3) : x1 − x2 − x3 = 0}.
Describe the map completely.

Solution: Start with a basis {v1 = (1, 0), v2 = (0, 1)} of R2.

Choose any two vectors in W , for example

w1 = (1, 1, 0) and w2 = (1, 0, 1).
We want T (1, 0) = (1, 1, 0) and T (0, 1) = (1, 0, 1).
Then define

T (x1, x2) = x1(1, 1, 0) + x2(1, 0, 1) = (x1 + x2, x1, x2).
This is a linear map from R2 to W .

Exercise: Find another linear map from R2 to W .



Matrix of a Linear Transformation

Let T : V → W be a linear transformation. Fix ordered bases

B = (v1, v2, . . . , vn) for V and C = (w1,w2, . . . ,wm) for W .
Now, we have scalars aij such that

T (v1) = a11w1 + a21w2 + · · ·+ am1wm

T (v2) = a12w1 + a22w2 + · · ·+ am2wm
...

...

T (vn) = a1nw1 + a2nw2 + · · ·+ amnwm

Definition: The matrix [T ]B,C =







a11 a12 · · · a1n
...

am1 am2 · · · amn







is called the matrix of the linear transformation T with respect

to the ordered bases B and C.

Caution: Take care of the notation.

dim(V ) = n. dim(W ) = m. T : V → W . [T ]B,C ∈ Fm×n.



Action on a Vector

Let u ∈ U. Then

u = β1u1 + β2u2 + · · ·+ βnun for some βi ∈ F.

How do the scalars look when we use all the above?

T (u) = β1T (u1) + · · ·+ βnT (un)

= β1(a11v1 + a21v2 + · · ·+ am1vm)
+β2(a12v1 + a22v2 + · · ·+ am2vm)

...

+βn(a1nv1 + a2nv2 + · · ·+ amnvm)

= (a11β1 + a12β2 + · · ·+ a1nβn)v1

+(a21β1 + a22β2 + · · ·+ a2nβn)v2
...

+(am1β1 + am2β2 + · · ·+ amnβn)vm

What do you see if you think of co-ordinate vectors?



Matrix Multiplication

[u]A =







β1
...

βn






, [T (u)]B =







a11β1 + a12β2 + · · ·+ a1nβn

...

am1β1 + am2β2 + · · ·+ amnβn







Since [T ]A,B =







a11 a12 · · · a1n
...

am1 am2 · · · amn






, we see that

[T (u)]B = [T ]A,B[u]A.

Note: When T : Fn → Fm is a linear map, and En,Em are the

standard ordered bases for Fn,Fm,
T ([a1, . . . , an]

t) = [T ]En,Em
[a1, . . . , an]

t .
And, the i-th column of [T ]En,Em

is simply T (ei).
Moreover, If for each u ∈ U, [T (u)]B = M[u]A, then M = [TA,B].



Examples

1. Let A =





1 −1 1

0 1 2

−2 1 0



 .

Consider the linear transformation T : R3 → R3 given by

T (x) = Ax for every x ∈ R3.

Then Ae1 = (1, 0,−2)t ; Ae2 = (−1, 1, 1)t & Ae3 = (1, 2, 0)t .

Note that (1, 0,−2)t = 1 · e1 + 0 · e2 +−2 · e3.

2. Let B = {(1,−1), (1, 0)}. Find [(0, 1)]B.

Solution: (0, 1) = −1(1,−1) + 1(1, 0).

⇒ [(0, 1)]B =

[

−1

1

]

.



Examples Contd.

3. Let B = {1, 1 + t , 1 + t2} ⊆ P2. Is B a basis of P2? Find

[1 + t + t2]B.

Note here that the matrices would be different if we alter the

positions of the basis vectors.i.e., the matrices w.r.t.

{1, 1 + t2, 1 + t} and {1, 1 + t , 1 + t2} are different.

4. Let T : R2 → R3 be given by

T (x1, x2) = (2x1 − x2, x1 + x2, x2 − x1), B1 = {e1, e2} and

B2 = {e1, e2, e3}. Then

T (e1) = (2, 1,−1) = 2e1 + 1e2 +−1e3

T (e2) = (−1, 1, 1) = −1e1 + 1e2 + 1e3.

Therefore [T ]B1,B2
=





2 −1

1 1

−1 1



 .

Note that if A = [T ]B1,B2
, then T

[

x1

x2

]

= A

[

x1

x2

]

.



Examples Contd.

5. Let D : P3 → P2 be the map given by D(p) = p′. Let

A = {1, t , t2, t3} and B = {1, t , t2}. Then

[D]A,B =





0 1 0 0

0 0 2 0

0 0 0 3



 .

Let B = {1, 1 + t , 1 + t2}. Then compute [D]A,B

Ans: [D]A,B =





0 1 −2 −3

0 0 2 0

0 0 0 3



 .

6. Let T : P2 → P3 be the map T (p(t)) =
∫ t

0
p(s)ds. Let

A = {1, 1 + t , t + t2} and B = {1, t , t + t2, t2 + t3}. Then

[T ]A,B =









0 0 0

1 1/2 −1/6

0 1/2 1/6

0 0 1/3









.



Properties of matrices of linear maps

Theorem: Let V , W be finite dimensional vector spaces. Let

B = (v1, . . . , vn) be an ordered basis of V and

C = (w1, . . . ,wm) be an ordered basis of W . If T1 and T2 are

linear transformations from V to W and α ∈ F, then

1. [T1 + T2]B,C = [T1]B,C + [T2]B,C .

