CHAPTER 1
GENERAL LINEAR SYSTEMS

- One of the most fmportant and frequently occurring mathematical problems in science, engineering

and social sciences is finding a solution to a set of simultaneous linear equations involving several
unknowns. An (m x n) system of linear equations is a system of m linear equations in n unknowns:
= b]

ay Xp F Gy X a,, x,

Gy X, + Ayy Xy Fevveenns a,, x, = b,
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A solution to system (1.1) is an n-tuple (X}, X3,..cccoeneee ,x,) of numbers that is simultaneously a

solution for each equation in the system. ™1 ‘he Arolutren set o-f The 4}!‘{QM [
Two processes are involved in solving a general mxn system (l.l)\ tre se + /& AL

I. Reduction of the system (that is elimination of variables) Aolukmo G‘b 2 47(4&"
2. Description of the set of solutions It inaq Aubse } Q

ey
B

1.1 Reduction of System of Linear Equations

The reduction process aims at simplifying the given system by eliminating the unknowns. It is
essential that the reduced system of equations have the same set of solutions as the original system.
Definition 1.1 Two systems of linear equations in n unknowns are equivalent provided that they
have the same set of solutions.

Thus, the reduction procedure must yield an equivalent system of equations. That is, the reduction
procedure must transform the given system by certain elementary operations into a simpler
equivalent system which is then solved.

The elementary operations are of the following three types. (Here E; denotes the i equation in the
system).

(i) Interchanging two equations in the system: E; — E,
(ii) Multiplying an equation by a non-zero number A:AE, — E;
(iii) Adding to an equation a multiple of some other equation: £, +AE, — £,

Theorem 1.2 If one system of equations is obtained from another by a finite sequence of

elementary operations, then the two systems are equivalent.

l



1
!
|‘ g

Proof It is enough if one considers the effect of a single application of each elementary operation.
Suppose that an elementary operation transforms the system Ax = b into the system Bx = d. If the
operation is of type (i), then the two systems consist of the same equations but written in a
different order. Therefore, .if x solves Ax = b, then x solves the second system Bx = d and vice
versa.
If the operation is of type (ii), then suppose that the i equation has been multiplied by a scalar A
with A = 0. The i and j" equations in Ax=b are

iy X; + iy Xy F o a, x,=b, (1.2)
and

A X+ Xy e, a,x =b, ' _ (1.3)
and the i" equation in Bx=d is

Aay X +Aay Xy Fe +Aa,, x, =Ab, - (14

m

Any vector x that satisfies (1.2) also satisfies (1.4) and viceversa, because A # 0.

Finally, suppose that the operation is of type (iii), let A times the j" equation be added to the i™

equation.Then i equation in Bx=d is

(a,+ha;) x +....... (q,

mtAa,)x, =b + ?;b/. (1.5)
If Ax = b, then (1.2) and (1.3) are true. .. (1.5) is true. Thus Bx = d. On the other hand, if Bx = d,

then (1.5) and (1.3) are true. Therefore. if A times (1.3) is subtracted from (1.5), then one gets
(1.2). Hence Ax = b.

Note

(1) The three operations (i), (ii) and (iii), when applied to the rows of the augmented matrix

representation of a system of equations, are called elementary row operations.

(ii) The process of applying elementary row operations to simplify an augmented matrix is called

row reduction.

We adopt the following notation:

Ri<>R; The i"™ and j* rows are interchanged

AR—>R, The i row is multiplied by the non zero scalar A.
Ri+AR;—>R;  add A times the j™ row to the i row.

Two (mxn) matrices, A and B, are row equivalent if one can be obtained from the other by a finite

sequence of elementary row operations. If [A]b] is the augmented matrix for a system Ax = b and

if [B‘d] is row equivalent to [Alb], then [B‘d] is the augmented matrix for an equivalent
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system. This is because the elementary row operations for matrices exactly duplicate the

elementary operations for equations.

Example 1.3
011 -t} 0

[A]b]: 1-13 -1-2|R ©R&,
111 172

L -1 3 -1]-2
0 I 1-1] 0|R-R R,
S R R N

n

I -1 -3 -1 [-2
0 1 1-1/|0|R-2R—R,
02 -2 214

1

| -1 w3 @ | -2
=10 1 1-1| 0|=[Bld] (1.6)
0 0-4 4| 4

The system Bx = d is equivalent to system Ax = b. Observe that the matrix in (1.6) has all nonzero
entries appearing in a staircase-shaped region in the upper right hand portion of the matrix. The
matrix in (1.6) is an example of a matrix in row-echelon form.

Definition 1.4 An (mxn) matrix is in row-echelon form if,

I. All rows that consist entirely of zeros are grouped together at the bottom of the matrix.

2. The first (counting from the left to right) nonzero entry in the (i+1)™ row appears in a column to
the right of the first nonzero entry in the i™ row, that is, if the first nonzero entry in the i row
occurs in column jj, then j, <j, < ---

For such a matrix, the first nonzero entry in a row is called the pivot for that row.

Example 1.5

1 3 2
Matrix A=10 0 0| is not in row-echelon form, because the second row (consisting of
0 01 '

all zero entries) is not below the third row (which has a nonzero entry).



becawnse

Matrix B = is not in row-echelon form, besemse the first nonzero entry in the second row

(== BN )
O W N
< NO

does not appear in a column to the right of the first nonzero entry in the first row, j; = 1 = j,.

0-12
. 0 0 3). . ... ...
Matrix C = 0 00 is in row-echelon form, because both the conditions of Definition l‘q.are
000
1325
‘ . : 0013 . ..
satisfied. The pivots are —1 and 3. Matrix D = 0001 satisfies both the conditions of
0000

Definition 1.‘ and is in row-echelon form. The pivots are 1,1 and 1.

Example 1.6: The matrices A, B, C are in row-echelon form where

216 4-2 15023 216034
A=01024. B:00611 ‘ .:002043
0 31 5 10 6 024 ' 00001 1
0001 4 looooo Looooo-t
314 6
whereas D = 013 6 is not in row-echelon form
02 6 15
03 719

By performing the elementary row operations R, —2R, — R, and R,-3R, — R, on matrix D, one

obtains

6
6
D1=
3
1

1 4 1 4
13 1 3
0 2 0 2
0 -2 0 O

o O o W

Ra+R3 >Ry
which is in row-echelon form. Indeed, every matrix can be transformed by elementary row
operations to a matrix in row-echelon form.
Theorem 1.7 Let A be an mxn matrix. Then, there is an (mxn) matrix B such that
(i) B is in row-echelon form, (ii) A is row equivalent to B.
Note If A has only zero entries, then A is already in row-echelon form. For a nonzero matrix, the

reduction steps are listed below:
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Reduction to row-echelon form for an mxn matrix

Step 1 Locate the first (left most) column that contains a non-zero entry.

Step 2 If necessary, interchange t'he first row with another row so that the first nonzero column
contains a nonzero entry in the first row.

Step 3 Add appropriate multiples of the first row to each of the succeeding rows so that the first
nonzero column has a nonzero entry only in the first row.

Step 4 Temporarily ignore the first row of this matrix and repeat the process on the remaining

rows.

Example 1.8 This example illustrates the procedure for transformation of a matrix to row-echelon

form.
0 0 O 1 3 5 0 1 2 -1 2 2
0 ] 2 -1 2 2 O 0 0 1 3 5
4=10 -2 -4 5 7 14 =0 -2 -4 5 7 14
0 3 6 -4 7 7 0 3 6 -4 17
Ry+2R =R
0O 0 O 2 4 9 Rk, 0 0 0 2 4 Ri_gR]l_»Ri
0 1 2 -1 2 2 01 2 -1 2 2
0 00 1 3 5 6 0 O 1 35
={0 0 0 3 11 18 =0 0 0 O 2 3
0O 00 -1 1 1 0 0 0 O 4 6
0 0 0 2 4 9k-3K-R 0 0 0 0 —-2-1)r4-2R3Rg
’;ﬁff}e;f}g R5+R33—>R5
o1t 2 -1 2 2 o1 2 -1 2 2
0O 0 O 1 3 5 0 0 O I 3 5
=0 0 O 0 2 3 =0 0 O 0 2 3i=8B
0 0 O 0 0 O 0 00 0 0 2
0 0 O 0 0 2 0 0O 0 0 O

Ry« Rs

B is row-echelon form and is row equivalent to the matrix A.

Theorem 1.2 and the fact that elementary row operations exactly duplicate elementary operations
on equations imply the following Corollary.

Corollary 1.9 Any (mxn) system of linear equations is equivalent to some (mxn) system of linear
equations whose Augmented matrix is in row-echelon form.

Note By multiplying each nonzero row in [Bldl by the reciprocal of its pivot, we can assume that

each pivotin Biis 1.




2 -4 2-2)
. . . 2 -4 3 -4
Example l.lOThlsexamplelllustratesthereductionofmatrle = 4 -8 3 -2
0 0-1 2)
to row-echelon form making all pivots 1.

2 -4 2 -2 1 -2 1 -1 1 -2 1 -1
A_2—4 3 -4 12 -4 3 -4 10 0 1 -2
14 -8 3 -2 T4 -8 3 -2 "o 0 -1 2

0 0 -1 28 & 0 0 -1 2 Ry~2R| >Ry 0 0 -1 2)r+mon

2 7 R3-4R > R3 R4+ Ry - Ry

I -2 1 -1

0 0 1 -2 C . .
= 0 0 0 o which is in row-echelon form, with both pivots equal to 1.

0 0 0 o0

Definition 1.11 A matrix B that is in row-echelon form is in reduced row-echelon form, provided

that the first nonzero element in each nonzero row is 1 and it is the only nonzero entry in its

column.

Example 1.12

( 11 4 4 I 11 4 4
A= 234 916 =01t 21 8
-2 03 -711 Ry-2R - Ry 0 25 1 19)r-ry>r
R3+2R > Ry R3-2Ry > Ry
10 -1 3 -4 100 2 -]
=01 2 1 8 =010 3 2|=B
00 I =1 3)reranr 001 -1 3
R)-2R3 5 Ry

B is in reduced row-echelon form and A is equivalent to B.

Note The row echelon form of a matrix might not be unique.

Remarks

I. Every matrix in reduced row-echelon form is in row echelon form, but not conversely.

2. There is a strong connection between the reduced row-echelon form of a matrix A and the

existence/uniqueness of solution to the system, Ax = b.

q

AL A A e e D e i e e’ e el el o it

AA

q

e

Ll ll l| l'

kA

(]

A 4

2
A
-
~i‘
X
A




1.2 Description of Solution of Linear systems
In the previous-section, a procedure for reducing a system of equations to a simpler but equivalent
system has been given. In this section, we consider the process of describing the solution set for
the system.
We consider the possible outcomes when solving a 2x2 system:
a;, x,+a;, x, =b
[Nt 12 *2 1 (1 7)
ay X tay X, =b,
where a;; aj2 az1 a;2 by b, are given numbers. Each of these equations is the equation of a straight

line. A solution to system (1.7) is a pair of numbers (x1, x2) that satisfies (1.7). That is, a

simultaneous solution corresponds to a point of intersection. Thus, there are three possibilities:

I. The two lines are coincident (the same line), so that there are infinitely many solutions
(Fig 1.1a). Thus, the system x,-y,=7; 2x,-2y,=14 has infinitely many solutions given by (x,, x,-7),

for any real number x;.

A \
\ h Unique
\\ Infinitely many solutions \ No solution solution
> < > R
7 —>
Fig 1.1 (a) lines coincide (b) lines parallel ; no point 0" (c) one point of
intersection intersection

2. The two lines are parallel; so there are no solutions (Fig.1.1b). Thus, the system x — y = 7;
2x — 2y = 13 has no solution.

3. The two lines intersect at a single point (Fig 1.1 ¢). Thus, the system x -y =7;x +y =5 has
(6, —1) as its unique solution.

Remark An mxn system of linear equations has either infinitely many solutions, no solution or a
unique solution.

We now discuss the usefulness of row-echelon form and see how it is possible to solve the system
or describe the solution set of the system by reducing the coefficient matrix to its row echelon

form.



Example 1.13

24 6 18 2 3 9
[Ab]=145 6 24 5 6 24

-2 4 R-AR, Ry 4 Ry— 3R, =Ry
Hyboam,

2 3 9
0 1 2 4

-5 —11 _13 R-2Ry >R
B3+5Ry >Ry

0-1-3 —R3—>13 Ri+R3 >Ry
R2—2R3—>Ia
I/l 0 0 4
=0 1 0 -2|=[Bld]
(\0 0 1 3
The system Ax = b has a unique solution x,; =4, x, =-2, x;=3.
Note The reduced row echelon form of the matrix has a 1 in each row and there is a unique
solution,
Example 1.14 The coefficient matrix B in the system
-5 -1 3 3
[Bld]=j0 3 5 8
0 0 2-4
is in row-echelon form. The equations corresponding to this augmented matrix are
=5x —x, +3x;=3
3x, +5x,=8
The last equation gives x, = —2. Substituting this into the second equation gives x, =6.

Finally, substituting the values for x, and x; in the first equation gives g=& X, = — 3.

The above procedure for finding solution of Bx=d is called back substitution.

Example 1.15_The linear system corresponding to the augmented matrix.




1 -3 050 4 3k 45
+
Bl - 0 0 120-7 TR 2x“ ,
= i + = -
0 0000 1] Saine
0 0000 0 S
Solving each equation for the variable corresponding to the pivot for that equation gives

X, =3x, =5x, +4; x3=—2x, ~7; x5 =1
Note that x> and x4 correspond to columns of B containing no pivot. It is possible to assign any

value a to x, and b to x4 and get the corresponding values for x;, x3 and xs so that all the solutions

of the above system are described by

x, 3a-5b+4
X, a

xy | =1 -2b-7

Xy b

Xq 1

for any scalars a and b. x, and x4 are called free variables.

2 4 6 18 12 3 9
Example 116 [Alb]=|4 5 6 24 =4 5 6 24
27 12 30 )1, 2712 30, 4pin ]
2 R3-2R >Ry
to2 3 9 |
0 -3 -6 -12 239 !
32 2 0 3 6 12 R-2Ry =R :
R3-3R; =Ry
10 -1 1
= {0 1 2 4|=[Bjd]
00 00

There are only two equations in three unknowns X, X2, X3 and there are an infinite number of
solutions given by (1 + X3, 4 — 2x3, X3).
Remark The reduced row echelon form of the coefficient matrix has a row of zeros and the system

has infinite number of solutions.



2 4 6 18 123 9
Example 117 [Alb] = |4 5 6 24 =45 6 24
2.7 12 40)1, . 27 12 40 ), on
2 R3-2R>R3
12 3 9 12 3 9
=0 -3 -6 -12 =10 1 2 4
0 3 6 2/ 0 3 6 22/, .. .
3 R3-3Ry—>R3
Lo -1 1 1 0 -1 1
= 10 1 -2 4 =10 1 2 4|=[Bjd]
0.0 0 101, . 00 0 1

10
The last equation reads as 0.x, +0.x, —0.x; =1, which is impossible. Therefore, the system has no
solution.
Example 1.18 As the equation corresponding to the last row of the augmented matrix
1T -3 5 3
(Bidl=10 1 2 2/is0.x+0.x +0.x; =—1, the system has no solution.

lo 0o o -

Remark The reduced row echelon form of the coefficient matrix has a row of zeros and the system
has no solution.

Definition 1.19 A linear system having no solution is inconsistent. If it has one or more solutions,
the linear system is said to be consistent .

Definition 1.20 Let A be an (m x n) matrix The rank of A, is the number of pivots in a row
echelon form of A.

The general m x n system of m linear equations in n unknowns is solved by writing the system as
an augmented matrix and row reducing the matrix to its reduced row echelon form. The process is
continued until one of the following three situations occurs:

(1) The last nonzero equation reads X,=c for some constant c. Then, there is either a

unique solution or an infinite number of solutions to the system.

(it) The last nonzero equation reads

! —
ai,jxj+a i, )+ X/+]+ +al_j+]+nx =cC
for some constant ¢ where at least two of the a’s are nonzero. That is, the last equation is a linear

equation in two or more of the variables. Then, there are an infinite number of solutions.

10
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(iit) The last equation reads 0 = ¢, where ¢ #0. Then, there is no solution. In this case, the

system is called inconsistent. In case (i) and (ii), the system is called consistent.

[13—514) ~[13—514J
0 -1 82-2), . 01 -822) w0

Examplel.21

Apb]- 1 3-51 4
25-2 4 6)ry-2r,5Ry

1

I

10 19«5 -2
0 o

01 -8 42 2
The coefficient matrix is in reduced row echelon form (case (ii) above).

There are an infinite number of solutions. The variables x3, x4 are chosen arbitrarily. Then
%y = AFEX -2y

KBy6Any and x, = -2-19x, 4%,

Theorem 1.22 Let [A’b] be the augmented matrix for a consistent system of linear equations in n

unknowns. Further, assume that [A]b] is row equivalent to a matrix [B]dﬁhat is in echelon form

and has r nonzero rows. Then r< n, and in the solution to the given system, there are n — r
variables that can be assigned arbitrary values.

c}oHan,Q (lsin AFFenoQix A).

Corollary 1.23 Consider an (m x n) system of linear equations. If m < n, then either the system is

inconsistent or it has infinitely many solutions.

Proof Consider an m x n system of linear equations where m < n. If the system is inconsistent,
en Theovem i zz-Opplies .
then there is nothing to prove. If the system is consistent,\l_et the augmented matrix [Alb] be row

equivalent to a matrix [B[d] that is in echelon form and has r nonzero rows. Because, the given
system has m equations, the augmented matrix [A|b] has m rows. Therefore, the matrix [Bld]
has m rows. Because r is the number of nonzero rows for [Bld], r £ m. But m < n, and therefore

1ad

r < n. By theorem IQ&, there are n — r independent variables. Since n — r > 0, the system has

_infinitely many solutions.
1.3 Homogeneous System of Equations

The general m x n system of linear equations (1.1) is called homogeneous if all the constants

by by ....... b, are zero.




Note that a homogeneous system is always a consistent system, because x,=x,=x,+--=x,=0 isa

solution to the system. This solution is called the trivial solution or zero solution and any other

solution is called a nontrivial .solution. A homogeneous system of equations, therefore, either has

the trivial solution as the unique solution or it also has nontrivial (and hence infinitely many)
solutions.

1 230
Example 1.24 [Ab]=|4 5 6 0

3 1-20

The reduced row echelon form of the coefficient matrix is obtained as

1000
01 0 0[=[B|d]
0010

The system has the unique solution (0, 0, 0). It has only the trivial solution.

