DEPARTMENT OF MATHEMATICS, I.I.T. MADRAS MA 2036 Linear Algebra and Numerical Analysis

Problems Set - 2

1. Determine which of the following sets form bases for \mathbb{P}_2 .

(a)
$$\{-1-x-2x^2, 2+x-2x^2, 1-2x+4x^2\}$$

(b) $\{1+2x+x^2, 3+x^2, x+x^2\}$

(c)
$$\{1+2x+3x^2, 4-5x+6x^2, 3x+x^2\}$$

- 2. Do the polynomials $x^3 2x^2 + 1$, $4x^2 x + 3$ and 3x 2 span \mathbb{P}_3 ? Justify your answer.
- 3. Suppose that V is a vector space with a basis $\{a, b, c\}$. Show that $\{a+b,b+c,c+a\}$ is also a basis for V.
- 4. Show that the set of all solutions of the system

$$x_1 - 2x_2 + x_3 = 0$$
 , $2x_1 - 3x_2 + x_3 = 0$

is a subspace of \mathbb{R}^3 . Find a basis for this subspace.

- 5. Suppose $A = \{a_1, \ldots, a_m\}$ and $B = \{b_1, \ldots, b_n\}$ are subsets of a vector space V such that A is linearly independent and span(B) = V. Show that $n \geq m$. Using this, show that any two bases of V have the same number of elements.
- 6. Find bases and dimensions of the following subspaces of \mathbb{R}^5 :

(a) $W_1 = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_1 - x_3 - x_4 = 0\}$

(a)
$$W_1 = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_2 = x_3 = x_4, x_1 + x_5 = 0\}$$

(b) $W_2 = \{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_2 = x_3 = x_4, x_1 + x_5 = 0\}$

(c)
$$W_3 = span(\{(1, -1, 0, 2, 1), (2, 1, -2, 0, 0), (0, -3, 2, 4, 2), (2, 1, -2, 0, 0), (3, -3, 2, 4, 2), (4, 2, 2, 2, 2)\}$$

$$(3,3,-4,-2,-1), (2,4,1,0,1), (5,7,-3,-2,0))$$

7. For each of the following matrix A, find a basis and dimension of the following subspaces: row space of A, column space of A, null space of

A:=
$$\{x: Ax = 0\}$$
, Range of $A:=\{y: Ax = y \text{ for some } x\}$.

(a)
$$A = \begin{bmatrix} 1 & -1 & 2 & 0 & 3 \\ 0 & 0 & 0 & 1 & 4 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 0 & 0 & 1 & 2 & -1 & 4 \\ 0 & 0 & 0 & 1 & -1 & 3 \\ 2 & 4 & -1 & 3 & 2 & -1 \end{bmatrix}$

8. Find a basis and dimension of the subspace $span(\{1+x^2,-1+x+x^2,-6+3x,1+x^2+x^3,x^3\})$ of \mathbb{P}_3 . 9. Find a basis and dimension of each of the following subspaces of the vector space V of all thrice differentiable functions:

(a)
$$W_1 = \{x \in V : x'' + x = 0\}$$

(b)
$$W_2 = \{x \in V : x'' - 4x' + 3x = 0\}$$

(c)
$$W_3 = \{x \in V : x''' - 6x'' + 11x' - 6x = 0\}$$

- 10. Show that every linearly independent set in a finite dimensional vector space can be extended to a basis. Using this show that if W is a subspace of V, then $Dim(W) \leq Dim(V)$.
- 11. Extend the set $\{1+x^2, 1-x^2\}$ to a basis of \mathbb{P}_3
- 12. Let W be a proper subspace of \mathbb{R}^3 . Show that W must be a line passing through the origin or a plane passing through the origin.
- 13. Let V be a vector space of dimension n. Show that(a) every subset of V containing more than n vectors is linearly dependent.
 - (b) no subset of V containing less than n vectors can span V.
- 14. Let V be a vector space of dimension n and A be a subset of V containing n vectors. Show that
 - (a) if A is linearly independent, then A is a basis of V,
 - (b) if span(A) = V, then A is a basis of V.
- 15. If W_1 and W_2 are subspaces of a vector space V and $W_1 + W_2$ is finite dimensional, then show that $Dim(W_1 + W_1) = Dim(W_1) + Dim(W_2) Dim(W_1 \cap W_2)$ Guess and prove a similar formula for three subspaces.
- 16. Let V be the vector space of all 2×2 matrices with real entries. Let W_1 be the set of all matrices of the form $\begin{bmatrix} x & -x \\ y & z \end{bmatrix}$ and let W_2 be the set of all matrices of the form $\begin{bmatrix} a & b \\ -a & c \end{bmatrix}$.
 - (a) Prove that W_1 and W_2 are subspaces of V.
 - (b) Find dimensions of W_1 , W_2 , $W_1 + W_2$ and $W_1 \cap W_2$.
- 17. Find dimensions of $W_1 + W_2$ and $W_1 \cap W_2$ for the subspaces W_1 , W_2 in problems 6 and 9.