2. [αT1]B,C = α[T1]B,C .

3. Composition of linear maps is represented as matrix

multiplication.

Proof of (3) : Suppose the ordered bases are:

A = (u1, . . . , un) for U; B = (v1, . . . , vk ) for V

and C = (w1, . . . ,wm) for W . Let S : U → V ; T : V → W be

linear transformations. Let [S]A,B and [T ]B,C be the matrices for

S and T , resp. Let u ∈ U. It has the coordinate vector [u]A.
Then, [S(u)]B = [S]A,B[u]A.
[T (S(u))]C = [T ]B,C [S(u)]B = [T ]B,C [S]A,B[u]A.
That is, [T ◦ S]A,C = [T ]B,C [S]A,B



Assignment-5

1. In each of the following determine whether T : R2 → R2 is

a linear transformation:

(a) T (α, β) = (1, β) (b) T (α, β) = (α, α2)

(c) T (α, β) = (sinα, 0) (d) T (α, β) = (|α|, β)
(e) T (α, β) = (α+ 1, β) (f) T (α, β) = (2α+ β, α+ β2).

2. Let T : R2 → R2 be a linear map with T (1, 0) = (1, 4) and

T (1, 1) = (2, 5). What is T (2, 3)? Is T one-one?

3. In each of the following, determine whether T is a linear
transformation:

(a) T : R2 → R3 with T (1, 1) = (1, 0, 2) and

T (2, 3) = (1,−1, 4).
(b) T : R3 → R2 with T (1, 0, 3) = (1, 1) and

T (−2, 0,−6) = (2, 1).
(c) T : R3 → R2 with T (1, 1, 0) = (0, 0),T (0, 1, 1) = (1, 1) and

T (1, 0, 1) = (1, 0).



Assignment-5

3.

(d) T : C1[0, 1]→ R with T (u) =
∫ 1

0
(u(t))2 dt .

(e) T : C1[0, 1]→ R2 with T (u) = (
∫ 1

0
u(t) dt , u′(0)).

(f) T : P3 → R with T (a + bt2) = 0 for any a, b ∈ R.

(g) T : Pn(R)
onto−→ R with T (p(x)) = p(α), for a fixed α ∈ R.

4. Let U,V be vector spaces with {u1, . . . , un} a basis for U.
Let v1, . . . , vn ∈ V . Show that

(a) There exists a unique linear transformation T : U → V with

T (ui) = vi for i = 1, 2, . . . , n.
(b) This T is one-one iff {v1, . . . , vn} is linearly independent.

(c) This T is onto iff span{v1, . . . , vn} = V .



Assignment-5

5. Construct an isomorphism between the spaces Fn+1 and

Pn(F).
6. Let V1 and V2 be finite dimensional vector spaces and

T : V1 → V2 be a linear transformation. Give reasons for
the following:

(a) rank T ≤ dim V1.

(b) T is onto implies dim V2 ≤ dim V1.

(c) T is one-one implies dim V1 ≤ dim V2.
(d) dim V1 > dim V2 implies T is not one-one.

(e) dim V1 < dim V2 implies T is not onto.

(f) Suppose dim V1 = dim V2. Then,

T is one-one if and only T is onto.



Assignment-5

7. Let T : R3 → R3 be defined by
T (α, β, γ) = (β + γ, γ + α, α+ β). Find [T ]E1,E2

where

(a) E1 = {(1, 0, 0), (0, 0, 1), (0, 1, 0)},
E2 = {(0, 0, 1), (1, 0, 0), (0, 1, 0)}.

(b) E1 = {(1, 1,−1), (−1, 1, 1), (1,−1, 1)},
E2 = {(−1, 1, 1), (1,−1, 1), (1, 1,−1)}.

8. Define T : P2(R)→ R by T (f ) = f (2). Compute [T ] using

the standard bases of the spaces.

9. Define T : R2 → R3 by T (a, b) = (a− b, a, 2b + b).
Suppose B be the standard basis for R2,
C = {(1, 2), (2, 3)}, and D = {(1, 1, 0), (0, 1, 1), (2, 2, 3)}.
Compute [T ]B,D and [T ]C,D.

10. Let T : P2 → P3 be defined by

T (a + bt + ct2) = at + bt2 + ct3. If E1 = {1 + t , 1− t , t2}
and E2 = {1, 1 + t , 1 + t + t2, t3}, then what is [T ]E1,E2

?



Assignment-5

11. Let E1 =

{[

1 0

0 0

]

,

[

0 1

0 0

]

,

[

0 0

1 0

]

,

[

0 0

0 1

]}

,

E2 = {1, t , t2} and E3 = {1}.

(a) Define T : R2×2 → R2×2 by T (A) = At . Compute [T ]E1,E1
.

(b) Define T : P2(R)→ R2×2 by T (f ) =

[

f ′(0) 2f (1)
0 f ′(3)

]

.

Compute [T ]E2,E1
.

(c) Define T : R2×2 → R by T (A) = tr(A). Compute [T ]E1,E3
.



Assignment-5

12. Given bases E1 = {1 + t , 1− t , t2} and

E2 = {1, 1 + t , 1 + t + t2, t3} for P2(R) and P3(R),
respectively, and the linear transformation

S : P2(R)→ P3(R) with S(p(t)) = t p(t),
find the matrix [S ]E1,E2

.