Example 1.25
1 2 -1 0
[A]b]: 3 =3 2 0| Theequivalent reduced row echelon form is given by
-1 -11 6 0
10 -1 o
9
5 o . . 1 5
[Bld]z 0 1 Y 0 |. There are an infinite number of solutions given by —§x3,6x3,x3
0 0 0 0
Example 1.26
[A|b]_[l 1-1 0] ~[1 1 -1 0] ~1 ! '111 0
4-2 70 Ry-4R;>R; 0 -6 11 O ‘éRZ“’R2 0 1 '—E 0 T
|-Ry—> Ry
10 % 0
- 6 |-[Bja]
0O 1 -—— 0
6
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There are an infinite number of solutions given by (—%x3,%x3,x3j. This is not surprising, since

the system contains three unknowns and only two equations. In fact, if there are more unknowns
than equations, the homogeneous system will always have an infinite number of solutions.
Theorem 1.27 A homogeneous m x n system of linear equations always has infinitely many
nontrivial solutions when m < n.
Proof This follows from the Corollary 1.23, because the homogeneous system is always
consistent.
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CHAPTER 2
VECTOR SPACES
We all know what we mean by saying force is a vector and mass is a scalar. Mathematically, we
describe such vectors by directéd line segments. We also know how to add two such vectors and
how to multiply such a vector by a scalar. Further, we know that addition of vectors and scalar
multiplication of vectors satisfy the following:

1. If vy and v, are any two vectors, then v; + v; is also a vector.

[

. For any three vectors v, vy, v3, we have (v +va) + v3= v+ (v2+V3).

3. There exists a zero vector ‘0’ suchthat v+ 0 = 0 +v=yv for every vector v.
4.  For any given vector v, there is another vector, denoted by — v, such that
vi(-v)=—-v+v= 0.

. Vit vy, =v; +v, for any two vectors.
. For any scalar o and vector v, o .v=aq v is again a vector.

5

6

7. For vectors v,", voand scalaro., we have a..(vi+Vv2)= a.vi+ .V,

8. For scalars o, B and any vector v,wehave (a+B). v=a.v+p.v.
9

.a..(Bv)= a PB.v= Pa.v for any two scalars a , 8 and vector v .
10. 1.v =v forany vectorv.
The first five say that the set of vectors under addition forms a commutative group.
It so happens that there are a large number of mathematical objects like matrices, functions that
also satisty similar properties. Hence it is useful to generalize the above notions and define an

algebraic object known as ‘a vector space over the scalars’. For us, scalars mean either the real

(scalar) numbers or the complex (scalar) numbers.

2.1 Definition and Examples

Definition 2.1 A vector space over the set (field) of scalars R (or C) is a non empty set V. whose

elements are called vectors together with a binary operation ‘+’ on V and a scalar mu'tiplication

m: R (C) x V — Vsatisfying the following:
l. Forv,,v; € V, we have v| + v; € V (V is closed under +).

2. For vy, vo, v3 €V, we have (vi + v) + v; = v; + (v2 + v3) (+ is an associative

operation on V).

{
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3. There exists 0 € V such that v + 0 = 0 + v for every v €V. (That is, there exists an identity

element in V with respect to the operation addition}

4. Given v €V, there exists w € V such that v + w = w + v = 0. Such a w is denoted by —v
(That is, every element v € V has an inverse element in V with respect to addition).

5. For vy, v; € V, we have vi + v =v, +v; (That is, addition in V is commutative). For scalar
multiplication m: R (C) x V =V, we write m (a, vV)=a.v=Qa V.
6. Forae R(C),veV,aveV.

7. For o € R (C), vi, v2 €V, a (vi+v2) = a v; + a v2 (That is scalar multiplication is
distributive over addition)
8. Fora,peR(C),veV,(a+B)v=av +Bv

9. Foro,Bpe R(C),veV, a.(Bv)=aP.v=Pp.(av).

10. .v=v forve V.

(Strictly speaking axioms 1 and 6 are not required).

Notation If V is a vector space under ‘+* and ‘.’ , we say that (V , +, ) is a vector space. IfVisa

vector space over R (C), then elements of V are called vectors. We shall denote vectors by lower

case Roman letters a, b, ..., and scalars by Greek letters a, B, ... .ltis clear from our introduction
that the set of all physical vectors in space is a Vector space under usual addition and scalar
multiplication of vectors.

Are there other vector spaces? Yes. In fact, this is the reason for generalization.
Example 2.2 Take V = R = the set of real numbers and ‘+’ in V to be the usual addition of real
numbers. We define the scalar multiplication m: R x V -V by m (a, v) = o . v where the product

in the right hand side is the usual product of the real numbers a. and v . Then, we readily see that
all the ten conditions for a vector space hold good and V = R is a vector space over R with the

above addition and scalar multiplication.
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Example 2.3 Let V = {0} be a singleton set. The single element in V is denoted by 0. We may
define + in V by setting 0 + 0 = 0 and scalar multiplication by a.. 0 = 0 for every scalar «. Then V

becomes a vector space (check the details).

Example 2.4 Let V= {x = (xi, X2) | X1, x € R}. For x =(x,, x» ) and Y=(y1,y2), we define
Xty =(Xi+y;,X2+y2). Also for veV and a, ascalar, we define o x = (ax;1,ax2). Then
V with these operations is a vector space. We denote it by R

Example 2.5 In general, we may take V = {(x;, X2 ... X5) | x;e R, 1 <i<n } =R". We define
X+y=(i+y,Xa*ty2, ... Xatyn)for x=(x,X2,...xn) €R" and y = (y;, y2 ... yn) € R". Also
for x = (xy, x2.....x,) € R" and o a scalar, we define o x = (&t X1, O Xa,...,0 Xpn).

Then V =R"is a vector space over R forn=1273, ....

Example 2.6 Let P, (R) be the set of all polynomials with real coefficients of degree < n. Then
with the usual addition of polynomials and multiplication by scalars, P, (R) is a vector space.
IFfix)=a,x"+a,_; x" '+... + a; x + a, and g(X)=by, X" +by_1x"" " +...+ bjx + by, then

(f+g) (x)=(a, +byx " +...+ (a; + by))x + (ap + by ).

1

For o e R f(x) =a,x"+a,1 x" 7 + ... +a; x+ag € P, (R).

1

(@ (x)=aa,x"+aa,_; x" '+...+ aa; x+a ag

(Note that for any f € P, (R), we may write f (x) = a, x" +a,_1x" "' +... +a; x + a, witha;e R;
and when deg f(x) =k <n, ay+| = a4 ...= a, = 0).

Remark By P , (X), we mean the set of all polynomials of degree < n and with coefficients in X.
Also, itis evidentthat P,c Py ¢ P, Py...c P,c P,y c .

Example 2.7 If X = (a, b) is any open interval in R with a < b and C(X, R) = the set of all real

valued continuous functions on X, then C(X, R) is a vector space over R under the following

operations.
(f+g)(x)=f(x)+gx) for f,g e C(X, R), x e (a,b) = X.

16
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(af)(x)=a f(x),foraeR,feC(X,R),xe X.

Example 2.8 If X=(a, b) is any open interval in R with a <b and C k(X, R ) = the set of all real

k

valued functions which are k times differentiable and :—g is continuous on X, then Ck(X, R)is
X

a vector space over R under the operations

(f+g)(x)=f(x)+gx) for f,g € ck (X,R), xeX.

(af)(x)=a.f(x) foraeR, eck X,R),xeX.

Example 2.9 Let X =(a, b),a<b. Let F (X,R) = {f:X » R | fis a function from X to R}.

Let V= {fe F (X, R), fis Riemann integrable}.

Then V is a vector space over R under (f + g) (x) = f(x) + g(x); (a f) (x) = & fix),f,geV,xeX.
Example 2.10 Let C* (X, R) be the set of all infinitely many times differentiable functions on
X =(a, b). Then C® (X, R) is a vector space over R under

(f+g) (x)=f(x)+g(x) for f,ge c® (X,R), xeX.

(o ) (x) = a f(x) foroceR,feCoo(X,R),xeX. |

Example 2.11 Consider the following system of linear equations in the variables x; , x, , ...X,.
an xy+tapx; +...8hx,=0
X1t anxy +...apxn=0
an] X] + an2 X2 + e ann Xn = 0

This system, definitely, has atleast one solution, namely (x;,x2, X3, csXn)=(0,0,...0).

Let V= {(xi, X2 ... Xn) € R"| (X, X2, ...,Xn)} is a solution of the above system of equations}. It is
immediately verified that if (x1,X2, ...,X,) and (y; , ya, ...,¥n) are any two solutions of V, then their
sum (X; +y;, X2 + ¥2,... Xo + ¥, ) is also a solution of the same.

Further, & x = o (X1, X2, ...,Xn) = (QX), 00X, ...,0X,) is also a solution. This means that V = set of

solutions of the above linear system of equations is a vector space.
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Example 2.12 Consider an ordinary linear differential equation of the form

n n-1 n-2

d"y d""y dy
L(y) = 7&:”_ +a,(x) pEE +a,(x) = +...a,,_,(x)—d—)C +a,(x)y=0

if y, and y are solutions of this differential equation, We€ observe that ¢ yi + €2 Y2 is also a

solution of the same for any two scalars C1, €2. Then the set of solutions of L (¥) = 0 is a vector

space.

Example 213 Let V = {(x1, X2) |x, = mxy, where m is a fixed real number}. For
x =(xn,x2)eV,y=W ,y2)EV, definex +y =i+ ,Xz+yz)andax=a(xl,>cz),ae R.
Then (V, +,. ) is a vector space. (Observe that V is the set _pf points in R? lying on the line y = mx,

passing through the origin).
Example 2.14 Let V = {(x1, xz)\ X, = 2% +3,X € R}. That is, V is the set of points lying on the

line xo =2x1+1. V is not a vector space under addition and scalar multiplication defined in
Example 2.13.

Example 2.15 Let V = {(x1, X2 X3) € R x + 2%+ 3x3 = 0}. Then, it is readily observed that, if

x = (x1. X2, x3) and y = (Y1, Y2, y3) are in V and 2= X +y=(x Yy, X2ty +y3) = (21, 22, Z3)s

then z, + 2z + 323 = (X1 ¥ y) + 22+ y2) (Bx3 +y3) = ¥ 2%, + 3x) TNt 22t 3y3)
=O+0=0wh'\chimpliesx+y € V.Also,foraeR,onx=(ax1 ,axz,ooq)and
ax; +2. oxz2 + 3.0X3 = oxy +2X2t 3x3)=0 which implies ax € V. Therefore (V, T, . ) is a vector
space. Observe that V is the set of points in R} lying on a plane passing through the origin.
Example 2.16 Let Vv = R™" denote the set of matrices of order m X o with real components. Then,
with the usual sum and scalar multiplication of matrices, it can be seen that R™" is a vector space.

Example 2.17 Let v=C"={{cC - co)lciisa complex number for i = 1,2, ...n} and the set of

scalars is the set of complex numbers. It can be seen that C" is a vector space under the usual

addition of complex numbers and multiplication of complex numbers.

This tong list of examples of vector spaces s an indication of the importance and scope of the
innumerable applications of this notion of linear spaces. We now present some elementary results

about vector spaces. We concentrate on @ single vector space V and its properties.
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Let V be a vector space over R(C). Then either V = {0} or V must contain infinitely many vectors.

If V # {0}, then there exists x # 0 in V. Then {a x | «eR (C)} is an infinite set. This is because of

the following proposition.

Proposition 2.18 Let (V, +,) be a vector space. Then

(1) o 0 = 0 for every real number o

(ii) 0.x=0 foreveryxe V

(iii) Ifax=0,thena=0o0rx=0 (or both)

(iv)  (=1)x=-—x for every vectorx € V.

Proof (i) By (3) of Definition 2.1, 0 + 0 =0 ; and from (7) of Definition 2.1
a(0+0)=a0+a0=0a0 2.1

Adding —a 0 to both sides of the equation (2.1) and using (2) of Definition 2.1, we obtain

(00 +a0]+ (—a0) =00+ (— a0); a0 + [0 + (- a0)]=0; a0+ 0 =0; a0 =0.

(i) 0+ 0=0; 0x = (0+0)x = Ox + Ox ( by (7) of Definition 2.1;

Ox+(-0x)=0x +[O0x + (- 0x) }; 0 =0x + 0 =0x

(iii) Let ax = 0. If o # 0, multiply both sides by 1 to obtain (l ) (o x) _! 0) =0 (by (1)),
o a a

but(l) (ax) = Ix=x, ( by (9) of Definition 2.1) so x = 0.
a

(iv) IH(=1)=0; 0 =0x=[1+H-D]x =1 x+(-]) x=x+ (=1)x (by (ii)). Add —x to both sides
0+ (x)=x+(-Dx+(x) =x+(x)+(-Dx =0+ (-1)x=(-1)x. Thus, —~x=(-1)x

2.2 Subspaces

From Example 2.4, section 2.1, we know that R?= {(x1, X2)} | X1 , X2 €R} is a vector space. Also,

from Example 2. 13, section 2.1, V = {(x;, X2) | X, = mx, } is a vector space and V R2. Thatis, R?

has a subset which is a vector space. In fact, all vector spaces have subsets which are also vector

spaces.

Definition 2.19 Let H be a nonempty subset of a vector space V and suppose that H is itself a
vector space under the operations of addition and scalar multiplication defined on V. Then H is a

subspace of V.




The following result makes it easy to determine whether a subset of V is indeed a subspace of V.,

Theorem 2.20 A nonempty subset H of the vector space V is a subspace of V if the following

conditions hold:

(i) IfxeHandy e H, then x+y e H; (i) fx e H,thenax e H V scalar a.

Proof In order to show that H is a vector space, we need to prove that all the axioms (1) to (10)
hold good under the operations of addition and scalar multiplication defined in V. Axioms (1) and
(6) hold by the given hypothesis in H. Since vectors in H are also in V, the axioms 2, %), (1), (9)
and (10) hold good. Let x e H, then 0x € H by (ii) of the given hypothesis. But 0x = ¢ by
Proposition 2.18. Therefore, 0 € H, and therefore (3) holds good. Also, (-1)x e HV x ¢ H
(by (ii) of the given hypothesis). Now —x = (= 1) x € H (by Proposition 2.18). Therefore, axiom 4
holds good. Therefore, H is a vector space.

Remarks (i) Thus to test whether a nonempty subset H of V is a vector space, it is only necessary
to verify that x + y and ax e H where x,y € H and a is a scalar.

(ii) Every subspace of a vector space V contains 0. (This helps in verifying whether a particular
subset of V is not a vector space, that is if a subset does not contain 0, then it is not a subspace).
Example 2.21 For any vector space V, the subset {0} consisting of the zero vector alone is

a subspace since 0 +0 = 0 and g0 = 0 V real number o. It is called a trivial subspace.

Example 2.22 Vis a subspace of itself for every vector space V.

Remark Examples 2.21 and 2.22 show that €very vector space V contains two subspaces {0} and
V (unless of course V = {0}). We shall find other subspaces. These are called proper subspaces.

Example 2.23 H={(x;,x2) | x, = mx; } is a subspace of R2. In fact, we shall show later that the set
of vectors lying on straight lines passing through the origin are the only proper subspaces of R,

Example 2.24 H = {(x1, X2, x3 Jixi=at, x,= bt,x3=ct, a, b, ¢, t are real}. H consists of vectors
in R’ lying on straight lines passing through the origin; H is a subspace of R3 since, for

X = (at; , bt, ,ct,)eH,y=(at2,bt2,ct2)eH,
Xty=@ti+u),bt+t), c(t *1)) € Hand (a (at, ),blaty), claty ) e H.

Example 2.25 et H = {(x1,%2,x3) | ax + by +cz = 0, ab,c real}

H is a subspace of R®. Note that H consists of vectors lying on planes passing through the origin,
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Remarks .1. We shall show later that the set of vectors lying on either straight lines or planes

passing through the origin are the only proper subspaces of R>.
2. Not every vector space has proper subspaces.
Example 2.26 Let H be a subspace of R. (R is a vector space over itself: that is R is a vector space

with the scalars taken to be the reals). If H # {0}, then H contains a nonzero real number say d.
Then (l/a) =1 € H. Bl =B € H forevery real B. = R c H. ButHcR. Therefore, R has no
proper subspace.

Example 2.27 If P, denotes the vector space of polynomials of degree < n, and if 0 < m < n , then

P, is a proper subspace of P,

Example 2.28 P, [0,1] denotes the set of polynomials defined over [0,1] of degree < n.
P, [0,1] € C [0,1] since every polynomial is continuous. P, is a vector space for every integer n
and therefore each P, is a subspace of C [0,1].

Example 2.29 Let C'[0,1] denote the set of functions with continuous first derivatives defined on
[0,1]. Since every differentiable function is continuous C' [0,1] € C[0,1]. The sum and scalar
multiple of differentiable functions are differentiable, so C' [0,1] is a subspace of C[0,1]. It is a

proper subspace since not every continuous function is differentiable.

1 i
Example 2.30 If f € C[0,1], then [ f (x) dx exists. Let H ={f e C[0,1] | [ f(x) dx =0}. If
0 0

i 1 1
f.g e H then [ [flx) + gx)] dx = [ f(x) dx + | gx)dx =0+ 0 =0 and
0 0 0

| 1
[ af(x)dx =a [ f(x)dx = a0 =0V real number o. Therefore, it is a proper subspace of C[0,1].
0 0

2.3 Linear independence, Basis and Dimension

Definition 2.31 Let v; , v, , ... v, be vectors in a vector space V. Then, any expression of the
formo, vy +az v + ... a, v, where a;, a, ... o, are scalars is called a linear combination
of the vectors v, va. ... v, .




Example 2.32
-6 -2 -2 -6 -2 -2
InR?, 6 | isalinear combinationof,| 4 fand,| I |since,| 6|=1| 4|+2]| |
8 2 3 8 2 3

Example 2.33 In P, , every polynomial can be written as a linear combination of the monomials

2
ILx,x",...x".

Definition 2.34 Let v; , v2, ... v, be n vectors in a vector space V. The vectors are said to be

linearly dependent, if there exists n scalars a;, oy,...0, not all zero such that

o vyt ay vy + .+ o, v, = 0. If the only linear combination of these vectors that equals the zero

vector is the trivial linear combination (with o; = a; = = a, = 0), then the vectors v; , v3, ... v, .

are said to be linearly independent.

Note

1. The empty set is linearly independent .

2. If one of the vectors is the zero vector, then the set is linearly dependent.

The following result helps us to determine whether a set of two vectors is linearly dependent or
independent.

Theorem 2.35 Two vectors are linearly dependent iff one is a scalar multiple of the other.

