- 1. Answer the following questions with justification:
 - (a) Is every subset of a linearly independent set linearly independent?
 - (a) Is every subset of a linearly dependent set linearly dependent?
 - (b) Is every superset of a linearly independent set linearly independent?
 - (c) Is every superset of a linearly dependent set linearly dependent?
 - (d) Is union of two linearly independent sets linearly independent?
 - (e) Is union of two linearly dependent sets linearly dependent?
 - (f) Is intersection of two linearly independent sets linearly independent?
 - (g) Is intersection of two linearly dependent sets linearly dependent?
- 2. Give three vectors in \mathbb{R}^2 such that none of the three is a scalar multiple of another.
- 3. Suppose S is a set of vectors and some $v \in S$ is not a linear combination of other vectors in S. Is S-lin, ind P \Rightarrow Q

4. In each of the following, a vector space V and $A \subseteq V$ are given. Determine whether A is linearly dependent and if it is, express one of the vectors in A as a linear combination of the remaining vectors.

(a)
$$V = \mathbb{R}^3$$
, $A = \{(1, 0, -1), (2, 5, 1), (0, -4, 3)\}$.

(b)
$$V = \mathbb{R}^3$$
, $A = \{(1, 2, 3), (4, 5, 6), (7, 8, 9)\}$.

(c)
$$V = \mathbb{R}^3$$
, $A = \{(1, -3, -2), (-3, 1, 3), (2, 5, 7)\}$.

(d)
$$V = \mathbb{P}^3$$
, $A = \{t^2 - 3t + 5, t^3 + 2t^2 - t + 1, t^3 + 3t^2 - 1\}$.

(e)
$$V = \mathbb{P}^3$$
,

$$A = \{-2t^3 - 11t^2 + 3t + 2, t^3 - 2t^2 + 3t + 1, 2t^3 + t^2 + 3t - 2\}.$$

(f)
$$V = \mathbb{P}^3$$
,

$$A = \{6t^3 - 3t^2 + t + 2, t^3 - t^2 + 2t + 3, 2t^3 + t^2 - 3t + 1\}.$$

(g)
$$V = \mathbb{F}^{2 \times 2}$$
, $A = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$.

(h)
$$V = \{f : \mathbb{R} \to \mathbb{R}\}, A = \{2, \sin^2 t, \cos^2 t\}.$$

(i)
$$V = \{f : \mathbb{R} \to \mathbb{R}\}, A = \{1, \sin t, \sin 2t\}.$$

(j) $V = C([-\pi, \pi])$, $A = \{\sin t, \sin 2t, ..., \sin nt\}$ where n is some natural number.

- 5. Show that two vectors (a, b) and (c, d) in \mathbb{R}^2 are linearly independent if and only if $ad bc \neq 0$.
- 6. Let $A = (a_{1j}) \in \mathbb{R}^{n \times n}$ and let w_1, \dots, w_n be the n columns of A. Let $\{u_1, \dots, u_n\}$ be linearly independent in \mathbb{R}^n . Define vectors v_1, \dots, v_n by

 $v_j = a_{1j}u_1 + \ldots + a_{nj}u_n$, for $j = 1, 2, \ldots, n$. Show that $\{v_1, v_2, \ldots, v_n\}$ is linearly independent iff

 $\{w_1, w_2, \dots, w_n\}$ is linearly independent.

- 7. Let A, B be subsets of a vector space V. Prove or disprove: $span(A) \cap span(B) = \{0\}$ iff $A \cup B$ is linearly independent.
- 8. Suppose V_1 and V_2 are subspaces of a vector space V such that $V_1 \cap V_2 = \{0\}$. Show that every $x \in V_1 + V_2$ can be written *uniquely* as $x = x_1 + x_2$ with $x_1 \in V_1$ and $x_2 \in V_2$.
- 9. Let $p_1(t) = 1 + t + 3t^2$, $p_2(t) = 2 + 4t + t^2$, $p_3(t) = 2t + 5t^2$. Are the polynomials p_1, p_2, p_3 linearly independent?
- 10. Prove that in the vector space of all real valued functions, the set of functions $\{e^x, xe^x, x^3e^x\}$ is linearly independent.