13. Let E1 = {u1, . . . , un} and E2 = {v1, . . . , vm} be bases of

V1 and V2, respectively. Let T : V1 :→ V2 be a linear

transformation. Show that T is one-one iff columns of

[T ]E1,E2
are linearly independent iff det [T ]E1,E2

6= 0.



Kernel & Range
Definition: Let V and W be vector spaces and T : V → W be

a linear transformation.

1. Kernel of T = N(T ) = {v ∈ V : T (v) = 0}.
2. Range of

T = R(T ) = {w ∈ W : w = T (v) for some v ∈ V}.
Kernel is also called the Null Space, and Range as Range

Space.

Theorem: Let T : V → W be a linear transformation. Then

1. N(T ) 6= ∅, R(T ) 6= ∅.
2. N(T ) is a subspaces of V and R(T ) is a subspace of W .

Proof:T (0) = 0. This proves (1).

Let u, v ∈ N(T ) and α ∈ F. Then

T (u + αv) = T (u) + αT (v) = 0 ⇒ u + αv ∈ N(T )
Therefore, N(T ) is a subspace of V .

If x , y ∈ R(T ) and α ∈ F, then there exist u, v ∈ V such that

T (u) = x and T (v) = y . Then,

T (u + αv) = T (u) + αT (v) = x + αy ⇒ x + αy ∈ R(T )
Therefore, R(T ) is a subspace of W .



An Example

Since these are vector spaces,

N(T ) is also called the null space of T and

R(T ) is also called the range space of T .

Example: Let T : R3 → R2 be defined by

T (x1, x2, x3) = (x1 + x2, x1 − x3). Find a basis for N(T ) and a

basis for R(T ).

Solution: T (x1, x2, x3) = (0, 0) ⇒ x2 = −x1 and x3 = x1.

Therefore

N(T ) = {(x1, x2, x3) : x1 = −x2 = x3} = span{(1,−1, 1)}.
T (0, a,−b) = (0 + a, 0− (−b)) = (a, b). Thus, R(T ) = R2.

Exercise: Let T : R2 → R3 be defined by

T (x1, x2) = (x1 + x2, x1 − x2, 0). Find R(T ) and N(T ).



Rank & Nullity

Definition: Let T : V → W be a linear transformation.

Nullity of T = null(T ) = dim N(T ).
Rank of T = rank(T ) = dim R(T ).

Theorem: Let V ,W be vector spaces. Let {v1, . . . , vn} be a

basis fof V . Let T : V → W be a linear transformation. Then

1. T is one-one if and only if N(T ) = {0} iff null(T ) = 0.

2. T is one-one iff {T (v1), . . . ,T (vn)} is linearly independent.

3. T is onto iff span({T (v1), . . . ,T (vn)}) = W .

Proof: (1) Assume that T is one-one. Let T (x) = 0. Then

T (x) = T (0) ⇒ x = 0 ⇒ N(T ) = {0}.
Conversely, suppose N(T ) = {0}. Let T (x) = T (y).
Then T (x)− T (y) = 0 ⇒ T (x − y) = 0 ⇒ x − y ∈ N(T ).
Since N(T ) = {0}, x = y ⇒ T is one-one.



Proof Contd.

(2) Let T be one-one. Then N(T ) = {0}.
Suppose α1T (v1) + · · ·+ αnT (vn) = 0.
Then T (α1v1 + · · ·+ αnvn) = 0.
As N(T ) = {0}, α1v1 + · · ·+ αnvn = 0.
Since {v1, . . . , vn} is linearly independent, each αi = 0.
Thus, {T (v1), . . . ,T (vn)} is linearly independent.

Conversely, suppose {T (v1), . . . ,T (vn)} is linearly

independent.

Let T (x) = T (y). We have x =
∑

(αivi), y =
∑

(βivi) for some

αi , βi ∈ F.
Then (α1 − b1)v1 + · · ·+ (αn − βn)vn = 0.
Thus, each αi = βi ⇒ x = y .
That is, T is one-one.



Proof Contd.

(3) We show that R(T ) = span{T (v1), . . . ,T (vn)}.
For this, let w ∈ R(T ). Then

w = T (α1v1 + · · ·+ αnvn) for some α1, . . . , αn ∈ F.
Since T is linear, w = α1T (v1) + · · ·+ αnT (vn).
That is, w ∈ span{T (v1), . . . ,T (vn)}.
Conversely, if z ∈ span{T (v1), . . . ,T (vn)}, then

z = β1T (v1) + · · ·+ βnT (vn), for some β1, . . . , βn ∈ F.
As T is linear, z = T (β1v1 + · · ·+ βnvn) ∈ R(T ).

Hence, R(T ) = span{T (v1), . . . ,T (vn)}.
Now, the statement follows from the observation that

T is an onto map iff R(T ) = W .

Caution: The vectors T (v1), . . . ,T (vn) need not be linearly

independent even though {v1, . . . , vn} is a basis of V .



An Example

Let T : R2 → R2 be defined by T (x1, x2) = (x1 − x2, 2x1 + x2).
Show that T is bijective.

Solution: Suppose T (x1, x2) = (0, 0). Then x1 = x2 and

2x1 = −x2. This implies that x1 = x2 = 0.

Therefore N(T ) = {0}. Hence T is one-one.

{(1, 0), (0, 1)} is a basis of R2.
T (1, 0) = (1, 2) and T (0, 1) = (−1, 1).
Now, span({(1, 2), (−1, 1)}) = R2.
So, T is an onto map.