Proof Lety = o x for some scalara# 0. Thena x~y =0 and xandy are linearly dependent.

Conversely, suppose x and y are linearly dependent. Then, by definition, there exists constant o

and a; . not both zero, such that oy x +o; y=0. If a; 20, divide by o;,x + (o /a)) y=0 or
= — (a2 /ay) y and therefore x is a scalar multiple of y . If a; =0, then a; # 0 and hence

y =0 =0x. The following result is useful in some cases.

Theorem 2.36 In a vector space V , the nonzero vectors vy , v2, V3 ... v, are linearly dependent iff

at least one of them can be written as a linear combination of the vectors that precede it. That is,

for some k, | <k <n, there are scalars o, , oy , ... o such that
VK= 0 V) Faav) oo+ Okl Vel (22)
Proof Suppose (2.2) holds. Then o, vy +oav) + ...+ O Vier - Vg 0V + ...+ 0vy =0

implying that the vectors are linearly dependent. Conversely, suppose that the vectors are linearly

dependent so that there exists n scalars o, oz, ... &, notall zero, such that

vy +tav, +...+ a,v,=0 (2.3).




Let k be the largest integer such that oy # 0 (k may be equal to n). Note that k > 2 for ifk = 1,

then (2.3) becomes o v; + 0v, +... + 0 v, = 0. Since o # 0, vi = 0 which contradicts the fact that
vy is a non zero vector. Thus a; v; + o, vy + ... + o vk = 0 with oy # 0. Dividing by oy gives

Vi = (/o vi —(02/ 0k ) Vo = (et /O ) Vier = Bivi+ Bavat o+ By Vi

1 -4 3
Example 2.37 The vectors ( 2) and , ( 3) , and (IJ in R® are linearly dependent. We need to

(3 1 -4
find constants a;, oy such that (l) =q (2J + o, ( 3) which gives

o ~4a;=3;20; +3as=1. On solving, we get a; = 13/11, o, = =5/11.

3 ] -4
Thus (J = —:—? (2] - % ( 3]. Therefore the vectors are linearly dependent.

Example 2.38 The monomials 1, x, xz, ... X" are linearly independent in P,,. If they are dependent,
then there is an integer k and constants O, O} ... O such that x* = do+toyX+toapXx2+... ey X5
which is not possible since the degree of the polynomial on the left is k while the degree of the
polynomial on the right is < k-1. Therefore, the monomials must be independent.

Definition 2.39 The vectors v, , v, , ... v, in a vector space V are said to span V if every vector
in V can be written as a linear combination of them. That is V v e V, there are scalars o, o5 ... a,

suchthat v, = ayvi+oyvy + ...ay vy .
Example 2.40 The vectorse; =(1,0,0),e;=(0, 1, 0),e3=(0,0, 1)span R*.
Example 2.41 The monomials 1,x, x2, ... x" span P,

Definition 2.42 A set of vectors {v, V2,...,Vn} is said to be a basis for V, if

(1) {vi,v2, ... vq } is linearly independent; (2) {vi, v2,...,vn} spans V.

Example 2.43 In R", define ¢, = (1,0,0,0 0), e = (0,1,0,0 ~ 0), ... e, (0,0,0,0 - 1). If
0=1(0,000"0)=0 e +ar e + ... + q, & = (a,,az,---a,,), then oy =ay ...= a,=0.
Therefore, e;, e, ... e, are linearly independent. If x = (x,,xz,---x”) € R", then
X=X € tXy e + ... + Xn e, . Therefore, ey, e,,...,e, span R". Therefore {er, e, ...,e,} is a basis

for R" called a standard basis for R" .

23
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Example 2.44 The vectors (1,2) and (-1,1) in R? are linearly independent because neither one is a

multiple of the other. Further, any vector x = (x;,x,) in R? can be expressed as
+ p—
x=(x,%,) = (%) 1,2) + (%) (~1,1).. Therefore, {(1,2),(~1,1)} is basis for R2.

Example 2.45 Since the monomials 1, x, X*, ... x" are linearly independent in P, and since they

span Py, {1, x, x>, ... x" }is a basis for Py,
Remarks In R2, {(1,0),(0,D)} and {(1,2),(~1,1)} are bases. In fact, R? has an infinite number of

wa
bases. In fact in what follows,prove the following two results.

I. A set of m vectors in R" is linearly dependent if m > n.

2. Any set of n linearly independent vectors in R" is a basis for R".

Theorem 2.46 Let A ={a;,...,a,}and B={b;, ... b, } be subsets of a vector space V such

that A is linearly independent and B spans V. Thenm <n.

Proof Consider the set {ay, by, ... b, } . This is linearly dependent because ar, can be expressed as
a linear combination of {b,, ..., b, } . Hence by Theorem 2.36, one of the elements, say b; can be
expresséd as a linear combination of aM)bl , --- » bj.1 . We drop this element and consider the set

By= {am. by, ... by}\ {b;}. Note that B, has n elements and B, also spans V . Next we consider the
set obtained by writing an,,; and then elements of By, {am.1, am, b1, ...} and repeat the process to
obtain the set B,. Repeating the same process m times, we obtain the set By, Since at each stage,
we add one element from A and drop one element, the number of elements in By, is the same as the
number of elements in B, namely n. Also no a; gets dropped at any stage because A is linearly
independent. Thus A ¢ B,,. Hence m <n.

Corollary 2.47 If A = {ay, ... ,an} and B = {by,...,b,} are bases of a vector space V, then m=n.
Proof Since A is linearly independent and B spans V , by Theorem 2.46, m <n. Similarly n <m.
Definition 2.48 Suppose that the nontrivial vector space V has a finite basis. Then, the dimension
of V is the number of vectors in a basis. We write, dim V = n. If V does not have a finite basis, V

is said to be infinite — dimensional. If V = {0}, then V is said to be zero — dimensional.

Example 2.49 Since {e, ez, ... e;}is a basis for R, dim R" =n.

Example 2.50 Since {1, x, x’, ... x"} is a basis for P,, dim P, =n+1.
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Example 2.51 C[ 0, 1] is an infinite — dimensional vector space because the functions

I,x,x*, ... areallin C[0, 1] and form an infinite, linearly independent set. This means that

C[0,1] can not have a finite basis.

Theorem 2.52 Suppose V is a vector space of dimension n. A is a subset of V containing m

vectors.

(a) If A is linearly independent, thenm <n .

(b) If m > n, then A is linearly dependent.

(c) Ifm =nand A is linearly independent, then A is a basis of V.
Proof (a) Consider a basis B of V and apply Theorem 2.46 to sets A, B.
(b) Follows from (a).

(c) We need to show that A also spans V. If not, there exists x € V such that x can not be written as

a linear combination of ay,...,am. Then by Theorem 2.46, {a, ..., ay, X} is linearly independent set

with m+1 = n+1 vectors. This contradicts (a).

Example 2.53 H = {(x;, x2, X3) | a X + B x2 + y x3 =0, o, B, vy are real} is a subspace of R3. we

show that dim H =2. At least one of a, B or y is nonzero. Suppose ¥ # 0. Then, for (xy, X2, X3) € H,

Xy = —gx, —-ﬁxz. Therefore, (x,,x,,x,) =(x,,x2,—gxl —£x2)= X, (1,0,—g]+x, (O,l,—ﬁ].
4 /4 /4 4 /4 /4

Thus, the vector (1,0,—3) and [O,l,—ﬁj span H and the vectors are linearly independent and
/4 Y

they form a basis for H. Therefore, dim H = 2.
Example 2.54 In this example, we show that if H is a two-dimensional subspace of R, then all the

vectors in H lie on the same plane passing through the origin. Let v, = (a;, by, ¢;) and

V2 = (@, b, ¢2) be a basis for H. If x = (x,, X3, X3) € H, then there exists scalars (real numbers) s
and t such that (x), X, x3) = s (a , by , ¢ ) +t@, b, c ) which implies

X; =sa; +tay, Xp = sb; +tby, x3 =sc; + tc. Lety = (a, B, ¥) = v; X v2. Now, y.vi=0andy. v, =0.
Consider o x1+ B xo+ 7 X3 = (sa1 + taz) + B (sb; + tby) + y (s¢; + tcy)

=s(aar+Bb+yc)+t(aaz+Bby+yc,) = 0.
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Thus, if (x,, X2, x3) € H, then o X1 + B xz + vy x3 =0 which shows that H is a plane passing through
the origin with normal V3=V X V.
Remark Examples 2.53 and 2.54 show that the only proper subspaces of R? of dimension 2 are the

planes passing through the origin. We now focus our attention on another way of finding

subspaces of vector spaces.

Definition 2.55 Let Vi, V2, ...vy be a set of n vectors in a vector space V. The span of
{vi,va2, ... v, }is the set of linear combinations of v, , v, N '
span { vy, vy, ...v,}= vivaaivi+ agvy+ ..+ Qo Vo . Where o, , 0y, ... o, are scalars}.

Theorem 2.56 Span{v, ,v,, ... Vo} is a subspace of V.

Proof Letv, w e span {v,, v, ... v,}. Thenv = Guvit LtV w=Biv,+ L+ Bn Va. Now
vVEw = () + BYvy + ... (o, + Bodva = yivi+ ... + Yn Vo € span{v, ...v,}. This implies
V+wespan {v,, .. v} Similarly a v = q (o vi + ... +a, v, ) = ao; vy + ...+ oAy Vi

=Vivit .. +ywah€span {v,, ... Vn}

Theorem 2.57 Let H be a subspace of a finite dimensional vector space V. Then, H is finite

dimensional and dim H < dim V.

Proof: Let dim V =n. Let B be a basis for H. B is linearly independent in H and therefore
linearly independent in V, since H is a subspace of V. Since dim V =n and a set of (n+1) or more

vectors is linearly dependent, number of elements in B is <n. Therefore, H is finite dimensional.

In what follows, we use the above theorem to find all proper subspaces of R3. Let H be a
subspace of R* Then dim H = 0,1,20r3. IfdmH=0, then H= {0}. If dim H = 3, then let
{V1, v2, v3} be a basis of H. Then H = span {v,, v,, v} =R3. (Since {v,, v, v3} is a basis of R® by

Theorem 2.52). This implies that H = R>, Therefore, H is not a proper subspace of R3. If

dim H = 2, then we have already seen that H is the set of vectors lying on the planes passing

through the origin.
We now see what is H if dim H =1. In fact, we will show that the only proper subspaces of R? of

dimension 1 are the set of vectors lying on straight lines passing through the origin.
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Example 2.58 Suppose that H is a subspace of R3 with dim H = 1. Then, a basis of H has one
vector, say X = (X1, X2, X3) and therefore any other vector in H, say, y = (Y1, ¥2 y3) can be
expressed asy = (y1, Y2, y3 ) = t (X1, X2, X3) = (tx1, tX2, txs), t is a real number which implies that H

consists of vectors lying on straight lines passing through the origin in R3. That is,

H={(y, ¥ ¥3) ‘YI=at,)’2=bt,y3=ct,treal}

Example 2.59 Let H= {( X1, X2, X3) | x,=at,xp=bt,x3=ct,t real }. Thenany y € H is such

thaty = (y1, y2» ¥3) =1 (X1, X2, X3) . This implies that H is one-dimensional.

Remark Examples 2.58 and-2.59 show that if H is a subspace of R® of dim 1, then H is the set of
vectors lying on straight lines through the origin in R3. Thus, the only proper subspace of R? of
dimension one, are the straight lines through the origin in R’

We have seen that n linearly independent vectors in R" constitute a basis for R® This fact holds in

any finite dimensional vector space.

Theorem 2.60 Suppose that vy, v2, ... Vm are linearly independent vectors in a vector space V

of dimension n and m<n. Then, {Vi, V2, ... Vm} €an be enlarged to a basis for V. That is, there

exists vectors Vim+i, Vm+2 5 -+ ¥n such that {vi, V2, ... Vm's Vm+15 --- v,} is a basis for V.

Proof Let {u;, uz, ... s} be a basis for V. Then, there exists scalars such that
vi=aputaput..tant

vy =ay Uyt apuyt ...+ anln

Vi = @mi W T am2 u; + ...t amn Wn

Let a; = (aj1, 225 -+ ap), 1= 1,2, ... m The a;‘s are m linearly independent vectors in R"

(otherwise the v’s would not be independent. We now show this here. If possible, let
{aj,a2,...,8n b linearly dependent. Then, there exists scalars o, 0t2,... Om (nOt all zero) such
that

o (arr, @12y - > @in) T 02 (a1, @22y -+ 5 820) T ..o T Ol (m1s @m2 5 -+ »8mn) = 0 24)
Now consider o,y Vi + 02 V2 ... + Om Vm. Then
oy vy F v ... + Oy Vm = O (ap wm+ap W+ ... tan w, )+ o2 (a1 m+an u; + ...t an U, )

o 40 @m WA U2t T Bmn U, )
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Su(ogantogay to.tomam )+t w (o aptogant...+toanam)

oot un(oy ay +0g az ... +0ly 8mn )

=0 (by (2.4))
This implies {vi, v, ... vn} is linearly dependent which is a contradiction to the fact that
{Vi, V2, ... v} is linearly independent. Expand the a;‘s into a basis a; , a, , ... a,, Am+l 5 ... A
for R" by adding (n—m) linearly independent vectors to the set. Then, if a, = (ay; , a > oo 58k )

form <k <n,definevy = a,, u;+ ay U+ ... +ag, u,, fork=m+l,m+2, ...n.

a a,; a,
. ay, a2 Dp . . . .
Since det # 0, the set {v|, v, ... v;} forms a basis for V , since it consists of
anl ayy amz

n linearly independent vectors in V with dim V= n.
Theorem 2.61 Let H and K be subspaces of V. Define H + K = { h+k lh eH, ke K}. Then
(i) H+ Kisasubspace of V (ii)IfH n K = { 0} , then dim ( H+K) = dim H + dim K.

Proof (i) Letx,y e H+ K then x = u, TV yYy=uw+tvy, u,u; €H , vy, v, € K. Consider
x+y=(u,+v1)+(u2+vz)=(u|+u2)+(v|+vz)€H+K(SinceHisasubspaceul+uzeH

and K is a subspace, v, + v, € K). Similarly, o u = o (u; + v)= au+ av;eH+K,
Therefore, H + K is a subspace.

(b) Let {uj;, uy ... u,} be a basis for H. Let {vi, v2 ... vy} be a basis for K. Clearly,
B={u, uz... uy, v, vz ... vio} spans H + K. We now show that B is a basis for H + K. Suppose
arurtopu o tanun+Brvi+Bavy + ...+ By vin = 0, where not all of the coefficients are

zero. Leth= a;u;+ou; +...+a,u, and k =Bivit Bavy + ...+ Bm vm Then , neither h,

nor k is the zero vector. Also, h € H and k € K. But then h + k = 0 or h = - k € K. Thus,

0 # h € HNnK contradicting the fact that HAK = {0}. Therefore, all a;’s and B;’s are zero. This

implies {uy, us...u,, vy, vy ... vm}is linearly independent. Therefore, B={uy, us...uy, vy, v... vy}
is a basis for H+K. Therefore, dim (H+K) =n + m = dim H + dim K.

Theorem 2.62 Let V be vector space and W, and W, be subspaces of V. Then
dim (W, + W) = dim W, + dim W, —dim (W, A W,).
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Proof Now W, n W, c W, i=1,2. Let {u}, u ... uc}be a basis for Wi n W,. Extend this to
a basis {uy, uy ... uy, v, vo ... vp} of W, and to a basis. {u;, uz ... uy, w;, wa, ... wp} of Ws.

Then dim Wy +dim W, —dim(W; n W) =k+m +k+n-k=m+n+k.

We now claim that {u;, uy ... uy, vy, v ... Vi, Wi, W2, ... W} is a basis for W; + W,. Let

k m
x €W; + W, Then x = w; + w,, with w, e@and W) @ Let w =% oyu;+2 B;v;,
i=1 j=t

w2:

I M=

Y u, + 5 8; w;. Therefore, x = § (o +7v; )u; + 5 BV, +3 8; w;. This implies
| o i1 = j=1

{uy, wz ... Wy, Vi, V2 ... Vm, Wi, W2, ... W} spans W; + W; .We now show that B is linearly

independent. Assume
Ya,u; +ZBJ~ v, +Zy,w, =0 (2.5)
We need to show that o; , i=l ...k, B; ,j=I,...m, ¥, r=1,...n, are all zero. From (2.5), we

have » au, +Y B,v; =) y,w . The expression on the right hand side is an element of W,

s n
and the left hand side is an element of@DTherefore, = X2y, w, € Wy m@and we can write
» r=1 -

k n k n
Toju =YW so that Zozjuj +3 v, w,=0.But {u, ...u, Wi, ... wp} is a basis for W, and
= r=1 j=1 r=1
therefore is linearly independent. This implies oy = o = = ow = y, =y, =---:7ﬂ=0. In
k m n
particular Y o, u; + ¥ Bj Vi= -2 Y, W, =0. Since {u, ... ug, vy, ... vp} is a basis for Wy, it is
1=1 j=1 r=|

linearly independent. Therefore, o;=0, B; =0. Thatis a;, B; v, are all zero which implies that

{uy,...u, Vi, ...y, Wy, ...Wy} is linearly independent. Therefore, {uy, ... uk, vi, ...Vviy Wy, ... Wn}
is a basis for W, + W,. Therefore, dim W; + W; = k + m + n. Thus
dim (W] + W2) =dim W, +dim W, —dim (Wl f\Wz)

Remark Note that Theorem 2.61 (ii) is a special case of Theorem 2.62.
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CHAPTER 3
LINEAR TRANSFORMATIONS

3.1  Definitions and Examples

Definition 3.1 Let V and W be vector spaces. A linear transformation T from V into W is a
function that assigns to each vectorve 'V, a unique vector T(v)e W and that satisfies, foru and v in

V and each scalar a,
T(u + v) =T(u) + T(v),
T(a v) = a T(v).

Notation T: V— W (also called linear operators) is a linear transformation from V to W. We shall

denote T(u) by Tu,ue V.

Example 3.2 T: R® > R? defined by T(xi, X2) = (X1, —X,). T takes a vector in R? and reflects it

about the x-axis. T is a linear Transformation (Reflection about the X-axis).

Example 3.3 T: R”> - R3defined by

/o XX,
P X Y1 2
Tk =|Xx,-X,]|. Letx= , Y= eR*. Then T(x +y)=

X ,, X, Y,
3X,
) X, +X, Yy, +Y¥, X tX, YitY,
T X Yi -T X tXy ) _ _ =T Xy T Y1
< + y = yi+y = X, +Y, =X, 7Y, [T X T X + Y =Y = X + y
A : Lo 3x, +3y, 3x, 3y, ? ?

