DEPARTMENT OF MATHEMATICS, I.I.T.MADRAS MA 2030 Linear Algebra And Numerical Analysis Problem Set-3 - For the following T: R² → R², state with reasons whether T is linear. - (8) $T(a_1, a_2) = (1, a_2)$ - (b) T(a₁, a₂) = (a₁, a₁²) - (c) T(a₁, a₂) = (sina₁, 0) - (d) T(α₁, α₂) = (|α₁|, α₂) - (c) $T(a_1, a_2) = (a_1 + 1, a_2)$ - Let V be a vector space with a basis {a₁,...,a_n}. Let W be a vector space and let b₁,...,b_n ∈ W. Show that there is a unique linear transformation T from V to W such that T(a_j) = b_j for j = 1,...,n. - Suppose T: R² → R² is linear and T(1,0) = (1,4) and T(1,1) = (2,5). What is T(2,3)? Is T one-to-one? - Prove that there exist a linear transformation T: R² → R³such that T(1,1) = (1,0,2) and T(2,3) = (1,-1,4). What is T(2,3)? - Let V be an n-dimensional vector space over R. Prove that there exist a linear transformation T: V → Rⁿ such that T is bijective. - ls there a linear transformation T: R³ → R² such that T(1,0,3) = (1,1) and T(-2,0,-6) = (2,1)? - Let V, W be vector space over R and T: V → W be linear. - (a) N(T) = {x ∈ V : Tx = 0} is called the null space of T. Show that N(T) is subspace of V. - (b) R(T) = {Tx : x ∈ V} is called the range of T. Show that R(T) is a subspace of W. Dimension of N(T) is called the nullity of T and Dimension of R(T) is called the rank of T. - In the following prove that T is a linear transformation and find bases for both N(T) and R(T). Then compute the mility and rank of T. - (a) T: R³ → R²; T(a₁, a₂) = (a₁ ~ a₂, 2a₃) - (b) $T : \mathbb{R}^2 \to \mathbb{R}^3$; $T(a_1, a_2) = (a_1 + a_2, 0, 2a_1 a_2)$