Therefore T is a bijective linear transformation.

Note: Since {(1, 2), (−1, 1)} is a basis of R2, T is bijective.

Definition: A bijective linear transformation is called an

isomorphism. If there exists an isomorphism from one vector

space to the other, we say that the spaces are isomorphic to

each other.



Isomorphism

Theorem: Let T : V → W be an isomorphism. Then

T−1 : W → V is also an isomorphism. Moreover with bases

A,B for V ,W , resp., we have [T−1]B,A = ([T ]A,B)
−1.

Proof: Let w1,w2 ∈ W . Then there exists v1, v2 ∈ V such that

T (v1) = w1 and T (v2) = w2.

Therefore T (v1 + v2) = w1 + w2

⇒ T−1(w1 + w2) = v1 + v2 = T−1(w1) + T−1(w2).
Similarly,

T−1(αw1) = T−1(αT (v1))
= T−1(T (αv1)) = αv1 = αT−1(w1).
The other statement is proved by taking composition of T and

T−1.



Rank-Nullity Theorem

Theorem: Let V be a finite dimensional vector space and

T : V → W be a linear transformation. Then

rank(T ) + null(T ) = dim(V ).

Proof: We need to show that dim R(T ) + dim N(T ) = dim V .

For this, we will produce a basis of V consisting of a basis of

N(T ) and inverse images of a basis of R(T ).

Let {v1, . . . , vk} be a basis of N(T ), for some k ≥ 0. Note that if

T is one-one, then k = 0 which means the set is empty.

Also, if T is the zero map, then N(T ) = V and R(T ) = {0}.
This implies that k = n and hence the theorem is true.



Proof Contd.

Assume that T is not the zero map. Extend the basis of N(T ) to

a basis of V , say {v1, . . . , vk , vk+1, . . . , vn}.
If we prove that {T (vk+1), . . . ,T (vn)} is a basis of R(T ), then

the theorem is proved.

Let w ∈ R(T ). Then there exists a v ∈ V such that T (v) = w .

Let v = α1v1 + · · ·+ αnvn. Then

T (v) = α1T (v1) + · · ·+ αkT (vk ) + αk+1T (vk+1) + · · ·+ αnT (vn)

= αk+1T (vk+1) + · · ·+ αnT (vn)

∈ Span({T (vk+1), . . . ,T (vn)}).

Therefore R(T ) = Span({T (vk+1), . . . ,T (vn)}).



Proof Contd.

Suppose βk+1T (vk+1) + · · ·+ βnT (vn) = 0.

⇒ T (βk+1vk+1 + · · ·+ βnvn) = 0.

⇒ βk+1vk+1 + · · ·+ βnvn ∈ N(T ).

⇒ β1v1 + · · ·+ βkvk − βk+1vk+1 − · · · − βnvn = 0.

⇒ βi = 0 for all i = 1, . . . , n

⇒ {T (vk+1), . . . ,T (vn)} is linearly independent.

⇒ dim R(T ) = n − k = dim V − dim N(T ).



Some interesting consequences

1. There does not exist a one-one map T : R2 → R (more

generally from Rm to Rn for any m > n).

2. There does not exists an onto map T : R→ R2

(more generally from Rm to Rn for any m < n).

3. If dim V = dim W and T : V → W , then T is one-one if and

only if T is onto.

Definition: Two vector spaces V and W are isomorphic if there

exists an isomorphism T : V → W .

Examples:

1. T : Pn → Rn+1 defined by

T (a0 + a1t + · · ·+ antn) = (a0, . . . , an) is an isomorphism.

2. T : Rn → Rn defined by

T (a1, . . . , an) = (a1, a1 + a2, . . . , a1 + · · ·+ an) is an

isomorphism.



Isomorphism & Dimension

We have seen that if T : V → W is an isomorphism, then

dim V = dim W .

Is the converse true? i.e., if dim V = dim W , are they

isomorphic?

Let B1 = {v1, . . . , vn} be a basis of V and B2 = {w1, . . . ,wn} be

a basis of W .

Define T : V → W by

T (α1v1 + · · ·+ αnvn) = α1w1 + · · ·+ αnwn.

Since B1 and B2 spans V and W respectively, T is onto.

Since B1 and B2 are linearly independent, T is one-one.

Therefore T is an isomorphism.

Theorem: V and W are isomorphic if and only if

dim V = dim W .



Canonical Basis Isomorphism

Definition: Let V ,W be F−vector spaces. A one-one linear

transformation from V onto W is called an isomorphism.

If dim(V ) = n, then there exists an isomorphism from V to Fn.
Given an ordered basis (v1, v2, . . . , vn) of V , each v ∈ V is

associated with its coordinate vector in Fn.

Clue: v = α1v1 + α2v2 + · · ·+ αnvn

There can be many isomorphisms. But we have one special

isomorphism. It maps v to its co-ordinate vector.

The map φv1,...,vn : V → Fn with φ(v) = [v ]e1,...,en

is called the canonical basis isomorphism between V and Fn.



The Diagram

Let B = (v1, . . . , vn) be an ordered basis of V .
Let C = (w1, . . . ,wm) an ordered basis of W .
Have standard bases for Fn and Fm.
The canonical basis isomorphisms are:

φv1,...,vn from V to Fn and

φw1,...,wm from W to Fm.
Let T : V → W be a linear transformation and

[T ]B,C be its matrix representation. Then

V
T−−−−→ W

φv1,...,vn





y

≃ ≃





y

φw1,...,wm

F n −−−−→
[T ]B,C

F m

This means T = φ−1
w1...wm

◦ [T ]B,C ◦ φv1,...,vn .



