DEPARTMENT OF MATHEMATICS, I.I.T. MADRAS MA 2030 Linear Algebra and Numerical Analysis

Problems Set - 1

- 1. Show that a set of positive real numbers forms a vector space under the operations defined by:
 - x + y = xy and $\alpha x = x^{\alpha}$.
- 2. In each of the following parts (a),(b),(c), a set V is given and some operations are defined. Check whether V is a vector space with these operations. Justify your answers.
 - (a) $V = \mathbb{R}^2$, for (a_1, a_2) , $(b_1, b_2) \in V$ and $\alpha \in \mathbb{R}$, define

 $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$

 $\alpha(a_1, a_2) = (0, 0)$ if $\alpha = 0$ and $\alpha(a_1, a_2) = (\alpha a_1, a_2/\alpha)$ if $\alpha \neq 0$.

(b) $V = \mathbb{C}^2$, for (a_1, a_2) , $(b_1, b_2) \in V$ and $\alpha \in \mathbb{C}$, define

 $(a_1, a_2) + (b_1, b_2) = (a_1 + 2b_1, a_2 + 3b_2)$

 $\alpha(a_1, a_2) = (\alpha a_1, \alpha a_2).$

(c) $V = \mathbb{R}^2$, for (a_1, a_2) , $(b_1, b_2) \in V$ and $\alpha \in \mathbb{R}$, define

 $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 + b_2)$

 $\alpha(a_1, a_2) = (a_1, 0)$

3. In each of the following a vector space V and a subset W is given. Check whether W is a subspace of V.

- (a) $V = \mathbb{R}^2$; $W = \{(x_1, x_2) : x_2 = 2x_1 1\}$ (b) $V = \mathbb{R}^3$; $W = \{(x_1, x_2, x_3) : 2x_1 x_2 x_3 = 0\}$
- (c) $V = C([0, 1]); \quad W = \{f \in V : f \text{ is differentiable}\}$
- (d) V = C([-1,1]); $W = \{f \in V : f \text{ is an odd function}\}$

(e) $V = C([0, 1]); \quad W = \{f \in V : f(x) \ge 0 \text{ for all } x\}$

(f) $V = \mathbb{P}_3$; W is the set of all polynomials $a_0 + a_1x + a_2x^2 + a_3x^3$ for which $a_0 = 0$.

(g) $V = \mathbb{P}_3$; W is the set of all polynomials $a_0 + a_1x + a_2x^2 + a_3x^3$ for which $a_0 + a_1 + a_2 + a_3 = 0$.

(h) $V = \mathbb{P}_3$; W is the set of all polynomials $a_0 + a_1x + a_2x^2 + a_3x^3$ for which a_0, a_1, a_2, a_3 are integers.

(i) $V = \mathbb{P}_3$; W is the set of all polynomials of the form $a_0 + a_1x + a_2x^2$.

- 4. Prove that the only proper subspaces of \mathbb{R}^2 are the straight lines passing through the origin.
- 5. Let V be a vector space and W, A, B be subsets of V. Prove the following statements.

- (a) W is a subspace of V if and only if span(W) = W.
- (b) If $A \subseteq B$, then $span(A) \subseteq span(B)$.
- (c) $span(A \cup B) = span(A) + span(B)$
- (d) $span(A \cap B) \subseteq span(A) \cap span(B)$
- 6. Let W_1 and W_2 be subspaces of a vector space V. Prove that
 - (a) $W_1 \cap W_2$ and $W_1 + W_2$ are subspaces of V.
 - (b) $W_1 + W_2 = W_1$ if and only if $W_2 \subseteq W_1$
 - (c) $W_1 \cup W_2$ is a subspace if and only if $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.
- 7. Give an example of three linearly dependent vectors in \mathbb{R}^2 such that none of the three is a scalar multiple of another.
- 8. In each of the following, a vector space V and a set A of vectors in V is given. Determine whether A is linearly dependent and if it is, express one of the vectors in A as a linear combination of the remaining vectors.
 - (a) $V = \mathbb{R}^3$, $A = \{(1, 0, -1), (2, 5, 1), (0, -4, 3)\}$
 - (b) $V = \mathbb{R}^3$, $A = \{(1, 2, 3), (4, 5, 6), (7, 8, 9)\}$
 - (c) $V = \mathbb{R}^3$, $A = \{(1, -3, -2), (-3, 1, 3), (2, 5, 7)\}$
 - (d) $V = \mathbb{P}_3$, $A = \{x^2 3x + 5, x^3 + 2x^2 x + 1, x^3 + 3x^2 1\}$
 - (e) $V = \mathbb{P}_3$, $A = \{-2x^3 11x^2 + 3x + 2, x^3 2x^2 + 3x + 1, 2x^3 + x^2 + 3x 2\}$
 - (f) $V = \mathbb{P}_3$, $A = \{6x^3 3x^2 + x + 2, x^3 x^2 + 2x + 3, 2x^3 + x^2 3x + 1\}$
 - (g) V is the set of all matrices of order 2×2 , $A = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$
 - (i) V is the vector space of all real valued functions defined on \mathbb{R} . $A = \{2, sin^2x, cos^2x\}$
 - (j) V is same as in (i), $A = \{1, sinx, sin2x\}$.
 - (k) V is same as in (i), $A = \{\cos 2x, \sin^2 x, \cos^2 x\}$.
 - $(1)V = C([-\pi, \pi], A = \{sinx, sin2x, ..., sinnx\}$ where n is some natural number.