. ax, X,
Similarly, T =aT .
ax, X,

Example 3.4 (The zero transformation) Let V and W be vector spaces. T: V> W is defined by
Tv =0 foreveryve V.T(v1+vz)=0+0=0=Tv1+Tvz;T(av)=0=a0=aTv.
Example 3.5 (The identity transformation) I,: V. — V, V is a vector space, defined by I.(v) =V

for every v € V. I, is a linear transformation called the identity transformation or the identity

operator on V.
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Example 3.6 (Rotation Transformation) Let x € R? be rotated through an angle o in the

anticlockwise direction. The new vector is y. Let r be the length of x, r does not change by rotation.
Then x, =rcos6, y, =rcos(@+a); x,=rsinf,y, =rsin(@+a)

Yy =r[cosfcosa —sinfsinal=x, cosa —x,sina;

Y, =r[sinfcosa +sinacosf] = X,sina +x,cosa

S —si X —si
Thus ()/,J _ (c.o a smaJ( .). Let 4, =[c'osoz sma] _Then y=A,(x). T: R*> K
Y, sina cosa )\ x, sina  cosa

defined by T(x) = A_(x) is a linear transformation and A, is called a rotation transformation.
Example 3.7 T: R™ —R", m > n defined by T(xy, x,,..., Xm) = (X1, X2,..., Xn), that is, drop the last
(m —n) coordinates of vector R™. T is called the natural projection of R™ onto R".

Example 3.8 T: R* 5 R, defined by T(x1, X2, X3) = (x1, X, 0) is the projection operator taking a
vector in R* and projecting it into xy plane. Similarly T(xi, xa, x3) = (x4, 0, X3) projects a vector in
R’ into the xz plane.

Example 3.9 T: R™" 5 R", m < n defined by T(x1, X2,..., Xm) = (X1, X203 Xmy 0,0, ..., 0). T is 1-1

linear map called the natural inclusion of R™ into R".

Example 3.10 (A Transpose operator) Define T: Mm x n & M, x m by T(A) = A" Since,
(A+B) ' = T(A+B) = A'+ B' = T(A) + T(B) and (@A) '=T(@A ) = aA' = a T(A), T is a linear

transformation called transpose operator.

|
Example 3.11 (An Integral operator) J: C[0,1]> R defined by Jf=jfdx. Since
0

| I ! i 1
J.(f+ g) dx=ffdx+_[g dx, J'(af) dx=a ffdx. J is a linear transformation called integral
0 [ 0 0 0

operator.
Example 3.12 (Differential operator) Let D: c'lo,1]» C[0,1] defined by D f = f'. Since,
(f+g)=D(f+g)=f"+g'=Df + Dg, (af)'=D(af)=af'=aDf. D is a linear transformation called

differential operator.




N\L\\’JLKNL wa Acahim an ~ L/F
Let A be an m x n matrix. Define T: R"» R™ by Tx = Ax. Since A(x + y) = Ax + Ay,

A(ox) =a Ax, V x,y € R". T s a linear transformation. Thus, every m x n matrix gives rise to a

linear transformation from R"— R™. We shall see that a certain converse is true. i.e., Every linear

transformation between finite dimensional vector spaces can be represented by a matrix.

Note Not every transformation that looks like linear is a linear.

Example 3.13 Define T: R— R by Tx =2 x + 3. Then {(x, Tx): x € R} is a straight line in the xy

plane. But T is not linear. T(x +y) =2 (x +y) +3# Tx+ Ty=2x+2y+6. _T'\L\M\» \;MW\
q[‘;vz Sotvn R o)
ot 1 e fovn

T(f+g)=(F+g)0) +1 =10 + g0 + 1, Tf + Tg = f(0) + 1 + g(0) + 1. Therefore
T(f+g)# T+ Tg. #{'\(—);ml Lov Ao

Wg,Q Nnwvwmbéa ma -
“Thwy NN oL At-line 104, e
oA\ nes faabene Linean ane b,

Example 3.14 T: C[0,1] > R defined by Tf= f(0) + 1. T is not linear.

3.2 Properties of Linear Transformation

Theorem 3.15 Let T: V— W be a Linear Transformation. Then, for all vectors u, v, v, . . . ,v, in '1\_,@
V and all scalars a4, oy, . . ., o N~ H\“ Y- rovv) e’
i)  TO)=0eW ovigtn 7

(ii) Tu-v)=Tu-Tv

(ii) Tl vi+ oavat...F agvyy =0a; Tvi+ oy Tva+ ...+ oy Tvp.
Proof Will be discussed during the lecture.
An important fact about linear transformation is that they are completely determined by what they
do to basis vectors.
Theorem 3.16 Let V be a finite dimensional vector space with basis B = {v;, . . . ,Vn}. Let
Wi, ... ,Wn be n vectors in W. Suppose that T, and T, are two linear transformations from V to W
suchthat Ty vi=Tovi=wifori=1,2,...,n. Thenforanyve V,Tyv=Thv,ie., T;=T,.
Proof Will be discussed during the lecture.
Remark Theorem 3.16 tells us that if T: V — W and V is finite dimensional, then we need to

know only what T does to the basis vectors in V. This determines T completely.

Example 3.17 Let T: R*5R? defined by T(I, 0, 0) = (2, 3), T, 1, 0) = (=1, 4),

T(0, 0, 1) = (5,-3). Then T(3,—4, 5) is obtained as follows: Now,
(3,-4,5)=3(1,0,0)+(-4)(0,1,0)+ 5(0,0, 1),
32
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Therefore T(3,—4,5)=3T(1,0,0)+ (4T (0, 1, 0)+5T(0,0,1)
=3(2,3)-4(-1,4)+5(,-3)=(35, —22).
Another question arises: 1If wi, . . . Wy are n vectors in W, does there exist a linear transformation

T such that Tv;=w; fori=1,2, ...,n?

The answer is yes and we have the following theorem.

Theorem 3.18 Let V be a finite dimensional vector space with basis B = {vy, . . . ,va}. Let
W be a vector space containing the n vectors wi, . . . ,Wn. Then, there exists a unique linear
transformation T: V. — W such that Tv;=w; fori=1, 2, ...o0

Proof Will be discussed during the lecture.

Remark In Theorems 3.16 and 3.18

1) The vectors wy, . . . ,Ww, need not be independent.

2) In fact, need not be even distinct.

3) Theorems are true for any finite—dimensional vector space and just not R" alone.
4) Note W need not be finite dimensional..

Example 3.19 Find a linear transformation from R? into a subspace of R?, i.e., from R%to the plane
W={(x;, X2, X3) | 2 X1 — X2+ 3 x3= 0}. Dim(W) = 2 and its basis is {(1, 2, 0), (0, 3, 1)}. Take
¢, =(1,0), &, =(0,1) as standard basis in RZ. Define T: R> — W by Té, =(1,2,0), Té, =(0,3,1).
Then T is completely determined and,
T(x1, x2) = T[x1(1, 0) — %20, )] = x1T(1, 0) + x,T(0, 1)
=x1(1,2,0)4x2(0,3, 1)
= (XI, le '\ 3x2’ 't XZ)

for (X1, X2) eR>.

WWW;Q'
dind T (5Y)  T)=8T0) .-17_&L_—,——(—_‘;)'
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CHAPTER 4
THE MATRIX REPRESENTATION OF A LINEAR TRANSFORMATION

4.1 Linear Transformation and Matrices

Suppose A is a matrix of order m x n with real entries. Consider a transformation T: R" — R"™

given by T(x) = Ax, x € R". Here, we have regarded the n-tuple x € R" as a column matrix of

order n x 1. This is a standard practice and we shall follow it. It follows from the properties of

matrices that:
(i) T(x+y)=A (x+y) = Ax + Ay = T(x) + T(y) for all x, y ¢eR"
(i) T(a x)=A(ax)=a Ax= a T(x) forallx e R" and a € R,

In other words, T is a linear transformation. This is of course immediately verified. The

remarkable fact is that the converse is also true, that is, every linear transformation from R" to R™

(or more generally between any two finite dimensional vector spaces) can be described by such a
matrix multiplication.

To see this. let V be a real vector space of dimension n. (for convenience, we discuss the case of
real vector space. All the results discussed here are also valid for complex vector spaces with

obvious modifications).

Let A = {ay, ..., a, } be a basis of V. Then for each x € V, there exists a unique set of scalars
ayq, ...,an € R®™ such that x= a;a;+ az2a;...+taxn 280 = il a;a; . If we know
J:

Qi, as ... an then we know x and vice versa. In other words, all the information about x is

contained in these n real numbers. We express this fact by saying that the matrix of x with respect

a,

to the basis of A is the column matrix |

34

|

{(L(Ll(L(L!(\'((G(!\'((('G((.'(ﬂ‘l’(’d!(!f(((((



o,
Notation [x]a = Matrix of x w.r.t. A. Thus [x]a = " |. Note that this matrix of x w.rt. A

a

n

depends not only on the vector x and the basis A, but also on the order in which the elements in the

basis are written.

Example 4.1 Let V = R>. Consider the standard basis E = { e, e, e} where e;= (1,0,0),

-1
e; =(0,1,0) and e; = (0,0,1). Let x = (1, -1, 2) = le; — le, + 2e;. Hence, [x]E = 1[.Ifwe
2
-1
decide to write E as E = {e,, ey, €3}, then [x]E willbe| 1

2

Example 4.2 Let V and x be as above. Consider another basis F = {fi , £, f3} where
0

fi = (1,1,0), b =(1,~1,0) and f;=(0,0,1). Then x = Ofy + 1f, + 2fs. Thus [x].=|1].
2

Since the matrix of x with respect to a basis depends on the order in which the elements of the
basis are written, we need to fix some order in the elements to avoid ambiguity. Such a basis is
Ca&i(.i\. an ﬁ?rferf‘ci b.‘afif ?n‘ginheniifznll&veosf;gmis ie:i v‘ycitllggel&dabasis.

Now let W be an’other real vgctor space with an ordered basis B = {b,, ...,bn} and letT: V >W
be a linear transformation. Recall that we know T completely if we know the image under T of
each element in a basis of V. In other words, if we know T (a; ) from j=1..., n, we can find T (x)
for any arbitrary x e V. These n vectors {T (ay), ... ,T (aa )} completely determine T. Next each
of these n vectors is completely determined by its matrix w.r.t. the basis B, [T(a;)]g . Since for each

j, [T(a;) Jp is m x 1 matrix, these m x n scalars determine the operator T completely. It is natural

to put these scalars in the form of a matrix of order m x n, called the matrix of T w.r.t. the ordered

basis A and B, and denoted by [T . Thus, [Tl = [[Ta)ls ... , [T(@)ls ]. Hence if

oy
[TE = [0i]mxn » then the | column of [T[; is [T(ap)ls, thatis, | i |=[T(a;)lg, j=1..n.This

mj

35




means T(a;) = oy; by + ... +om; b Z o bJ, i=1,..n. This is the basic relationship connecting

[aj], the matrix of T with respect to the ordered bases A, B with the linear transformation.

Example 4.3 Let V = R® with the standard ordered basis A = {e;,es,e5}and W= R? with

basis B = {e|, e;} . Let T: V. — W be defined by T(x) = (—xy, Xz + X3), X = (X X2, X3) € R>. Then

-1
T (e;) =(-1,0). Thus [T(e))]s = [ 0] This becomes the first column of [T] Similarly second

/{fv

1R4
UL RN \)«(y/‘/
0 1 1]

and third columns can be computed. Thus we have [T[ = [
N

Example 4.4 Let T = R?> — R? be the linear transformation that rotates each vector anticlockwise

by 45" and also doubles its magnitude. We consider the ordered bases A = B = {e,, e;}. Thus

L _ s V2 V2| <[ -1
T(ei) = (v2 . v2 )and T(e;) = (-2, ¥2 ). Hence, [T} = [ﬁ ﬁ:l = \/EL 1].

Example 4.5 For n = 0, 1, 2,... let P, denote the vector space of all polynomials (with real
coefficients) of degree <n. Let p;(t) = t), J=0,1,... . Then {po ... pn} forms a basis of P,,.
Example 4.6 Consider the linear transformation D = P; — P,, given by D(p) = p’, the derivative

of p, for p € P3, and ordered bases A ={po, p1 , p2 , p3} and B = {po, p1, p2} of P; and P,

respectively. To find [D], note that D(pp) =0, D (p; )= 1= po, D(p2) = 2p: , and D(p3) = 3p; .

o
o)
o

Thus [D]} = |0 0 2 0.

(=)
(=
(=)
(8]

We note that the matrix of a linear transformation depends on the choice of the ordered bases A
and B. To illustrate this, we consider a different basis C = {qo, qi, q2} of P, as follows:
G (0 =1,q (1) =1 +t,q(t) =1 - . Now D(po) = 0, D(p1) =I = qo, D(pz) = 21 ~ 2qp and

0 1 2 3
D(ps) = 3qo — 3q3 . Then [D]S =0 0 -2 0].
0 0 0 -3

What is the relationship between matrices of x, T and T(x)? The next theorem answers this
question. It says that with every fixed choice of ordered bases, matrix of T(x) equals the product of

matrix of T and matrix of x. This also establishes the claim made in the beginning of this chapter

36
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that every linear transformation between finite dimensional vector spaces is essentially same as

multiplying by a ﬁxed matrix.

Theorem 4.7 Let V W be finite dlmensmnal vector spaces. Let A = {a,, ... a,} be an ordered

basis of V and B = {b; ... ,b,} an ordered basis of W. Let T : V — W be a linear transformation.

Then V x € V, [TX)]s = [T} [x]a .

a,

n

. Thismeans x = 3 ;. Hence T(x) = Z a T(a :).

J=1 Jj=

Probf Let [x]A =|.

§ m
Suppose [T]; = [“ij Jinxn - Then T(a ;) = 'Zlaij b;, Jj=1,..n.Hence
i=

n m
T(X)_ Z o T(aj)= Z (lj § a{]bl
j=1 J=1 7=l
m n
=2b; X o0 = Z B;b; where B; = Z ayaj [T (x)]s
i=l j=l i=l1
I -
By 0
Thus | . =[a--]
Y dmxn
_Bm_J _anjnxl
Example 4.8 Consider Example 4.5 above. Let p(t) =2 - 3t + 5t — ¢}
5
3 x\ok”
Thus [p], = 5| PP O=p ©=-3 +1%— 3¢ . Hence

-1

=31 [o 1 0 0

[D(p)], =| 10|=]0 0 2 0 = [D]; [p],
3| o 0o 0 3

Next we discuss some relationships between the operations on linear transformations and the

operations on matrices.
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Theorem 4.9 Let V, W be finite dimensional real vector spaces, A = {ai, ... ,a,} be an ordered
basis of V, B = {by, ... ,bn} be an ordered basis of W. Let L (V, W) denote the set of all linear

transformations from V to W and R™* denote the set of all matrices of order m x n with real

entries. Then the map T — [T]i is a one-one and onto linear transformation from L (V, W) to

R™" | that is,

M [T+s], = [T} + [, T, s eL (v, W) Gii) [aT], =o [T]

Proof Straight forward

Corollary 4.10 Dim (L (V, W)) =mn

We next decide what happens to the corresponding matrix of the composition of two linear
transformations

Theorem 4.11 Let V, W, Z be finite dimensional vector spaces with A = {a,, ... ,an} ordered
basis of V , B = {bi,...,bn} ordered basis of W and C= {cl,...,cp} ordered basis of Z. Let
T: V> W and S: W — Z be linear transformations. Then ST: V — Z defined by

(ST) (x) = S(T(x)) , x € V is also a linear transformation and [ST]i = [S]g [T]i

Proof That ST is a linear transformation is readily checked. Next for each i=1 ..n

[STI, (ala = [T @le = [S (T @l = [S[C [T @pls = [ST; [T]i[aj]A@t_et_th

- ey
| e ().
[ajla = | I | with I in the j*" row. Hence j column of [ST]A an?i [S]g [T]i coincide for each j.
0

Hence [ST];: = [Slg [T]i

Corollary 4.12 Matrix multiplication is associative.
Proof Follows immediately from the above Theorem and the previous Theorem.
Quite frequently, we deal with linear transformation T from V to V itself. These are popularly

called linear operators. In this case, it is customary to use only one basis to represent its matrix,

A .
[T],. We shall use the notation [T], for [T];. Thus [ T()Ja = [T]a [x]s, ¥ xeV. If

I: V- Visthe identify operator given by I(x) =x,x € V,then [I]s = [ 8ilnxn , the identify

matrix . Similarly, matrix of the zero transformation is the zero matrix of appropriate order.
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Next, if S, TeL (V)(=L(V,V)), then STe L(V), and [ST]s =[S]a [T]a . Thus in this case,

the map T — [T]a "from L(V) onto R®*" preserves vector space operations and also products.

One application of this is the following.

Corollary 4.13 Let V be a finite dimensional vector space with basis A and T € L(V). Then T is
-1
invertible if and only if [T]4 is invertible, and in this case [T "]A = [T]A .

Proof Suppose T is invertible. Then 3 S € L(V) such that ST =1 = TS. Then T~! = S and
[ST]a = [S]a [T]a = [I]a = Identify matrix. Thus [T]a [S]a = Identity matrix. Thus [T]a is

invertible and [T], = [S]x=[T""].

Next we study what happens to the representing matrix [T], when the ordered basis A is changed.
In other words, what is the relationship between [T]la and [T]g . If B is some other ordered basis
of V. The following theorem answers this question:

Theorem 4.14 Let V be a finite dimensional vector,space and A = {ay, ... ,a,}, B={b;, ... ,b n) bE

ordered bases of V. Let M = [1]® . Then Bxpreviay wrt B g Gend [55] M-

) [(Xe=M[xlsVxeVand (i)  [Tls=MT\M",V Te L(V) [wfwmb«m
: P
Proof Note that M = [I]i means that for each j, j" column of M is [T aj]g, that is, entries in the M’&{ ‘

j" column are obtained by expressing a; as a linear combination of elements in B. From the ;!

previous corollary, we see that M is invertible. Now let x e V. Then
(xJa=[10)]s = [1]} [x]a = M[x]a

Next we apply this to [T(x)]. Then [T(x)]s =M [T(x)]a . Hence, [T]g [x]s = M[T1a [X]a , that is,
[T]s M[x]a = M[T]4 [x]a . Since this holds V x e V, we can take x = a; for each j =1,... ,n. Then

the left side becomes j™ column of [T]z M and the right side becomes the j™ column of M[T]a .
Hence [T]g M = M[T]a , that is, [T]s =M [T]s M~

Example 4.15 Let V=R% A = {e1, 2}, B = {f}, f,} where f, = (I, 1) and £, = (1, 41). Then

2
. Consider x = ,}J € R%. Then [x], = [ :’
3

M=, =lleds , [es ] ] =

N | =N | -
R e R

= Vid ot

-
(1)0) =~ (o))
| "er H,)/‘/i \]—)Jmirur?mmnm(/’i)

N YV I Y B -~

AR ,\\A(L« (V=)

L
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Note

KT({) a(éjs

1 e _ |1 0]._ Y
[T]A—[O ( ﬂ (Tls [1 0} MI[T]a M .\

This theorem motivates the following definition.