Linear Functionals

Definition: Let V be a vector space over F. A linear

transformation T : V → F is called a linear functional.

A linear transformation from V to V is called a linear operator.

Examples of Functionals:

1. f1 : Rn → R defined by f1(x1, . . . , xn) = x1 is a linear

functional.

2. fj : Rn → R defined by fj(x1, . . . , xn) = xj is a linear functional.

3. Let (v1, . . . , vn) be an ordered basis for a vector space V .
Define fj : V → F by fj(v) = αj when v = α1v1 + · · ·+ αnvn.
Verify that fj is a linear functional. These functionals are called

co-ordinate functionals with respect to the given basis.

4. Let τ ∈ [a, b] be fixed. Let fτ : C[a, b]→ F be defined by

fτ (x) = x(τ), for x ∈ C[a, b]. Then fτ is a linear functional.



Examples Contd.

5. Fix points τ1, . . . , τn in [a, b], and scalars α1, . . . αn in F. Let

f : C[a, b]→ F be defined by

f (x) =
∑n

i=1 αix(τi) for x ∈ C[a, b].
Then f is a linear functional.

6. Define T : C[a, b]→ F by f (x) =
∫ b

a
x(t) dt , for x ∈ C[a, b].

Then f is a linear functional.

Theorem: The set of all linear transformations from a vector

space V to a vector space W is a vector space with usual

addition of functions and multiplication of a function with a

scalar.

Definition: The space of all linear transformations from a

vector space V to a vector space W is denoted by L(V ,W ).
The space of linear functionals on V is denoted by V ′, and is

called the dual space of V .



Dimension of L(V ,W )
Theorem: If dim V = n, dim W = m, then dim L(V ,W ) = mn.
Therefore, dim V ′ = n.

Due to the canonical basis isomorphisms, (Remember the

diagram?) L(V ,W ) is isomorphic to Fm×n.

Alternative proof: Fix two ordered bases:

{v1, . . . , vn} for V and {w1, . . . ,wm} for W .
Define linear transformations

Tij : V → W for i = 1, . . . , n, j = 1, . . . ,m by

Tij(vi) = wj , Tij(any other vk ) = 0.
Now, show that the set of all these Tij is a basis of L(V ,W ).

In particular, a basis for V ′ now looks like the set of functionals

fi : V → F, where fi(vi) = 1, fi(any other vk ) = 0.
This basis is called the dual basis.

How does a matrix of a linear functional look like?

And how are the co-ordinate vectors of linear functionals in the

dual basis?



System of Linear Equations

Definition: Let A ∈ Fm×n, b ∈ Fm. Then

a11x1 + · · ·+ a1nxn = b1
...

...
...

am1x1 + · · ·+ amnxn = bn

is called a system of linear equations for the unknowns

x1, . . . , xn with coefficients in F.
If the bi are all zero, the system is said to be homogeneous.

We consider the matrix A as a linear transformation

A : Fn → Fm and the system is written as Ax = b.

The solution set of the system Ax = b is

Sol(A, b) = {x ∈ Fn : Ax = b}.
The system Ax = b is solvable if Sol(A, b) 6= ∅.



Augmented Matrix

Theorem: Ax = b is solvable iff rank(A) = rank[A|b].
Proof: Ax = b is solvable iff b = Ax for some x ∈ Fn iff

b ∈ R(A).

Let b ∈ R(A). As R(A) = span(Aei) = span of columns of A,

rank(A) does not change if b is added to the set of column

vectors of A. Then rank(A) = rank[A|b].
Conversely, suppose rank(A) = rank[A|b]. The columns of [A|b]
generate the subspace, call it U, containing columns of A and

b. R(A) is a subspace of this space U.
But R(A) and U has now the same dimension.

Hence, U = R(A). That is, b ∈ R(A).



Translates of N(A)

Theorem: Let x0 ∈ Fn be a solution of Ax = b. Then

Sol(A, b) = x0 + N(A) = {x0 + x : x ∈ N(A)}.
Proof: If x ∈ N(A), then A(x0 + x) = Ax0 + Ax = Ax0 = b.
That is, x0 + x ∈ Sol(A, b).

If v ∈ Sol(A, b) and Ax0 = b, then

A(v − x0) = Av − Ax0 = b − b = 0.

That is, v − x0 ∈ N(A).
Or that v − x0 ∈ N(A). Then, v ∈ x0 + N(A).



Corollaries

1. If x0 is a solution of Ax = b and {v1, . . . , vr} is a basis for

N(A), then

Sol(A, b) = {x0 + λ1v1 + · · ·+ λr vr : λi ∈ F}.
Here, r = null(A) = n − rank(A).

2. A solvable system Ax = b is uniquely solvable

iff N(A) = 0

iff rank(A) = n.

3. If A ia a square matrix, then

Ax = b is uniquely solvable iff det(A) 6= 0.



Assignment-6

1. In the following, prove that T is a linear transformation.
Determine rank T and null T by finding bases for R(T ) and
N(T ).

(a) T : R3 → R2; T (a1, a2, a3) = (a1 − a2, 2a3).
(b) T : R2 → R3; T (a1, a2) = (a1 + a2, 0, 2a1 − a2).