- 1. Determine which of the following sets form bases for \mathcal{P}_2 .
 - (a) $\{-1-t-2t^2, 2+t-2t^2, 1-2t+4t^2\}.$
 - (b) $\{1+2t+t^2, 3+t^2, t+t^2\}.$
 - (c) $\{1+2t+3t^2, 4-5t+6t^2, 3t+t^2\}.$
- 2. Let $\{x, y, z\}$ be a basis for a vector space V. Is $\{x + y, y + z, z + x\}$ also a basis for V?
- 3. Extend the set $\{1 + t^2, 1 t^2\}$ to a basis of \mathcal{P}_3 .
- 4. Find a basis for the subspace $\{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 + x_2 + x_3 = 0\}$ of \mathbb{R}^3 .
- 5. Is $\{1 + t^n, t + t^n, \dots, t^{n-1} + t^n, t^n\}$ a basis for \mathcal{P}_n ?
- 6. Let $u_1 = 1$ and let $u_j = 1 + t + t^2 + \cdots + t^{j-1}$ for $j = 2, 3, 4, \ldots$ Is span $\{u_1, \ldots, u_n\} = \mathcal{P}_n$? Is span $\{u_1, u_2, \ldots\} = \mathcal{P}$?
- 7. Prove that the only proper subspaces of \mathbb{R}^2 are the straight lines passing through the origin.

- 8. Find bases and dimensions of the following subspaces of \mathbb{R}^5 :
 - (a) $\{(X_1, X_2, X_3, X_4, X_5) \in \mathbb{R}^5 : X_1 X_3 X_4 = 0\}.$
 - (b) $\{(x_1, x_2, x_3, x_4, x_5) \in \mathbb{R}^5 : x_2 = x_3 = x_4, x_1 + x_5 = 0\}.$
 - (c) $span\{(1,-1,0,2,1),(2,1,-2,0,0),(0,-3,2,4,2),(3,3,-4,-2,-1),(2,4,1,0,1),(5,7,-3,-2,0)\}.$
- 9. Find the dimension of the subspace span $\{1 + t^2, -1 + t + t^2, -6 + 3t, 1 + t^2 + t^3, t^3\}$ of \mathcal{P}_3 .
- 10. Find a basis, and hence dimension, for each of the following subspaces of the vector space of all twice differentiable functions from \mathbb{R} to \mathbb{R} :
 - (a) $\{x \in V : x'' + x = 0\}.$
 - (b) $\{x \in V : x'' 4x' + 3x = 0\}.$
 - (c) $\{x \in V : x''' 6x'' + 11x' 6x = 0\}.$

11. Let
$$U = \left\{ \begin{bmatrix} a & -a \\ b & c \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$$
, $V = \left\{ \begin{bmatrix} a & b \\ -a & c \end{bmatrix} : a, b, c \in \mathbb{R} \right\}$.

- (a) Prove that U and V are subspaces of $\mathbb{R}^{2\times 2}$.
- (b) Find bases, and hence dimensions, for $U \cap V$, U, V, and U + V.
- 12. Show that if V_1 and V_2 are subspace of \mathbb{R}^9 such that dim $V_1 = 5 = \dim V_2$, then $V_1 \cap V_2 \neq \emptyset$.
- 13. Let $\{e_1, e_2, e_3\}$ be the standard basis of \mathbb{R}^3 . What is $span\{e_1 + e_2, e_2 + e_3, e_3 + e_1\}$?
- 14. Given $a_0, a_1, \ldots, a_n \in \mathbb{R}$, let $V = \{x(t) \in C^k[0, 1] : a_n x^{(n)}(t) + \cdots + a_1 x^{(1)}(t) + a_0 x(t) = 0\}$. Show that V is a subspace of $C^k[0, 1]$, and find its dimension.

- 15. Let $V = \text{span}\{(1,2,3), (2,1,1)\}$ and $W = \text{span}\{(1,0,1), (3,0,-1)\}$. Find a basis for $V \cap W$. Also, find dim(V + W).
- 16. Given real numbers $a_0, a_1, ..., a_k$, let V be the set of all solutions $x \in C^k[a, b]$ of the differential equation

$$a_0 \frac{d^k x}{dt^k} + a_1 \frac{d^{k-1} x}{dt^{k-1}} + \cdots + a_k x = 0.$$

Show that *V* is a vector space over \mathbb{R} . What is dim *V*?

17. Consider each polynomial in \mathcal{P} as a function from the set $\{0, 1, 2\}$ to \mathbb{R} . Is the set of vectors $\{t, t^2, t^3, t^4, t^5\}$ linearly independent?