Definition 4.16 (Similarity) Let P and Q be square matricesof order n x n. We say tha?P is similar
to Q if 3 an invertible square matrix M such that Q = MP
It is easy to see that this defines an equivalence relation gn the set of all n x n matrices. Also the

above theorem says that matrices [T]a and [T}s , representing the same operator T with respect to

different ordered bases A and B are similar. This jaises a natural question. Given a linear
operator T € L('V)~, can we find a basts—A—of-¥—<uch that [T], is very simple? What is meant by

very simple? Other than the scalar matrices, the symplest examples of matrices are diagonal

matrices.
Definition 4.17 (Diagonalizability) Let V, be a finit¢ dimensional vector space. A linear operator
T € L(V) is said to be diagonalizable if 3 a basis A of V such that [T]a is a diagonal matrix. A
square matrix P is said to be diagonalizable if it is gimilar to a diagonal matrix.

Thus the above question can be stated as: Whery is a linear operator T diagonalizable? Since an
answer to this needs many other concepts like eigenvalues, eigenvectors etc., we shall discuss it

later.
4.2  Kernel and Range of a Linear Transformation

Definition 4.18 Let V and W be a vector spfaces. Let T: V. — W be a linear transformation. Then
(i) Kernel of T= Ker T = {v € V| Tv =0} /This is also known as null space of T.
(i) The range of T= {w € W | w = Tv forfsome v € V}.

I. Ker T is nonempty, since T(0) =§. Therefore, 0 € Ker T for any linear transformation.

2. Range T is the set of ‘images’ o vectors in V under the transformation T.

verm (2 4, Atz
erv T CH) = T( )(o) ©F C)—JEA—;H()
THDSTLOAB) e g
(%) = {55 Eﬂﬁ:(l‘ S) -

“"5 g" '-o)é-z_..

LLLLLLLLLLAL LA L L L
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Theorem 4.19 If T: V — W is a linear transformation, then (i) Ker T is a subspace of V
(i) Range T is a subspace of W.

Proof Will be discussed during the lecture.

Example 4.20 (Kernel and Range of Zero Transformation) Let Tv=0V v e V, then Ker T =
V, Range T = {0}.

Example 4.21 (Kernel and Range of Identity Transformation) Let Tv =v V v e V, then
Ker T= {0}, Range T = V.

Example 4.22 (Kernel and Range of Projection Operator) Let T: R*R® defined by

T(x1, X2, X3) = (X1, X2, 0) is a projection from R to XiX plane. If T (xy, X2 x3) = (x;, X2, X3) =(0, 0,

0)=0 = x,=0, x, =0. Therefore, Ker T = {(x1, X2, x3) | x; =0, xp = 0} = x; axis and
Range T = {(x), x2, X3) | X3 = 0} = x;x; plane. Dim(Ker T) = 1 and Dim(Range T) = 2.

More Examples will be discussed during the lecture.

Definition 4.23 If T is a linear transformation from V — W, then we define

Nullity of T = v(T) = Dim(Ker T), Rank of T = p(T) = Dim(Range T).
4.3 One-Oneand Onto Linear Transformation

Definition 4.24 (One — One Transformation) Let T: V— W be a Linear Transformation. Then T

1sone-one if Tv, =T v,=> vi=wva e, Tis 1-1if every vector w in the Range of T is the image

of exactly one vector in V.

Theorem 4.25 Let T: V- W be a Linear Transformation. Then T is one-one iff Ker T = {0}.

Proof Will be discussed during the lecture.
Definition 4.26 (Onto Transformation) Let T: V— W be a Linear Transformation. Then T is

said to be onto if every w € W, there is at least one v € V such that Tv = w. i.e.,, T is onto iff
Range of T=W.

Example 4.27 T: R* > R? defined by T(xi, x3) = (x; - X2, 2X) + X3). Then T(1, 0) = (1, 2) and

1 -1
T(0, 1) = (=1, 1) . The matrix of the linear transformation is At = (2 | ) Since | At|#0, Arand

hence T isinvertible. Thus T is 1-1 and onto.
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Example 4.28 T: R2— R? defined by T(xy, X2) = (x1 — X2, 2X1 - 2x;). The matrix of the linear
L 1 -1
transformation is At = 5y o) | AT | =0, p(AT) = 1,V Ap=1=V (T) = 1. For example

T(1, H=0= T(0, 0). Therefore, T is not 1-1. Range T # R2. Therefore, T is not onto. It is easy to

see that Ker T = span{(1, D} and Range T = span {(1,2)}.

Theorem 4.29 If T: V—> W is a linear transformation from an n dimensional vector space Vtoa
vector space W, then Rank of T + Nullity of T=n.

Proof Will be discussed during the lecture.

Theorem 4.30 Let T: V— W be a linear transformation. Suppose that Dim(V) = Dim(W) = n.
Then (i) If T is 1-1, then T is onto. (i) If T is onto, then T is 1-1.

Proof Will be discussed during the lecture.

Theorem 4.31 Let T: V— W be a linear transformation. Suppose that Dim(V) =n and Dim(W) =
m. Then (i) If n > m, then Tis not 1-1. (i) fm>n, then T is not onto.

Proof Will be discussed during the lecture.
4.4 Isomorphic Vector Spaces

Definition 4.32 (Isomorphism) Let T: V—> W be a linear transformation. Then, T is an

isomorphism if T is 1-1 and onto. 4
Definition 4.33 The vector spaces Vv and W are said to be isomorphic, if there exists an

isomorphism T from V to W and we writeV =W if V is isomorphic to W

Example 4.34 (An isomorphism between R® and P;) Let T: R}—P, be defined by

T(a. b,c)=a+ bx+c x2. Verify T is linear. Suppose T(a, b,c)=0=0+ 0x+0 x2. Then
a=b=c=0.ie,KerT= {0} > Tis I-1.Ifp(x)=a + a1 x+ & x2, then p(x) = T(ao, a1, ay) =

Range T = P2. Therefore, T is onto. Therefore, R} = P,

Remark Dim(R3) = Dim(P;) = 3. Once we know that T is 1-1, we know that T is onto. It was

unnecessary to show that T is onto.

The following theorem illustrates the similarity of two isomorphic vector spaces.
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Theorem 4.35 Let T: V— W be an isomorphism.

(1) Ifvi, va, .. .,vaspan V, then Tv,, Tva, ..., Tv, span W.
(ii) If vy, ;;2, . . »,Vn are linearly independent in V, then Tvy, Tvy, . . ,Tv, are linearly
independent in W.

(i) If{vi, va,...,vn} is a basis in V, then { Tvi, Tv, .. ,Tv, } is a basis in W.

(iv)  If V is finite dimensional, then W is finite dimensional and Dim(V) = Dim(W).
Proof Will be discussed during the lecture.
Theorem 4.36 Let V and W be two real finite dimensional vector spaces with Dim(V) = Dim(W).
Then, V=W.

Proof Will be discussed during the lecture.

Corollary 4.37 Every real vector space of dimension n is isomorphic to R".
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CHAPTER 5
INNER PRODUCT SPACES

Just as a vector space generalizes the concept of addition of two vectors and the product of a scalar
and a vector, the concept of an inner product is a generalization of the usual concept of the dot
product of two vectors. This extension enables us to generalize other notions that depend on the
concept of dot product, such as length (magnitude) of a vector, distance between two vectors,
orthogonality, angle between the two vectors. All these in turn are highly useful in developing the
practical notions of approximation, convergence etc. It is convenient to give the definition of an
inner product in the context of a complex vector space. For a complex number z,Z will denote its

complex conjugate.

5.1 Definitions and Examples

Definition 5.1 Let V be a vector space over C. An inner producton Visamap<,> VxV >C

satistying the following axioms. We denote the image of (a, b) € V x V under <,> by <a, b>.
(1) <a.a> 20V ae Vand
<a,a> =0 <a=0
(1) <a+b,c>=<a,¢>+<b,c>VabeceV
(i) <aa,b>=a<a,b>VabeV,aeC
(ivy <b,a>= <ab>VabeV

Remark

I. If V is a vector space over R, the above definition is modified in an obvious manner.

<, > isamap from V x V to R and the condition (iv) becomes

<b,a>=<a,b> Va,beV.

2. Condition (i) is sometimes expressed by saying that the inner product is positive definite.

Similérly (ii) and (iii) are expressed by saying that the inner product is linear in the first

variable; and (iv) by saying that it is conjugate symmetric.

Is an inner product also linear in the second variable? In general no. This will be clear by looking

at some examples.
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Definition 5.2 An Inner Product space is a pair (V, <, >) where V is a vector space over C (or R)

and <, > is an inner product on V.

n ——
Examples 5.3 V=C" Forz=<z,...,z,>,w=<wj, ..., W, > define <z,w> =szwj Lt
I=t

is easy to check that this map satisfies all the conditions in the Definition 5.1. This will be the case

usually. Also note that <z,/1w>=Zzl./1wj=Z<z,w>¢/1<z,w>, when A # A and
J=1

<z,w> # 0. This shows that in general, the inner product is not linear in the second variable.
Examples 5.4 V=R" Forx=(x;, ... Xa) , ¥y = (Y1, ... Yn) define<x,y >=ijyj . This is a real
=t

inner product space.

The next example is a small modification of Example 5.3.

Examples 5.5 Let t; , ... t, be any positive real numbers. Let V = C". For z, w € C", define

n R
<zZ,W>= Zt,z, w . The numbers t;’s are called weights. We can consider a similar modification
/=l

of Example 5.4 also. Also note that Example 5.3 is a special case of this when tj=1,forj=1, ... n

/Examples 5.6 Let V=C""" the vector space of all matrices of order n x n with complex entries.

Recall that for A=[ a; ] € V, Trace of A denoted by tr (A) is the sum of all diagonal elements of

A. Thus, tr (A) = Za].j . Also A* denotes the conjugate transpose of A; thus if A* = [B;], then
j=1

Bii =ot_ji forall i,j=1,...n.NowforA,B e V, define <A, B> = tr (AB*). It is easy to show that
this defines an inner product on V if we note the following: If A = [aj] and B=[B;], then

<A ,B>=tr (AB*) = Z":}”_:auﬁ,-,. Mote Hst T fwe  owiden  mtnices will
=t j=| ; yLaVQ Ln-}w'vx) o) we 3t an ex - g[ ja

APace -
/ Examples 5.7 Let V = C [0,1], the vector space of all complex valued “Continuous functions on ¢

1
[0,1]. Forf,g € V,define<f,g>= If(t)g(t)dt. Again it is easy to see that this is an inner
0

product. A small modification of this can be obtained by introducing a weight function

w (1), such that, w (t) > 0 for all t (for example w(t) = e') and defining a new inner product

<fg> = [wofvg®dt. Neote 5 ifwe (oviden yveal valueol £
0 . - _/
Ten WL oged an Qxc-vv\;ﬁ e b veal AN voof iy -

«? IS&LQ s




In example 5.6, if we consider matrices with real entries and make obvious modifications in the
definition of the inner product, we get an example of a real inner product space. Similar comment

holds if in Example 5.7, we, consider real valued functions instead of complex valued functions.

@r_ecall that Q € C"*" is called Hermitian if Q* = Q and itis called positive definite if

x* Qx >0 V x e C" with x # 0. It is easy to see that for such a positive definite matrix, Q
induces an inner product on C" in a natural way as follows: For z, w €C", define <z, w>= w* Qz,

where we regard the element z, w € C" as column matrices and 1 x 1 matrix w*Qz is identified
N

with a complex scalaa

It is also true that every inner product on C" (or for that matter on every finite dimensional

inner product space) arises in this fashion. To see this, recall that any inner product is

finear in the first variable. This means that, if we fix an element y in V, and define a map
fy:V—>C,by fy(x)=<x,y>, x €V, then fy is a linear map; in fact, a linear functional. This, in
particular implies that f, (0) =<0,y >=0, V y € V. Also fy(aa + Bb ) = afy(a) + Bfy(b), hence
<caa+fb,y>=a<a,y>+B<b.y>,foralla, b,ye Vanda, B € C.

Is the inner product also linear in the second variable?

To answer this, consider fora. b, ¢ € Vand o e C.

<a,b+ec>=<b+c,a>=<ba>+<c,a>

=<b,a>+<c,a>=<a,b>+<a,c>

Also,<a,ab>=<agb,a>=a <b,a>=q< b,a>. This shows that when V is a complex inner

product space, inner product is not linear in the second variable. It is a map that is called conjugate
linear . To summarize, inner product on a complex inner product space is linear in the first variable
and conjugate linear in the second variab@

Note that if V is a real inner product space, then the inner product is linear in both the variables.

—

Now letay, ... ,a,, by, ..., b, € V. Let x=Za].aj.,y=Z,Bkbk . Then
7=l k=l

<Xy >:<Za/a/’zﬁkbk>zza/ <a./’zﬂkbk>
7=l k=1 /=1
=

=ia,iﬁk<a,,bk>=z ia/ﬁk<a,,b,‘>

k=]

=1
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Now suppose A = {a, , ... an} is an ordered basis of V. Thenx,y € V can be uniquely written as

xzzn:a/aj,y =Zm:ﬂ,‘b,‘ . Then as above, <x,y >:i Zm:ajﬁ,‘ <a,,bka
j=1 k=1

j=1 k=l

bowt S
i In other words, if we know the inner product of pair of basie elements, then we can find the inner

product of every two elements in \5

@sp this inner product can be expressed in a convenient matrix form. Let Ga=[<aj, ak>]hxn.

This is called the matrix of the inner product <, > with respect to the ordered basis A. Recall that

x and y also have representations as column matrices with respect to A, given by,

By

[a

=

[x]Ja=|. [,[yla=|. |. Then <x,y>= . Zajﬁk <aj,b,(>=[y];GA[x]A, where we identify

T

matrix of the order 1 x 1 with the corresponding scalar. Identifying x and y with their matrices, the

above formula can be written as <x, y> = y* Gx, where we write G = Ga sFrom this it is easy to

prove that the matrix G of the inner product satisfies the following properties:
(i) G*=G, (i) G is positive definite
We now discuss some geometric concepts depending on the concept of an inner product. First is

the concept of norm which is an analogue of the concept of a magnitude of the usual two or three

dimensional Ehzsical vectors.

@eﬁnition 5.8 Let V be an inner product space and let a €V. Then the norm of a denoted by [a]|

is the non-negative square root of <a, a>. Thus lla]l = < a, a>'? or la]? = <a , a>. Since

<a,a>2>20VaeV,this is well defined.

Examples 5.9 Let V=C? as in Example 5.3. Consider a=(1+1i,2-i).
Then |jaf* = <a,a>= (1 +i) (I+4) + (2 —i) (2-1) = 2+5. Thus ja| = 7.
Examples 5.10 Let V = C[0,1] as in Example 5.7 above. Let f(t) =2+ Sit, t e [ 0,1].

Then |If|* = <f, f - [ fdt = fofdt = =4+ 2237 =\/3—_7.
en|ff>=<f, f> oj (t) f(t) dt 6ﬂf(t)| dt j(4+25t ydt=4 + =5 Thus |If]] S

0

Next we see a few properties of norm.
Theorem 5.11 Let V be an inner product space. Then

() flal20Vae Vand |al =0 < a=0
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(i) ]Aall= |A| llafVae Vand A € C

(iii) Cauchy — Schwarz inequality: [<a,b>| < |ja|| |bllVa,b eV
(iv)fla+bll< fla|+ |b|Va,b eV

Proof (i) Follows from the Definition of Inner product

(i) Leta e V, A € C. Then

[AalP=<Aa, Aa>=A<a, Aa> =A A <a,a>=Af |a?

(iii) Leta, beV and t € R. Then

O<<ta+b,ta+b>=t"<a a>+t(<a, b> + <b, a> ) + < b, b> = * ||aJ’ + 2t Re <a, b> +|jb|]".
The right hand side of the above is a quadratic expression in t and it is nonnegative for all real t.
Hence the discriminant is < 0. That is, 4 (Re <a, b>)* — 4 |l IIbl> < 0. This gives

[Re <a, b>| < [la]| ||b|| and completes the proof if V is a real vector space, as in this case, since
< a, b> is real, Re <a, b> = <a, b>.
If V is a complex inner product space, we need some more work.

Letz=<a,b>and A=1.ifz=0
- |

N |N

Then |2 | =1 and Az = |z|. Now |<a, b>j =|z|=Az=Re (A z) (Since A z = |7] is real)
Therefore, [<a, b>| =Re (A <a, b>) = (Re < Aa, b> ) <|[A a]| ||b]| = || |ja]| [|b]| = la]] ||b].
(iv)Leta,b e V. Then|ja+b|’=<a+b, atb>=<a,a>+<b,a>+<a, b>+<b, b>
= |lalf” + Ib” + 2 Re <a, b> < [lalf* + [Ib]|2+ 2 [la]| Ib]} by (iii) above
= (llall + {ibll)” .
Hence, [la + bj| < [la|| + ||b].

If we apply the Cauchy-Schwarz inequality to inner products in the above examples, we get the
following inequalities:

" _ n 2 }é n ) %
Zz/w, S[ZIZJIJ (Z‘WJIJ Vz=(z1,...,Z), W=(Wy,...,wW,) e C"

(ii) [ tr (AB*)|[ < (tr (AA*))"? (tr (BB*¥))'"? V A, B € C"*"

(1)

A
(i) | [ f(0) g()ar

10

i /I/Z | }é
s[ﬂf(t)lzdtj (ﬂg(t)!zdt] VfgeC[o0,1]
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Definition 5.12 Let V be a vector space over R or C. A norm on V is a function || |1 V- R
satisfying the followiﬁg:

() la]=20Vae Vand |a|=0 < a=0

(i) |ral|= || |lal Vae VandA e Ror C

(iii)]la+ b|| < Jlall+ bl Va,b eV

A normed linear space is a pair (V, || ||), where V is a vector space and |} || is a norm on V.