(c) T : R3×3 → R2×2;

T





a11 a12 a13

a21 a22 a23

a31 a32 a33



 =

[

2a11 − a12 a13 + 2a12

0 0

]

.

(d) T : P2(R)→ P3(R); T (f (x)) = xf (x) + f ′(x).
(e) T : Rn×n → R; T (A) = tr(A).



Assignment-6

2. Give an example for each of the following:

(a) A linear transformation T : R2 → R2 with N(T ) = R(T ).
(b) Distinct linear transformations T ,U with N(T ) = N(U) and

R(T ) = R(U).

3. Let V be a non-trivial real vector space. Let T : V → R be

a non-zero linear map. Prove or disprove:

T is onto if and only if null T = dim V − 1.

4. Let U,V be finite dimensional real vector spaces, and
T : U → V linear. Prove or disprove:

(a) rank T ≤ dim U.
(b) If T is onto, then dim V ≤ dim U.
(c) If T is one-one, then dim U ≤ dim V .
(d) If dim U = dim V , then “T is one-one iff T is onto”.



Assignment-6

5. Let V be the vector space of real valued functions on R
which have derivatives of all orders. Let T : V → V be the

differential operator: Tx = x ′. What is N(T )?

6. Let T : V → V be a linear operator such that T 2 = T . Let I

denote the identity operator. Prove that R(T ) = N(I − T )
and N(T ) = R(I − T ).

7. Find bases for the null space N(T ) and the range space

R(T ) of the linear transformation T in each of the following:

(a) T : R2 → R2 with T (x1, x2) = (x1 − x2, 2x2),
(b) T : R2 → R3 with T (x1, x2) = (x1 + x2, 0, 2x3 − x2),
(c) T : Rn×n → R with T (A) = tr(A).

8. Let the linear transformation A : P2(R)→ P3(R) be defined

by A(p(t)) = t p(t) +
dp(t)

dt
. Find N(A) and R(A).

9. Let B : V → W be a linear transformation, where V and W

are real vector spaces with dim W < dim V < 2013. Show

that B cannot be one-one.



Assignment-6

10. Let M = (aij) be an m × n matrix with aij ∈ F and n > m.
Show that there exists (α1, . . . , αn) ∈ Fn such that

ai1α1 + ai2α2 + · · ·+ ainαn = 0, for all i = 1, . . . ,m.
Interpret the result for linear systems.

11. Let A ∈ Fm×n have columns A1, . . . ,An. Let b ∈ Fm. Show
the following:

(a) The equation Ax = 0 has a non-zero solution if and only if

A1, . . . ,An are linearly dependent.

(b) The equation Ax = b has at least one solution if and only if

b ∈ span{A1, . . . ,An}.
(c) The equation Ax = b has at most one solution if and only if

A1, . . . ,An are linearly independent.

(d) The equation Ax = b has a unique solution if and only if

rank A = rank[A|b] = n = number of unknowns.



Assignment-6

12. Consider the system of linear equations:

x1 − x2 + 2x3 − 3x4 = 7, 4x1 + 3x3 + x4 = 9,
2x1 − 5x2 + x3 = −2, 3x1 − x2 − x3 + 2x4 = −2. By

determining ranks, decide whether the system has a

solution.

13. Prove: If U is a subspace of Fn and x ∈ Fn, then there

exists a system of linear equations having n equations and

n unknowns, with coefficients in F, whose solution set

equals x + U.



Geometry in Vector Spaces?

To study geometrical problems, in which lengths and angles

play a role, we need additional structures in a vector space. For

example, in R2 and R3, we have scalar product of vectors.

In R2, we have length as ‖x‖ = x · x and

cos(angle(x , y)) = x ·y
‖x‖ ‖y‖ .

Let V be a vector space over F, which is either R or C. We

define inner product in a vector space V by accepting some of

the fundamental properties of the scalar product in R2 or R3.



Inner Product

Definition: An inner product on a vector space V is a map

(x , y) 〈x , y〉 which associates a pair of vectors in V to a

scalar 〈x , y〉 satisfying

(a) 〈x , x〉 ≥ 0 for each x ∈ V .
(b) 〈x , x〉 = 0 iff x = 0.
(c) 〈x + y , z〉 = 〈x , z〉+ 〈y , z〉 for all x , y , z ∈ V .
(d) 〈αx , y〉 = α〈x , y〉 for each α ∈ F and for all x , y ∈ V .
(e) 〈y , x〉 = 〈x , y〉 for all x , y ∈ V .

Examples:

1. The scalar product on R2 and also on R3 are inner products.

2. For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Fn,

〈x , y〉 = ∑n
j=1 xjyj

This inner product is called the standard inner product on Fn.



Examples

3. Let V be a vector space. Let B = {u1, u2, . . . , un} be an

ordered basis for V . Let x =
∑n

i=1 αiui and y =
∑n

i=1 βiui .
Define 〈x , y〉B =

∑n
i=1 αiβi .

This is an inner product on V .

4. Let V be a vector space with dim(V ) = n. Let T : V → Fn be

a bijective linear transformation. Then

〈x , y〉T = 〈Tx ,Ty〉
is an inner product on V . Here, 〈 · 〉 on the right hand side

denotes an inner product on Fn.



Examples

5. Let t1, t2, . . . , tn+1 be distinct real numbers. For any p, q ∈ Pn,
define 〈p, q〉 = ∑n+1

i=1 p(ti)q(ti).
This is an inner product on Pn.

6. For f , g ∈ C[a, b], take 〈f , g〉 =
∫ b

a
f (t)g(t) dt . This is an inner

product on C[a, b].

7. In all the above examples, consider R as the underlying

scalar field and remove the overline from the definition of inner

products. Then the resulting function 〈 · 〉 is an inner product on

the corresponding vector space.



Some Properties of Inner Products

A vector space with an inner product on it is called an inner

product space (ips).

Theorem: Let V be an ips. For all x , y , z ∈ V and for all α ∈ F,
〈x , y + z〉 = 〈x , y〉+ 〈x , z〉, 〈x , αy〉 = α 〈x , y〉.
Proof: 〈x , y + z〉 = 〈y + z, x〉 = 〈y , x〉+ 〈z, x〉

= 〈y , x〉+ 〈z, x〉 = 〈x , y〉+ 〈x , z〉.
〈x , αy〉 = 〈αy , x〉 = α〈y , x〉
= α 〈y , x〉 = α 〈x , y〉.



Length or Norm

Definition: Let V be an ips. For any x ∈ V , the length of x ,
also called the norm of x is ‖x‖ =

√

〈x , x〉.
For any x ∈ V , ‖x‖ ≥ 0 and ‖x‖ = 0 iff x = 0.

Theorem: Let x , y ∈ V , an ips. The parallelogram law holds:

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2.

Proof:

‖x + y‖2 = 〈x + y , x + y〉 = 〈x , x〉+ 〈x , y〉+ 〈y , x〉+ 〈y , y〉.
Complete the proof.



Cauchy-Schwartz Inequality

Theorem: Let x , y ∈ V , an ips. Then |〈x , y〉| ≤ ‖x‖ ‖y‖.
Further, |〈x , y〉| = ‖x‖ ‖y‖ iff {x , y} is linearly dependent.

Proof: If y = 0, then obvious. Assume y 6= 0. Set α = 〈x ,y〉
〈y ,y〉 .

Now, 0 ≤ ‖x − αy‖2 = 〈x − αy , x − αy〉
= 〈x , x〉 − 〈x , αy〉 − α〈y , x〉+ α〈y , αy〉
= 〈x , x〉 − ᾱ〈x , y〉 − α[〈y , x〉 − ᾱ〈y , y〉] [ᾱ = 〈y ,x〉

〈y ,y〉 ]

= ‖x‖2 − 〈y , x〉〈y , y〉〈x , y〉 = ‖x‖
2 − |〈x , y〉|

2

‖y‖2

⇒ |〈x , y〉| ≤ ‖x‖ ‖y‖.
Next, equality holds iff y = 0 or x = 〈x ,y〉

〈y ,y〉 y .



Triangle Inequality and Angle

Theorem: (Trinagle Inequality) For all x , y in an ips,

‖x + y‖ ≤ ‖x‖+ ‖y‖.

Proof: ‖x + y‖2 = 〈x + y , x + y〉
= ‖x‖2 + 〈x , y〉+ 〈y , x〉+ ‖y‖2 = ‖x‖2 + 2 Re〈x , y〉+ ‖y‖2

≤ ‖x‖2 + 2|〈x , y〉|+ ‖y‖2 ≤ ‖x‖2 + 2‖x‖‖y‖+ ‖y‖2

= (‖x‖+ ‖y‖)2.

Definition: Let x , y ∈ V , an ips. The acute angle between x

and y is denoted by θ(x , y), and is defined by

cos θ(x , y) =
|〈x , y〉|
‖x‖ ‖y‖ .



Orthogonality

Definition: Let x , y ∈ V , an ips. The vector x is orthogonal to

y , i.e., x ⊥ y iff 〈x , y〉 = 0.

If x ⊥ y , then clearly, y ⊥ x .

Examples:

1. Let {e1, e2, . . . , en} be the standard basis for Rn. Then

ei ⊥ ej whenever i 6= j .

2. In C[0, 2π], define 〈f , g〉 =
∫ 2π

0
f (t)g(t)dt . Since

∫ 2π
0

cos mt sin nt dt = 0 for m 6= n,
cos mt ⊥ sin nt , whenever m 6= n.

It follows that (a) If x ⊥ y , then y ⊥ x . (b) 0 ⊥ x for every x .



Pythagoras

Theorem: (Pythagoras) Let V be an ips. Let x , y ∈ V .
(a) If x ⊥ y , then ‖x + y‖2 = ‖x‖2 + ‖y‖2.
(b) Suppose V is a real vector space.

If ‖x + y‖2 = ‖x‖2 + ‖y‖2, then x ⊥ y .

Proof: (a) 〈x + y , x + y〉 = ‖x‖2 + 〈x , y〉+ 〈y , x〉+ ‖y‖2.
Since x ⊥ y , both 〈x , y〉 = 0 = 〈y , x〉.
(b) Let V be a real vector space. Then 〈x , y〉 = 〈y , x〉.
If ‖x + y‖2 = ‖x‖2 + ‖y‖2, then 〈x , y〉 = 0.

Example: Take V = C, a complex ips with 〈x , y〉 = xy , as

usual. Now,

‖1 + i‖2 = (1 + i)(1 + i) = 1 + 1 = ‖1‖2 + ‖i‖2.
But 〈1, i〉 = 1× (−i) = −i 6= 0.