The above Theorem shows that if a vector space has an inner product, then it also has a norm
induced by that inner product by the relation |jal|=<a , a >!2 But there can be other norms on the

vector spaces that do not arise in this fashion from any inner product. Here are a few examples:

n
For z eC", define |jz||; =Z|z,’ , Iizllo = max{|zjl,j=1,2 ... n}. Then || || and || | are norms on C".
j=1

i
Similarly, for f € C[0,1], define [|f]|; = _ﬂf(t)]dt and ||flle= sup {|ft)| : t € [0,11}. Then || ||; and |} ||
0

are norms on C[0,1].

How do we know that these norms are not induced by any inner product?

Exercise

(i) Show that if || [| on V is induced by an inner product, then it satisfies the parallelogram
identity: ¥ a,b € V, ||a+b|? + [la b | =2 [lal]* + 2 {fb]".

(ii) Show that || ||; and || |l do not satisfy the parallelogram identity.
5.2 Orthogonal Bases and Gram-Schmidt Orthonormalization

Another geometric concept that depends on the notion of the inner products is that of an angle
between two vectors.

Definition 5.13 Let V be an inner product space and a, b € V. We say that a_is orthogonal to b,
denoted by a L bif<a,b>=0.

A subset A c V is called orthogonal if any two distinct vectors in A are orthogonal to each other.
An orthogonal set is called orthonormal if every vector in it is of norm 1.
Thus, A is orthonormal if Va,be A, <a,b>=0ifa#b.

=lifa=b
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Example 5.14 Leta = (I, 1), b= (1, -1) € R%. Then <a, b>=0. Thus {a, b} is an orthogonal set.
However, it is not orthonormal. On the other hand, the standard ordered basis of R?, namely,

{e; = (1, 0), e =(0,1)} is an orthonormal set. Similarly standard bases in each R" and C" are

orthonormal sets.

Example 5.15 Let V = C([~n, ©t ]) with the inner product < f, g> = J‘f(t)_gadt, forf,g e V. Let

fo() =1, fi() =t Vte[-n,n]. Then <, fi >=0. Thus {fo, fi} is an orthogonal set. It is not

orthonormal because < fy, fp>=2

int i nt —l mt l

Now let gn(t)=% t=[-mn,n]. Then <g,, gn>= j | s f_dt__n e""‘"‘"dt
=0ifn#m
=lifn=m

Thus {ga=n=0,%l, £2, ...} is an infinite orthonormal set in V.
Theorem 5.16 (Pythogoras Theorem) Let V be an inner product spaceanda b e V. Ifa L b,
then jla + bj|* = jja]f* + {b|.
Proof |la + bl = <a + b, a + b> = <a, a> + <b, a> + <a, b> + <b, b> = af + |bJp,
sincea 1 b, <a,b>=0=<p ,a>,
There are several advantages of working with orthonormal sets. For example, suppose
A={a,, ..., a,} is a linearly independent set and x € span (A). Then x can be uniquely expressed
asx=a a+...+ta,a,.
Given a vector x, if we want to compute the coefficient a;, then we have to solve a system of n
equations in n unknowns a,,... ,@n. However, if a, ... a, is an orthonormal set, this problem
becomes very easy. Consider for example,
X,a;>=<qg;a;+... +o,a,,a >

=0 <a;,a >tmwm<a,a;>+... t+a,<a,, a;>

=q.
Thus a; = <x , a;>. Similarly, ay = <x, a,>, ... an = <X, a,>. This also means that if x = 0, then

each a; =0, forj=1, ..., n. We have proved the following:




JgJdITdudJe

q

Theorem 5.17 Every orthonormal set is linearly independent.

The converse of the above theorem is obviously false. For example, in R3, the set

{a1, a;, a3}, where a, = (I, I, 0),a=(,1,1),a; = (1,0, 1), is linearly independent but not
orthonormal. On the other hand, given a linearly independent set A in an inner product space, we
can find an orthonormal set U such that span (A) = span (U). We now describe the procedure for
doing this known as GRAM — SCHMIDT PROCESS.

Theorem 5.18 Let A = {a, ... } be a linearly independent set of vectors in an inner product

space V. Then we can obtain an orthonormal set U = {uy,...} such that for each Js

span ({ay,...a;}) = span ({u,....u}).

Proof By mathematical induction. Let j = 1. Since A is linearly independent a, # 0.

Let u, =|a—'”. Then clearly {u;} is an orthonormal set and span ({a;}) = span ({u;}). Next,
aI

suppose that for j = m, we have constructed an orthonormal set {uy,...,un} such that

span({a,...,an}) = span {uy,...,un}). Consider j = m+1. Let by, = Ans) — Z(am,,uj)uj. First
=i

note that bn+; # 0, or otherwise, am+, € span ({uy,...,up}) = span ({aj,...,an}) which is a

contradiction. Next for k=1,...,m

(b, )=(a,.. 1, )—<Z<am+,,uj>uj,uk>

(B 0) =3 (8,000, o1, ) Co(u,m,) =0 forj = k)

1=

:<a'"+"u">—<am+l’uk>=0

Thus by+; L wuy for k = I, ... ,m. Let upy =” :))'"*' ”. Then {u,...,u, >Um+1} is an orthonormal set.
m+l

It also follows that
span ({;, ..., Up, Umes }) S span ({ur, ..., up, bpy})
cspan ({uy, ..., Uy, ane})
cspan({aj, ..., an, any })
Similarly, we can show span ({a;, ..., a,, am+1}) < span ({u,, ... > Um , Umep}).
Remarks 5.19 The above proof shows that this GRAM-SCHMIDT PROCESS can be also used
to check whether a given set is linearly independent. If A={a, ...} is linearly dependent, then for

some m, an+; € span ({a, , ..., am}) = span ({u; , ... , Wm}). Hence at this stage bpy;

will become 0.
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Examples of applying Gram-Schmidt Process

Example 5.20 Let us apply this method to the set A = {a;, a2, a3} < R3 considered above.

b

2 V2

a = (]’130) s a = (Oalal) , a3 = (1,031) ”a]” = \/_ Hence Uy —L = (_1— L7O)°

lla, |l

1 1 1 11 11
b;=a;-<au>u =0,L,1)- —=| —=,—F&= =0,L,1)- [ =,=,0| = ~| =,=,1
I V3 b 2
Ibaf == + — + 1==;||bsll= .Hencewy= 2= -—,—=,—|.
g T g t1Tg b= 2 b, | 6°J6 3

I 1 2
b3 = a3 - <a3> ul> u — <a3, u2> u; = (]s 03 1) —_(—3—:0 1 B s Ry =
V22 J6

2 J6'J6 3
- (1,0, 1)_(1 1,0]_(1,1,1J _ (z,_z,z)
22 6 63 3733
= D1 —[—'- L ) Thusu={i(1 1 O)L(-l 1,2) —1—(1 -1 1)}
b W3 VBB V2 e T3

I
Example 5.21 Let V = C([-1, 1]) with the inner product, <f, g> = If(t)g(t)dt, f,g € V. Let

-1
A= {to, fi. ... fa, ...}, where fo(t) =1, fi(t) =t, ... fy(t) =t"...t € [-1, 1]. Then A is a linearly
independent set. Now we apply Gram-Schmidt process to A. This will be more involved and time

consuming compared to last example because calculation of inner products involve computing
integrals.

|
=1 flP= [1dt=2, || = L _ L

2 = fO —
i R TRV

| 1
g =fi —<fi, po> po = fy as <f| , po > = jf(t)poa)dt——-jtdt 0, || il = jtZdt=§,nf.||=%
-1 ~1

Thusp,—L:—%,
e 2
1 i
! 12 2 3
g2 == <f, po> po— <f, p>p1; <fp, po>= |’ —=di=—=Z===; <fh,p>= [?=tdt=0
2, Po _J'. \/5 \/53 3 2, P1 —JI.
Th f V2 LI | gall® il l]zd 8
usgv-w—~f~-—=_——. en = U—=|dt=—
N 3 & J,( 3) 7 45
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Proceeding in this V\'/ay,for each n, we get a polynomial p,, such that U = {po, pi, ... pa} is an
orthonormal set. Suitable scalar multiples of these polynomials are known as Legendre
polynomials. These are well known polynomials with many interesting properties and several
applications to differential equations.

Similarly many other sets of polynomials can be obtained by applying Gram-Schmidt process in a
suitable inner product space. Some well known examples include Hermite polynomials, Laguerre
polynomials.0

Theorem 5.22 Every finite dimensional inner product space has an orthonormal basis.

Proof Follows by applying Gram-Schmidt process to any basis of the space.

Theorem 5.23 Let V be an inner product space and U = {uy, ... u,} be an orthonormal set. For

n
x € V,defineu = Z <x, u> u;, Then
1=l

(1) <x-u,y>=0 Vy e span (U).

(i) (Bessel’s inequality) [ul’ =" |<x, up> < x|/
j=1

(i) IfUisabasisof V.then () x =Y <x,u>u and (b) |x|’ = |<x, up?
J=i J=1
In this case (iii) is called the Fourier expansion of x with respect to the orthonormal basis U and
(i) is known as the PARSEVAL’S identity.

Proof Consider fork =1, ... ,n

<u, u> = <i<x,ul.>uj,uk>= '” <x,uj><uj,uk>=(x,uk> (Note: <u/’uk>=0 ifj # k

=1 J=1 =1ifj=k)

Thus <x-wu, ue>=0 V u, € U. Hence <x —u,y>=0V y € span (U). This proves (i).

Next, [Julf* = (u,u) =<2<x,uj>uj,i<x,uk)uk>= j(x,u,)<u,,§<x,ukwk>

J=! =1 =1

n n n 2

= (xu,) 3w (u, )= 3|,

7=l J= 7=l
Again the last step follows by noting that, since U is an orthonormal set, <u].,u,‘> =0ifj=k

Now, [Ix|I* = |x - uf* + |jul® > [julP’. This proves (ii).
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Further if U is a basis of V, then V = span (U). Thus x € span (U), hence x — u € span (U). Now
by (i), <x — u, x — u> = 0. Hence, u = x. Now (iii) (a) and (iii) (b) follow immediately, from (i)
and (ii).

5.3 Some Applications of the Gram-Schmidt Process

QR-Factorization of a matrix

Recall the following basic fact about the Gram-Schmidt Process.

Proposition 5.24 Let A = {a; ...} be a linearly independent set of vectors in an inner product
space V. Then by applying the Gram-Schmidt process to A, we can obtain an orthonormal set U=
{u), ...} such that for each j, span ({ar ... ,a;}) = span ({u; ..., u;}).

Now let A be a matrix of order m x n with real entries. Leta, ..., a, denote columns of A. Each a;

can be regarded as a vector in R™. Note that if {a), ... ,a,} is an orthonormal set, then ATA = I,

where 1, denotes the identity matrix of order n. This is because ij" entry of AT A is the inner
product of i and j™ columns of A (If A has complex entries, then a similar argument will give
A'A = Ip. For the sake of convenience, we shall only discuss the matrices with real entries).

In general, if the columns a, ... .an of A form a linearly independent set, then we can apply the

Gram-Schmidt process 5.24 to it and obtain an orthonormal set, say, q, ... ,qn in R . Let Q be the

matrix formed with these columns. Then, as we have observed above Q' Q =1, Further, since for
cach j, span ({ai,...,a;}) = span ({q,... ,q;}) , each a; can be expressed as a linear combination of
qi ... ,q; . Thus we can find real numbers rij such that a; = Njqi ¥ ... +rq;. Now letrj =0 if i > j
and R be the matrix with entries r;. In other words R is upper triangular. Also no r;; can be zero
(why?) so that R is invertible. The above equation can be written in the matrix form as A=QR.
This factorization of A is known as QR-Factorization and is quite important in numerical linear
algebra. Note that we have proved the following:

Corollary 5.25 Let A be a matrix of order m x n with real entries. If A has linearly independent

columns, then there exists a matrix Q of order m x n whose columns form an orthonormal set in

R", and an upper triangular invertible matrix R of order n X n, such that A = QR.
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Example 5.26 Let A = |0 1]. Then applying the Gram-Schmidt process 5.24 to the linearly
1

independent set {(1,0,1), (1,L,} in R}, we get the orthonormal set of vectors

1/¥2 0
{(l/«/i, 0, 1/\/5), (0,1,0)}. Thus the matrix Q in 5.25is given by Q=1 0 1| . We have
/N2 0
A = QR where R is an upper triangular invertible matrix of order 2 x 2. To find R, we can solve
2
the equation A=QR obtaining R=Q" A. Thus R = {\/05 ‘ﬂ .
Exercises: Find a QR-Factorization of the following métrices.
0 1 1 0 2
1. 11 2. 0 1 1 3.
0 1 1 2 0

o - O -

1
1
1 0
0

5.4 Best approximations

We frequently encounter a situation where we want to approximate an element x in an inner
product space V by some element in a subset W of V. For example, we may want to find a vector
in the plane x; +2 X2 + 4 X3 =0 which is closest to the vector (1,1,1) or we may want to find a
polynomial of degree < 3 that approximates the function exp(x) as closely as possible. This is
made precise in the following Definition.

Definition 5.27 Let V be an inner product space, x €V and W be a nonempty subset of V. Then a

vector u € W is said to be best approximation to x from W if ||x - uj| < ||x - y|| for everyy € W.

Note that if such a u exists, then ||x - u|| is the minimum distance from x to an element in W and it
is called error of approximation. Since the norms in many familiar inner product spaces are
defined in terms of sums (or integrals) of squares, these best approximations are also called least

square approximation. Another commonly used term is projection of x on W. In general, such a

best approximation may or may not exist, it may not be unique. But the situation is very
satisfactory if W is a finite dimensional subspace. In this case, there exists a unique best

approximation and moreover, we can find it by using the Gram-Schmidt process 5.24.
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Theorem 5.28 Let V be an inner product space, x € V and W be a subspace of V. Then

I. A vector u € W is a best approximation to x from W if and only if <x —w, y>=0 for all
y € W.(thatis, x — u is orthogonal to every element in W).

2. If a best approximation to x from W exists, then it is unique.

3. If W is finite-dimensional and {uy,...,u,} is an orthonormal  basis of W, then

u= Z <X, U> u; is the unique best approximation to x from W.
7=l

Proof 1. Suppose <x — U y>=0Vye W Then for every w € W, u — w € W. Hence
<X—u, u-w>=0, By Pythagoras theorem,

= WIF = 11% —u + u - wi? = jx - ulf? + flu - w2 |x - w|2.

Thus u is a best approximation to x from W.

Conversely, suppose u is a best approximation to x from W. Let Yy € W. Suppose <x — u, y>=#0.
Replacing y by -y if V is real or by any one of -y, iy, —iy if V is complex inner product space, we
may assume that

Re <x —u,y> < ¢ (5.1)

Now VvieR, u —ty e W. Hence
ux-uuzsnx—u+tyuz=<x—u+ty,x—u+ty>=ux-un2+2tRe<x—u,y>+t2nyl:2.

Thus € |fy|F + 2 t Re <x — U, y>20VteR. Hence Vt> 0, % llyl? == Re <x — u, y>. Since this

holds ¥ t > 0, we must have - Re <x — u, y> <0, that is, Re <x — u, y> 2 0. This contradicts
(5.1). Hence <x ~u,y > = 0, V'y € W. This proves 1.
2. Suppose u, v € W and both u, v are best approximations to x from W. Thenu-v e W. Hence
SX—U U —V> =0=<x ~vy, g —y> Now, ”u-v||2=<u—v, U—v>=<x—~v-—(x-u), u-v>
=X—-V,U—-Vv> — <X~u,u-v>=0 Henceu=v. This proves 2.
3. We have already proved (Theorem 5.23 (i) that if

u= Zﬂ: <X, u;> uj, then <x — u, y>=0Vy e span ({u,,... , Un}) =W,

=

Hence by 1, u is a best approximation to x from W and it is unique by 2.
Note that the above theorem gives a method of finding the best approximation to x from W, when
W is finite dimensional, namely first find an orthonormal basis of W and then use the above

formula. It is also worthwhile to note that in applying the Gram-Schmidt process to a linearly

independent set {a;,...,a,}, at each stage j+1, we actually subtract from aj4;, its projection on
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W, = span ({ay,...,aj}) = span ({uy,...,u;}) and hence the resulting vector is orthogonal to each

vector in W and in particular to each of uy,...,u;. Then we divide this vector by its norm to get the
next unit vector u;q . '

Exercises Find the indicated best approximations.

1. The best approximation of (1,2,1) from span ({3,1,2), (1,0,1)} in R.
2. The best approximation of (1,2,1) from the plane x; + x2 + x3 =0 in R’

3. The best approximation of (1, 0, —1,1) from span ({(1,0,1,1), (0,0,1,1)}) in R

4. The best approximation of f(x) = e* from P; in the inner product space C[-1, 1] with the usual

inner product.

5.5  Best approximate solutions

Consider a system of equations Ax = b, where A is a matrix of order m x n and b € R™. If this

system does not have a solution, then we look for approximate solutions, which can be considered
best in a certain sense. The following definition makes this notion precise.

Definition 5.29 Let V, W be inner product spaces, T:V— W be a linear transformation and b € W.
A vector u € V is said to be a best approximate solution of the equation T x = b if
[Tu = bjl £ |ITx — bj| for all x € V A best approximate solution is also called a least square
solution. Note that if u is a best approximation solution to Tx = b, then Tu is the best
approximation to b from the Range of T.

For any x € V, the number ||Tx — b is called error of approximation. Thus a best approximate

solution u minimizes this error. In general, such a best approximate solution need not exist and

also it may not be unique. We shall only consider the case when V=R", W = R™ and the linear

transformation T : V — W is represented by a matrix A of order m x n with respect to the standard

bases in R" and R™ . Henceforth we shall not distinguish between T and A. Thus u € R" is a best
approximate (least square) solution of Ax = b means that |[Au — b|| < ||Ax — bj| for all x € R".

Also note that the range of A is same as the column space of A and a vector y € R™ is orthogonal

to the range of A if and only if ATy = 0.
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Theorem 5.30 Let A be a matrix of order m x n with real entries and let b € R™. Thenu € R"is a

least square solution of Ax = b if and only if AT (Au-b)=0.

Proof Let u eR™ Then u € R" is a least square solution of Ax = b if and only if Au is a best

approximation to b from the range of A if and only if Au - b is orthogonal to the range of A
(Theorem 5.28) if and only if AT (Au — b) = 0.

The above theorem gives a method to find a least square solution of Ax = b, namely that to find
such a solution, we must solve the equation AT Au=ATb.

Again, in general, this new system may or may not have solution. The following corollary gives
conditions for the existence as well uniqueness of such a least square solution.