Orthogonal Set

Definition: Let V be an ips, S ⊆ V , and x ∈ V .
(a) x ⊥ S iff for each y ∈ S, x ⊥ y .
(b) S⊥ = {x ∈ V : x ⊥ S}.
(c) S is called an orthogonal set when

x , y ∈ S, x 6= y implies x ⊥ y .

Example: Let V be an ips. Then

(a) V⊥ = {0}.
(b) {0}⊥ = V .
(c) If S is a superset of some basis for V , then S⊥ = {0}.
For (c), let x ∈ V . Then, x =

∑n
i=1 αiui for some n, some αi ∈ F

and for some ui ∈ S. If y ⊥ S, then y ⊥ x as well. That is,

y ⊥ V .



Orthonormal Sets

Definition: Let V be an ips. A set S ⊆ V is called an

orthonormal set if S is orthogonal and ‖x‖ = 1 for each x ∈ S.
In addition, if V is finite dimensional, then an orthonormal set S

is called an orthonormal basis provided S is also a basis for V .

Example: (a) The standard basis of Rn is an orthonormal basis

of it.

(b) The set of functions {cos mt : m ∈ N} in the real ips C[0, 2π]

with inner product as 〈f , g〉 =
∫ 2π

0
f (t)g(t) dt is an orthogonal

set. But
∫ 2π

0
cos2 t dt 6= 1. Hence, it is not an orthonormal set.

(c) However, {(cos mt)/
√
π : m ∈ N} is an orthonormal set in

C[0, 2π].



Linear Independence

Theorem: Every orthogonal set of non-zero vectors is linearly

independent. Every orthonormal set is linearly independent.

Proof. Let S be an orthogonal set in an ips V .

For n ∈ N, vi ∈ S, αi ∈ F, suppose
∑n

i=1 αivi = 0.

Then for each j ∈ {1, . . . , n},

0 = 〈
n

∑

i=1

αivi , vj〉 =
n

∑

i=1

αi〈vi , vj〉 = αj〈vj , vj〉.

Since vj 6= 0, αj = 0.



A Result

Theorem: Let S = {u1, u2, . . . , un} be an orthonormal set in an

ips V . Let x ∈ span(S). Then

x =
∑n

j=1〈x , uj〉uj and ‖x‖2 =
∑n

j=1 |〈x , uj〉|2.
Proof: x = α1u1 + α2u2 + · · ·+ αnun. Then 〈x , uj〉 = αj .

Next, ‖x‖2 = 〈∑j αjuj ,
∑

i αiui〉 =
∑

j

∑

i αjαi〈uj , ui〉

=
∑

j αjαj =
∑n

j=1 |〈x , uj〉|2.

Corollary: (Fourior Expansion and Parseval’s Identity)

Let {v1, v2, . . . , vn} be an orthonormal basis for an ips V . Let

x ∈ V . Then

x =
∑n

j=1〈x , vj〉vj and ‖x‖2 =
∑n

j=1 |〈x , vj〉|2.



One More Corollary

Theorem: (Bessel’s Inequality) Let {u1, u2, . . . , un} be an

orthonormal set in an ips V . Let x ∈ V . Then

n
∑

j=1

|〈x , uj〉|2 ≤ ‖x‖2.

Proof: Let y =
∑n

j=1〈x , uj〉 uj Then 〈x , ui〉 = 〈y , ui〉.
That is, x − y ⊥ ui , for each i . So, x − y ⊥ y .

By Pythagoras’ theorem, ‖x‖2 = ‖x − y‖2 + ‖y‖2 ≥ ‖y‖2.

As y ∈ span{u1, . . . , un}, by Parseval’s identitty,

‖y‖2 =
∑n

j=1 |〈x , uj〉|2.



Assignment-7

1. Check whether each of the following is an inner product on
the given vector spaces.

(a) 〈x , y〉 = x1y1 for x = (x1, x2), y = (y1, y2) on V = R2.
(b) 〈x , y〉 = x1y1 for x = (x1, x2), y = (y1, y2) on V = C2.

(c) 〈f , g〉 =
∫ 1

0
f ′(t)g(t) dt on V = P

2. Let B be a basis for a finite dimensional inner product

space. Prove that if 〈x , y〉 = 0 for all x ∈ B, then y = 0.

3. Let A = (aij) ∈ R2×2. For x , y ∈ R2×1, let fA(x , y) = y tAx .
Show that fA is an inner product on R2×1 if and only if

a12 = a21, a11 > 0, a22 > 0, and a11a22 − a12a21 > 0.



Assignment-7

4. Let V be an inner product space, and let x , y ∈ V . Show
the following:

(a) ‖x‖ ≥ 0.
(b) x = 0 iff ‖x‖ = 0.
(c) ‖αx‖ = |α|‖x‖, for all α ∈ F.
(d) ‖x + αy‖ = ‖x − αy‖ for all α ∈ F iff 〈x , y〉 = 0.
(e) If ‖x + y‖ = ‖x‖+ ‖y‖, then either y = 0 or x = αy , for

some α ∈ F.

5. Let V be an inner product space over C. Prove that for all

x , y ∈ V , Re〈ix, y〉 = −Im〈x, y〉.
6. Let V1 and V2 be inner product spaces. Let T : V1 → V2 be

a linear transformation. Prove that

for all (x , y) ∈ V1 × V2,
〈Tx ,Ty〉 = 〈x , y〉 if and only if ‖Tx‖ = ‖x‖.
[Notice that both the inner products are denoted by 〈·, ·〉.]