Corollary 5.31 Let A, b as in Theorem 5.30. If the columns of A form a linearly independent set,
then there exists a unique least square solution of Ax = b,

Proof By Corollary 5.25, there exists a matrix Q of order m x n whose columns form an

orthonormal set in R", and an upper triangular invertible matrix R of order n x n, such that A = QR.

Now the equation AT Au= A" b becomes R” Q"QRu= R'Q"b. Since Q'Q =1, this becomes

R'Ru = RTQT b, that is, Ru = QT b, because R is invertible. Again since R is invertible, this last
equation has a unique solution.

This corollary also gives a method of finding the unique least square solution, namely, we first find
the QR - Factorization of A and then solve the system of equation Ru = Q'b. Since R is upper
triangular, this can be solved very easily by back substitution.

Example 5.32 According to Hooke’s law, the distance that a spring stretches to is proportional to
the force applied. The following table gives the data obtained by attaching four different weights
to the spring and measuring the resultant lengths.

Weight in kg. 20 |40 |50 6.0
Length in cm. 6.5 85 |11.0 12.5

Let w denote the weight and | the corresponding length. By Hooke’s law, we expect | and w to
satisfy the relationship of the type | = rp + r; w. Thus there are only two unknowns ry and r; and
theoretically, only two measurements should suffice to determine their values. In practice,
however, there are some errors in measurements. Hence more measurements are made than
actually necessary. Each such measurement leads to one equation and we obtain what is known as

an over determined system. It is unlikely that such a system will have an exact solution. Hence
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we look for a least square (or best approximate) solution. Thus we are looking for a least square

1 2 6.6
. 1 4 Iy . . .
solution of Ar = b, where A = L sl r= and b = . Since A has linearly independent
I
1 6 12.5

columns, by Corbllary 5.31, there exists a unique least square solution u. This can be obtained

either by solving the system AT Au = AT b (see Theorem 5.30) or as mentioned after

Corollary 5.31, by first finding the QR-Factorization of A and then solving Ru = Q™b. As

remarked earlier, the second method is usually easier and faster. By any of this method, we can
I 3.1 ~

obtain I:O] = [1 5:|. Thus the function that best fits the data points is [ = 3.1 + 1.5 w. This is
§] .

called the lease square fit of the data points. This is linear least square fit. Similarly one can

consider quadratic, cubic and other higher order least square fits.

Exercises Find the least square solution for each of the following system Ax = b.

3 01 1
LA={1 2 b={ 0
2 -1 | -2
(1 1 1] [0
-1 0 1 1
2.A= b=
1 -1 0 -1
10 1 ~1] | -2
11 ) [ 1 ]
-1 0 -1
3.A=10 1 =2 b=} 3
1 -1 1 -2
10 1 0

5.6  Contraction Mapping Principle and Applications

Contraction mapping principle
One of the popular methods of finding approximate solution to an equation of the type f(x) =0 is

to convert it to the equation g(x) = x, start with some initial guess xo and find subsequent
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approximations by the scheme Xn+1 = g(x,) forn=1,2, ... . This is called an iterative method and

each x, is called iterate.

Definition 5.33 Let X be a nonempty set and T: X — X be a map. A point p € X is called a fixed
point of T if T(p) = p.

In general, a map may or may not have any fixed point. Even if it has a fixed point, it may or may

not be unique. For example, T : R — R given by T(x) = x + 2 has no fixed point, S: R— R given

by S(x) = x> has two fixed points, namely 0 and 1, rotation of a plane has a unique fixed point,
whereas projection on X — axis has infinitely many fixed points.

Definition 5.34 Let (V, || " ||) be a normed linear space and B be a nonempty subset of V. A map
f: B —> B is called a contraction on B. if there exists a constant a such that 0 <a <1 and
fx)-f(y)|<aljx—y| foralix.y € B.

Proposition 5.35 Let (V, || '||) be a normed linear space and B be a nonempty subset of V. Let
f: B — B be a contraction on B. Suppose there exists a constant a such that 0 < o < 1 and

[If(x) — f(y)|| £a ||x — y|| for all x, y € B. Further, let xo € B and let x,+; = f(x,) for n=1, ... . Then

1. If fhas a fixed point, it is unique.

2. |Ixn+1 — Xufl €0 jIx; — Xofl foralin=1, ....

n

ot
3. Form>n21, {IxXm— Xal £ — |Ix1 — xq|.

Proof: Suppose x, y are two fixed points of f. If x and y are distinct, then

0 <lix —yl| = [If(x) — f(y)ll < a {Ix — y|| < |jx — y||. Contradiction. This proves uniqueness.

Next, [[Xne1 = Xoll = 1f(xn) = fa-l < @ [[Xn = Xnil] € @ |[Xnt = Xn2] € < o [x1 = o]

Now suppose m > n. Then |[Xm — Xoll £ [[Xm — Xmall + [Xm1 — Xm2ll + - + |[Xne1 — Xall

n

<@ +a™ 4 ) fx - o <

%1 = Xo.

Note that the above proposition does not say anything about the existence of a fixed point. This is
obtained by recourse to another famous theorem known as Banach’s Contraction Mapping
principle. We shall only discuss a very toned down version of this principle.

Definition 5.36 Let (V, || " ||) be a normed linear space and let, as usual, N denote the set of all
natural numbers. A sequence in V is a function from N into V. We shall denote the elements of
such a sequence by xi, Xa,...,X,,... and the sequence itself by {x,}. Such a sequence is said to
converge to a vector x € V if the sequence {||x, — x||} of real numbers converges to 0. A sequence

{xn} is said to be bounded if there exists a positive real number M such that || x,|| < M for all n.
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Let ny, ny, ... nj,... be natural numbers such that n; <n; <... <nj<nj; < ... . Then the sequence

{Xn1, Xn2, ...} is called a subsequence of {x,}. A subset B of V is called closed if x, € B for all n
and {x,} converges to x, then x also belongs to B. For example, V itself is a closed set. Also

every closed ball, that is, a set of the type {x €: |[|x —a|| <r} for some a € Vandr> 0 is a closed

set. On the other hand, the open interval (0,1) is not a closed set in R.
Theorem 5.37 (Bolzano-Weierstrass Theorem): Let (|| * |) be a norm on R". Then every

bounded sequence in (R", || ' {|) has a convergent subsequence.

Since a proof of this theorem involves some concepts from real analysis, we shall not prove it here.

A proof can be found in any book on real analysis, for example Rudin.

Theorem 5.38 Let (||  ||) be a norm on R", and B a closed subset of R". Let f : B — B be a

contraction. Then f has a unique fixed point in B.

Proof We need to prove only the existence of a fixed point. The uniqueness follows from
Proposition 5.35. Let xo € B and forn = 1,2, ... , define x,+; = f (x, ). Since fis a contraction,

there exists a constant a such that 0 <o. < I and |if(x) — f(y)|| < a ||x — y|| for all x, y € B. Then by

. a )
Proposition 5.35, for each n 2 1, ||x,]| < ||xn — x| + {Ix1]] < 1 [Ix1 = x|l + |ixy||. Thus {x,} is a

bounded sequence in R" and hence by Theorem 5.37 has a convergent subsequence, say {Xn;j}

converging to some x € R". Since B is closed, x € B. We shall prove that f(x) = x. To prove this,

we shall show that [|ff(x) — x]| < ¢ for every ¢ > 0. So let ¢ > 0. First since " = 0

and || X, -x|| = 0, we can choose n, sufficiently large so that || X, -x|| < €/3. Then
1) -fx, YlIslix-x, fl<e/3. Also [[f(x,)~x, | = lIx, ,~x, [| < o”||x,-x,ll<€/3 by

Proposition 5.35. Hence || f(x) - x||<|| f(x)—f(x,,])H+||f(x"/)—x,,l [+l X, -x|l|<e.

With all notations as above, the vector x — x, is called the error. The following Corollary gives an

estimate for its norm.

n

o

X1 — Xoll.

Corollary 5.39 With all the notations as in Theorem 5.38, we have ||x — x,|| < 1

Proof Let € > 0. There exists m > n such that [|x — x|} <&. Then ||x — X,|} < |Ix — Xp| + ||X;m — X0 £

n

g+ |Ix; — Xol|- Since this holds for every € > 0, the conclusion follows.

61



Exercises:

I. Let X={x e R:x 21} and let f{(x) =x /2 + 1/ x . Show that f is a contraction on X,

2. Show that the error bounds given in Corollary 5.39 form a monotonically decreasing
sequence.

3. Prove that if g is a continuously differentiable function defined on a closed interval J and there

exists o such that ]g’(x)|$a<l for all x € J, then for any xo € J the sequence defined by

Xn+1 = g(Xn) converges to a fixed point of g. ( Hint: Use Mean Value Theorem).
4. In order to solve the equation x® + x — 1 =0, it can be converted to the form x = g(x) in one of
the following ways and then fixed point iteration method can be applied. Which of these
formulation(s) will lead to a convergent iterative scheme?
@x=1/(1+)  (b)x=1-%° (c) x=x"? (1+xH)'?
5. Let f be a twice continuously differentiable function defined on an interval [a, b], let x* € [a, b}
be such that f (x*) =0, f' (x*) #0. Show that the function g defined by g(x) = x — f(x)/f’ (x)
defines a contraction in an interval containing x* (Hint: Observe that g is continuous and
g’ (x*) = 0 ). The iterative method to solve f(x) = 0 using this g is called Newton Raphson
Method. Give a geometric interpretation of this method.
6. Let C = [c;] be a matrix of order n x n satisfying Z":| c,|<lfori=1,...,n

=]

Show that for every d € R" the system of equation x = Cx + d has a unique solution and this

solution can be obtained as a limit of an iterative scheme Xm+1 = Cxm + d starting with any initial

vector Xo € R (Hint: First show that ||C|l, <I. Then show that f : R® — R" defined by

f(x) = Cx + d is a contraction on R with respect to || ||, norm).

7. Show that if a matrix A = [a;;] of order n x n satisfies Iaii, > Zl a,| fori=1, ..., nthen for
J=1

J#®
every b e R", Jacobi iteration method for solving the system Ax = b converges. In particular,

such a matrix is invertible (Such a matrix is called row diagonally dominant).
(Hint: Observe that in Jacobi’s method the system Ax = b is converted to the equivalent system
x = Cx + d, where the entries cij of C are given by ¢j=0if i=j and cjj=—-a;/a; if i #j. Then use

the previous exercise).
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CHAPTER 6
SOLVING SYSTEMS OF LINEAR EQUATIONS

Our objective in this section is to discuss numerical aspects of solving a system of linear equations

of the form

a) X;t+apXz... +a;n X, =b system of n equations in n unknowns
a1 Xy tapxy...+tanyxa=Db; X1, X2, ... ,Xn

[ aj; , b,' eR

an X| +8p2 X2 ... + @py Xy = by

6.1)

P

Matrices are useful devices for representing system of equations. Equation (6.1) is written as
Ax=b;

a, aj, a, X, b,
Ay 3y a, X, b,
A= . "Iox=[ .7, b=,
anl anZ a'nn xn bn

e Construct general purpose algorithms for solving this problem: Ax=b

¢ Analyse the errors associated with the computeﬂsolution and study methods for controlling
and reducing them.

e give an introduction to the iterative algorithms.

Elementary operations

(1) interchanging two equations in the system: E; <> E;

(i)  multiplying an equation by a nonzero number: A E; = E;

(iii)  adding to an equation a multiple of some other equations E; + AE; — E;
Theorem 6.1 If one system of equations is obtained from another by a finite sequence of
elementary operations, then the two systems are equivalent.

If A" exists, then Ax = b has the solution x = A" b. If A"! is already available then this is a good

method for computing x. If not, then A™ should not be computed solely for the purpose of
obtaining x.

More efficient procedures are discussed in what follows.

Direct methods: Decomposition, Gauss Elimination method.

[terative Methods: Gauss — Jacobi, Gauss-Seidel method.
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LU decomposition Suppose A can be factored into A =LU, L is a lower triangular matrix, U is a

upper triangular matrix then Ax = LUx = b. Set Ux = 2 (solve for x by backward substitution).

Then Lz = b (solve for z by forward substitution).

L 0 0 - 0 U, up Uy,
Ly 1, 0 0 0 uy uy Uz
L= : = - 0 0, U=l0 o - :
: 0 0 0 o0
Lo Lo Ly 1 0 0 o u,, )
If A= LU, then A has LU decomposition. If L is unit lower triangular [;; =1, 1 < i < n, then we

have Dolittle factorization. If U is unit upper triangular ; u;; = 1, 1 <i < n,then we have Crouts
factorization. fU=L", then A=L LT gives Cholesky’s factorization .

A Sufficient condition for a square matrix A to have LU decomposition, is given below.

Theorem 6.2 If all n leading principal minors of the n x n matrix A are non singular, then A has an
LU decomposition.

Proof Will be discussed during the lecture.

Theorem 6.3 If A is a real, symmetric, positive definite matrix, then it has a unique factorization,
A =LL", in which L is a lower triangular matrix with a positive diagonal.

Proof Will be discussed during the lecture.

60 30 20 1 0 0} (u, u, u,
Example 6.4 A =| 30 20 15 |1=|1,, 1 0o |0 u,, Uy,
' 20 15 12 5, [ 0 0 Us,
]] 0 0 60 30 20
= 3 ! 0] {0 5 5 |= LU(Dolittle)
1
1 0 0 -
- 1 1
3 ) 3
1 1
1 — —
| 0 0 60 0 l 2 3
=3 1 0|0 0 0 1 1f=LDU=LU
1 1 Mo 0 1110 0 1
3 3
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1 1
60 0 2 3
=130 5 0|0 1 1| =LJDVDU=LL" (Crout)
20 5 % 0 0 1
1 1
Jeoo o o | eo 5\/@ 5\/@
= %\/5 S5 0] 0 V5 V5 | (Cholesky)
1
l\/—— 1 0 0 —
—J60 5 —
3 Vs NE) V3

Pivoting and constructing algorithm

In what follows, an abstract version of Gauss Elimination Method (GEM) in the guise of LU
decomposition is presented. The application of GEM to Ax = b reduces the matrix A to an upper

triangular matrix and the system is then solved by back substitution

6 -2 2 4 |12 6 -2 2 4 |12
12 -8 6 10 |34 0 -4 2 2 |10
Example 6.5 =
“13 9 3 |27 0 -12 8 1 |21
6 4 1 -18 |-38) (0 2 3 -14 |-26

(R, = 2R;— Ry R3 — % Ri— Rj; R4-‘- Ri— Ry); (2, %, —1) are the multipliers and 6 is the

pivotal element.

6 -2 2 4 12 6 -2 2 4 |12
|0 4 2 2 10 0 4 2 2 |10
1o 0 2 -5 |-9 1o 0 2 -5 |9
0 0 4 -13 [-21 :j:;iz;z 0 0 0 -3 [-3 Rom 2R, RS
(3, (—1/2) are multipliers, (2 is the multiplier,
—4 is the pivotal element) 2 is the pivotal element)
The backward subsituton yields x;, = 1 , x2 = -3 , x3 = 2 , x4 = L
2 1 0 0
Multipliers used are exhibited in a unit:lower triangular matrix L = % 3 1 0| and
-1 1 2 ]
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we note that the coefficient matrix of final system is upper triangular given by

6 -2 2 4
0 -4 2
U= .Check: A=LU
0 0 2 -
0 0 0 -3

Note The entire elimination process breaks down if any of the pivot elements is zero.
Theorem 6.6 If all the pivot elements a;’ are non zero in the process just described, then A = LU.
Proof Will be discussed during the lecture.

Pivoting The GEM, described, is not satisfactory since it fails on systems that are in fact easy to

solve.

0 1 1
Example 6.7 (] OJ (X'J = (J Apply GEM. The method fails because there is no way
Xy

of adding a multiplier of the first equation to the second in order to get a-O-coefficient for x, in the

second equation. The same difficulty is encountered in the following case also.

1
€ 1 1 2_—
1 1 :
: o . GEM yields | R 1. x= —L&=1;
1 1 X, 2 O |—— X, 2—— |
€ €

]_ —
g
xi=(1-x3) 1. 0. In the computer, if € is small enough, 2 — 1 is computed to be the same as
€ >

! ) 1. 1 . . .
—-— and denominator 1 — — is computed as ——. Therefore, x; is computed as 1 and x; is computed
£ € €

as 0. But exact solution x; = x; = 1. Therefore, computed solution is exact for x, but is extremely
inaccurate for x;.
We will further show that it is not actually the smallness of the co-efficient aj that is causing the

trouble. Rather, it is the smallness of a, relative to other elements in its row.

1 1
. . 1 - - .
Example 6.8 Consider the equivalent system € (x,) = | ¢ .GEM yields
1 1) \% 2
I -l_ X l 2__1_ ] 1
& "I = | ® | Solution isx, =——8—=“ X, =———X, =0. Again, for small
1 {x, I ! € €
0 1—— 2-— I--
£ £ €

€, Xy is computed as . and x, as 0, which is wrong. The difficulties disappear if the order of the

equation is changed. Therefore, interchange of equations leads to
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] ] X, 2 . 1 1 X, 2 .
= and GEM gives = and the solution is
€ 1 x,) . U 0 1-¢ X, 1-2¢

_1-2¢
l-¢

X, =1;x=2-x=2-1=1.

Conclusion A good algorithm must incorporate the interchanging of equations in a system when
circumstances require it.
Partial pivoting If only row interchanging is used to bring the element of large magnitude of the
pivotal column to the pivotal position at each step of diagonalisation, then the process is partial
pivoting. In this process, the matrix may have larger element in non-pivotal column, but the
largest element in the pivotal column only is brought to pivotal (diagonal) position in the process
by making use of row transformations.
Example 6.9
X, t+X,+Xx,;=6
3x,+ 3x,+4x,=20 Apply Partial pivoting
2x,+x,+3x,= 13
Largest element in the first column is in the second equation (3x,) which is not the pivotal
3x,+ 3x,+4x,=20
position, perform row transformation Ry <> Ry. Systemis x,+x,+x,=6 . Augumented
2%+ x,+3x,=13

matrix is
3 3 4l 20 3 3 4 20 3 3 20 20
o 1| 6 =| 0 0 -% "% =lo 4 _% _§
2 1 3] B es . 3
RokeRe g 2l 2| | o 0 -2 -2
3 3 3 3

(There is a '0' at the pivotal position  (Upper Triangular)
in the second row second column.
Therefore, apply R2 < R3. )

Now using back substitution:

1
—§X3=—§2X3=2; —xz+-:];x;; =—%:>xz=l; 3x) + 3%, +4x3 =20= x; = 3.

Complete pivoting In this process, the largest element (in magnitude) of the whole coefficient
matrix A is first brought to (1, 1) positions and then leaving first row, first column, the largest

among the remaining elements is brought to (2, 2) position and so on by performing both row and
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column transformation. Since there is also a column transformation, there will be a change of
position of the individual elements of the unknown vector x. Therefore, in the end, the elements of

X have to be rearranged by applying inverse column transformations in the reverse order to all the
column transformations performed.

Example 6.10

3x,+ 3x,+ 4x,=20 largest element is at first row 4 3 31 20
X, X,+X,=6 third column. Do column transformation ={1 1 1| 6
2x,+ x,+3x,= 13 C oG, 3 1 2] 13

Note the order of the individual elements of the unknown vector x. It is now (x3, X3, x1).

do R > R, - %Rl ;R3i—> Ry - %Rl. Then the system is equivalent to

4 3 3 20
0 1 1 5 Now, the element with the largest magnitudes
; - 4 4 3 is in the third row (leaving the first row aside)
0 _2 R b~
4 3 '3
4 3 3 120 4 3 3 |20
doR, &R =j0 -2 L3 =lo -2 _L 3 =%, =3,%, =1,x,=2
4 4 |5 4 4 |5
0 L R 0 0 1 2
4 4 R, =R, -(—%Rz) 5 5

Tridiagonal system The matrix A = (aj ) is tridiagonal if a; = 0 for | i-j>1.

Solution by GEM (without pivoting) Consider the system Ax =b given by

bix; —CiX2 = d
-8 X + by Xa + ¢y x3 = d,

|
=i Xi. + bi Xi + ¢ Xy = d;

—an Xn-1 + by Xp= dj
where a;, b;, ¢; and d; are known.
In GEM, the first equation is used to eliminate x; from the second equation, the new
second equation is used to eliminate X2 from the third equation and so on so that the

unknowns X, Xn., ... X; are found in turn by back substitution.
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Assume that the following stage of elimination has been reached.

O X —Ci X =S
—ax,, +bx,-¢cx,, =d,

where o 1= by , S| = d; . Elimination of x;.; leads to

[bi —E‘—C'—"] X, ~¢X;,, =4, +£‘“—‘ ie.aiXi—CiXjs1 = S (6.2)
0’x—l ai—l
_ ac,, _ aS._, ._
where o= | b, ———=L | | §j=d, +——=,i=1,2,3 ...
;4 o

The last pair of simultaneous equations are
Op-1 Xp-1 = Cn-1 Xn = sn-I
—ap Xn-1 + bn Xn = dn

Elimination of x,.; gives

[bn —ij" _d 425 g x=S, (6.3)
0’n—l an—l
Equations (6.2) and (6.3) show that the solution can be calculated from
Xp = S, L Xi = L(Si +C¢X,), i=n=1,n-2,...,1
a, a,
where o1 = by, oy = bi— 251§, =dy, Si=di+ 2= (=123 . n.
a a.

Comment on the stability of GEM

Theorem 6.11 The non-pivoting GEM for solving the set of linear equations Ax = b, with a
tridiagonal matrix A, is always stable (i.e. with no growth of round-off errors) if

() a>0,b>0andc;>0 |

(i) bi>a +ci,i1=1,2,...n,defining co = a5 =0

(i) bj>a+c;, i=1,2,...n, defining a;,=¢,=0
It is to be noted that conditions (i) and (ii) which ensure that the forward elimination is stable, staie
that the diagonal element must exceed the sum of the moduli of the other elements in the same
column of the matrix A of coefficients.
Conditions (i) and (iii), which ensure that the back substitution is stable, state that the diagonal
element must exceed the sum of the moduli of the other elements in the same row.

Proof Will be discussed during the lecture.
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Diagonally Dominant Matrices

Sometimes a system of equations has the property that GEM without pivoting can be safely used.

One class of matrices for which this is true is the class of diagonally dominant matrices. This

property is expressed by the inequality

la, | > Z'a,[ I<i<n (6.4)
=1

1%
If the coefficient matrix has this property, then in the first step of GEM, we can use row 1, as the
pivot row. Therefore, the pivot element ay; is not zero by (6.4) . After step 1 has been completed,
we would like to know that row 2 can be used as the next pivot row. This is answered by the next
Theorem.

Theorem 6.12 GEM without pivoting preserves the diagonal dominance of a matrix.

Proof Will be discussed during the lecture.

Corollary 6.13 Every diagonally dominant matrix is non singular and has an LU - factorization.
We know that if all the pivot elements a{y) are non zero in the GEM, then A = LU. This result
together with previous theorem implies that a diagonally dominant matrix A has a

LU — decomposition in which L is unit lower triangular. The matrix U, by the preceeding theorem,

is diagonally dominant. Hence, its diagonal elements are nonzero. Thus, L and U are non singular.

Norms and Analysis of Errors

Recall the definition of vector norms introduced earlier.
Yector norms On a vector space V, a norm is a function “ . " from V to the set of non negative
reals that obeys the three postulates:

Ix|>0if x#0,xeV
")»x” = lkl ”x||,if7LeR,er

[x+y | <ix| +1ylifxyev

Think of | x || as the length or magnitude of the vector x.

Y
The norm on R" is the Euclidean norm defined by x|, = (Z xf) , where x = (X1, X,...Xn ).
i=1

Other norms are | x | =  max

€t1<n

X,I, (leo - norm); " X "l =i|x,| (i —norm)
i=l
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Matrix norms

We define matrix norm in such a way that it is intimately related to a vector norm. If a vector norm

| . || has been specified, the _matrix norm subordinate to it is defined by

| Af=sup{|Au] :ueR" Jul=1} 6.5)
This is also called the matrix norm associated with the given vector norm. Alisannxn matrix.

Theorem 6.14 If || . | is any norm on R", then (6.5) defines a norm on the linear space of all

n x n matrices. That is, | A | satisfies | A | >0
| 2a | =[2]]A]
jA+Bl<|a]+|B]
In addition. JAx| < |JA]|lx].x e R".
Remark Matrix norm subordinate to a vector norm also satisfies

[} = rand JAB]<[A[[B].

In particular HA2 “ < ”AH2 and by induction HA" | < | A" foralin,

For the vector norm || x| =max |x;| , we now compute its subordinate matrix norm.

1<1<n

“AH , = sup ”Auny = sup {lmax l(Au),l} = max { sup {(Au),|}
bk, = ) fuf,=tAl=r=n SeEitaf, =

" n
- ,‘2?3,.{‘,:‘}{8. >, }: max 3|
Thus, if the vector norm | . ||, is defined by | x|, = max |x,|. then its subordinate matrix norm is
- - Sr<mnm

JA], = max 3,
T =l

Note We have used the fact that two maximization processes can be interchanged.

n
23,4,

=1

Also sup for fixed i and " u ||w =1 is obtained by putting

u=+1 ifa; 20

and u=-1.if a;<0.
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The condition number and perturbations

Given Ax = b, we see how the solution x changes as the right hand side vector b changes (Assume

Ax, =b
|A]|#0). Look at two specific systems ! '} =X, -X,= A7'(b,-b,). Therefore,
Ax, = b, )

s ilpd

=]

. . . . . . l 2
relative error in x; as an approximation to x; is given by ”

Our interest is to bound the change in solution by something that does not depend on the solution.
Thus, we want to get rid of the x, in the denominator. To do this. note ”A“ ”x,“ 2 ”b,”, so that

Al

< and therefore
%HHW

I b,

f
[EENT jloed

The multiplying coefficient HA“ “A"“ is interesting. It depends entirely on the matrix in the

problem not on the right hand side vector, yet it shows up as an amplifier to the relative change in

the right hand side vector. We call it the condition number.

Definition 6.15 For a given matrix A € R"*" and a given matrix norm “ . ”, the condition number

with respect to the given norm is defined by K (A) = “A” ”A"“. If A is singular, we take
K{A)= o0

The justification for taking K (A) = o, if A is given as singular is presented below.

Theorem 6.16 Let A € R"™" be given and non singular, Then , for any singular matrix B € R"*",

cIA-5
Kea) Al

Remarks The theorem tells us that if A is close to a singular matrix. then the reciprocal of the
condition number will be near zero. That is K (A) itself will be ‘large’.

Thus, the condition number measures how close the matrix is to being singular; if K(A) is large,
then we know that A is close to being singular,

Solving systems that are nearly singular can produce large errors.
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Example 6.17

Let € >0 , A='(ll l+8)’ ”A”w=2+8
—€

Al=¢" (_118—1_18); ”A"Ha° = £7(2+¢€)

2
K( A) = (&j >iz. If €< 0.01, then K(A) = 40,000. In such a case, a small relative
€

€
perturbation in b may induce a relative perturbation 40, 000 times greater in the solution of the

system Ax = b.

Theorem 6.18 (Effects of perturbation in b) Let A € R"* " (non singular) and b € R" be given

and define x € R" as the solution of the linear system Ax = b. Let 8 b € R" be a small

perturbation of b and define x + & x € R" as the solution of the system A(x + & x) =b + & b. Then

1y o 4

[x] o]

Proof Will be discussed during the lecture. 7

A similar result involves the residual of a solution. Let x. be a ‘computed’ solution to Ax = b.

Then, the residual is the vector r = b — Ax,. That is , r is the amount by which x_ fails to solve the

system. If r = 0, then x. is exact. Therefore, one might then think that if r is small, then x. is close
to the exact solution; this does not happen always.

Example 6.19 Consider the system Ax = b, where

3.02 -1.05 253 -1.61
A=] 433 056 -1.78{; b=| 723
-0.83 -0.54 1.47 -3.38

Solve by GEM, using pivoting and carrying three digits rounded, we get the system as

4.33 0.56 -1.78 7.23
0 ~-1.44  3.77 —-6.65
0 0 -0.00362 0.00962

and the solution is x. = (0.880, —2.34, —2.66). Compute Ax. = (—1.6047, 7.2348, -3.3716), which is
close to 'b’. The exact solution is (1, 2, —1).

The following theorem gives the effects of residual on accuracy.
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Theorem 6.20 Let A € R"*™ (non singular) and b € R" be given and define x.c R" as a

computed solution and x is the exact solution of the linear systtm A x = b. Letr € R" be the

residual r = b — Ax.. Then ” l<K(A) ”r” .

I o]

Proof Will be discussed during the lecture.
Remark The above result shows that we can not trust the solution to a problem involving an
ill-conditioned matrix unless we take special care in the solution.

Relation between residual error r=b — Ax. and the error e = x — x., where Ax=b

Consider Ae = A (x — X)) =Ax -~ Ax, = b - Ax.=r. Therefore, Ae = r. It can be shown that

U lel el goay Il
K(A) |b|~ ”x” (A)”b” (6.6)

(6.6) shows that the relative error in the computed solution vector x. can be as great as the relative
residual multiplied by the condition number. It can also be as small as the relative residual divided
by K(A). Therefore, when the condition number is large, the residual gives little information about
the accuracy of x.. Conversely, when the condition number is near unity, the relative residual is a
good measure of the relative error of x..

Iterative improvement to correct X

Definee=x-x E,O), r=>b — Ax.. Then Ae =r, solve fore. Apply this as a correction to xﬁ‘”. Thus,

. el . . . ..
the corrected x{" is x() =x©@ + ¢ if ” (n” is small, then it means that x " is close to x. This is
x

<

so if the computation of r is as precise as possible.

423 -1.06 2.11 5.28
Example 6.21 A= |-253 677 0098 ; b=] 522
1.85 =2.11 -2.32 -2.58

Exact solution:
x=(L1L1), xP=(0.991, 0.997, 1.000)

A xc= (524511, 522246 ,-2.59032); r=(0.0349, -0.00246, 0.0103)
Solve Ae=r; e=(0.00822, 0.00300, —0.00000757)

Therefore. x (V= x(” + e = (0.999, 1.000, 1.000)

In general. repeat iterations until corrections are negligible.
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In what follows, we will be discussing the iterative methods for the solution of a system of

linear algebraic equations. In order to determine whether an iterative method converges or
diverges, we need to find out if the error increases or decreases as iterations are continued. If we
are solving for one variable, then the error is a simple number, whose absolute value will tell us
whether the error grows or decays. However, when N variables are solved simultaneously, then
the error is a vector quantity and we need to come up with a way of determining the magnitude of
this vector qu'antity.
The need for a matrix norm arises when one tries to answer the following:

I. Under what conditions can we solve the system Ax = b?

2. How stable is the solution?
i.e. if the matrix A or right hand side vector b is perturbed, then how different is the new solution
from the previously obtained solution to the unperturbed system?

The concept of a norm for a matrix allows us to define a quantity known as the condition number

of the matrix.

Systematic iterative methods for solving large linear systems of algebraic equations

Consider a system of N equations in N unknowns
ap Xy tapxyt ... taNXNT b

a9 X tap Xa + ... tan Xy = by

ani x|+aN2x2+...+aNNxN=bN, a;#0,i=1(1) N.
Rewrite this as
1
X; = —[b-a,x, - —ayxy]
ap,
1
X2~ [, —ay X, —a,y Xy ]
ax
oo
XN= ——[by —ay, Xy —ayy Xl ]
NN



Gauss — Jacobi Method: (GJM)

l =1 N )
XSHH) — __l:b, _Z a,/ x(/'1) _ Z ai/ X(j")]’ i=1 (l) N. y
a 7=l . |

" J=i+l

Gauss — Seidel Method: (GSM)

. l =1 N ) ~
X" =—1b, —Z a, x"" - Z a x" |, i=1(1)N.
/A Yy /
" 1=l

1
a =i+l

Successive Over Relaxation — method: (SOR)

-1

N
+ n W . M -
XD = ! ’+—{bl -5 a, x"-%a, x‘,’”},z =1(HN,l <w<2.w=1 gives GSM. ‘
a

7 1 1=t

!
Given -

Ax=b (6.7)

express A =D — L — U, D — diagonal matrix, L ~ strictly lower triangular, U — strictly upper

triangular, fora 4 x 4 system with

ay apy di3 a4 a 0 0 0 -
RS aas ds3 ayy 10 dy, 0 0 -
A= ’ D=1y o 0o | -
| 431 ds2 as3 d34 33
-
k"ﬂ dy dyz Ay 0 0 0 Ay
-
0 0 0 0 dpy apy ay -
3 (cu, 0 0 0 U = 0 0 Usy ayy -
1 = , 1] =
| as) as- 0 0 0 0 ay, 2
\a,y  apn a0 0 0 0 0 <

Therefore. (6.7) becomes (D -L-U)x=b
Dx=(L+U)x+b
GIM: Dx"™=(L+U)x™ +b(or) x™=D"(L+U)x"+D"'b
D' (L + U) is a point Jacobi iteration matrix.
GSM: Dx™V=Lx™Y+Ux™ +b(or)
D-L)x"" =Ux™+b©nx™ =O-L)'Ux"+D-L)"b
(D — L)' U is the point Gauss-Seidel iteration matrix.
The correction vector d™ = x"*V — x™ of the SOR method is defined by w times the displacement

vector given by GSM. Therefore.

DM —x™=Dd"” =Lx"" +Ux"V+b-Dx"
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Therefore the SOR iteration, defined by d™=w d%”) can be written as
XM _x =w DT [Lx"™ +Ux™+b -DxV]
SA=-wDT L)X = (1 -w) I +wD'U}x™+wD' b
XY =d-wDT L {0-w) 1+wD' U™+ (1-wD'L)'wD'b.
Therefore, point SOR iteration matrix is (I - w D™ L) {(1 —=w) I +w D™ U}.
Remark "point’ refers to the fact that algebraic equations approximate a differential equation at a
number of mesh points and the iterative procedure expresses the next iterative value at only one
mesh point in terms of known iterative values at other mesh points.
A necessary and sufficient condition for the convergence of iterative methods
Each of the three iterative methods (GJM, GSM, SOR) can be written as
"= x"+C (6.8)

where Q is the iteration matrix and C is a column vector of known values. (6.8) has been derived

after rearranging the system in the form

x=Qx+C (6.9)
The error e in the n" approximation to the exact solution is defined by €™ = x — x' . Then
L Q x™ _ Qx = e +H) - Q e
e =Qe"=Qre™ = . =Q" ¥

Y J(2) ‘(n)

The sequence of iterative values x'", x will converge to x asn — oo if It &¥=0.

n—»o0

Since x'” and therefore e'”’ is arbitrary, the iteration will converge iff It Q"™ =0

n-—»o

Assume that the matrix Q of order N has N linearly independent eigenvectors v, with the
corresponding eigenvalue A, s = 1,2, ...N . Then, these eigenvectors can be used as a basis for

)

N-dimensional vector space and the arbitrary error vector € , with its N components, can be

N
expressed uniquely as a linear combination of them, namely, ¥ = Z C,v,,C, —scalars.

1=1

N N
Therefore, ¢’ =Q e = % CQv,=> C A v, because Q v, = A v, by definition of an

v=| y=|

N
eigenvalue, A, is the eigenvalue corresponding to v, . Similarly & = Z C.Alv.=Q"e,.

s=l

Therefore. ¢™ will tend to the null vector as n — oo, for arbitrary e ir ‘XS‘< I for all s. That is,

the iteration will converge for arbitrary x@ if the spectral radius p(Q) of Q is less than one.
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Remark Though this proof works only for diagonalizable ¥, it is possible to give a proof for an

arbitrary matrix.

p(Q) = max j A, ]< I,pis called the spectral radius of the matrix Q. Thus Jacobi iterates converge

if p (D' (L + U)) < I and Gauss-Seidel iterates converges if p((D-L) Tuy<l.
Theorem 6.22 A sufficient condition for convergence is that I] Q“ <l

Proof Will be discussed during the lecture.
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CHAPTER 7
EIGENVALUES, EIGENVECTORS, DIAGONALIZATION

7.1 Definitions and Examples

Definition 7.1 Let T: V. — V be a linear transformation. In a great variety of applications, it is
useful to find a vector v € V such that Tv and v are parallel. i.e. we seek a vector v and a scalar A
such that

Tv=2Av (7.1)

Ifv # 0and A satisfy (7.1), then A _is called an eigenvalue of T and v is called an eigenvector of

T corresponding to the eigenvalue .

If V is finite—dimensional, then T can be represented by a matrix Ar. Therefore, we discuss the
eigenvalues and eigenvectors of n x n matrices.

Definition 7.2 Let A be n x n matrix with real or complex entries. The number A (real or complex)

is called an eigenvalue of A, if there is a non zero vector v € C" such that Av = Ay,

v # 0 is called an eigenvector corresponding to A .

Theorem 7.3 Let A be n x n matrix. Then A is an eigenvalue of A iff p (A) =det (A - Al) = 0.

Theorem 7.4 Let A be an eigenvalue of n x n matrix A. Let E; = {v |Av=24v}. E, isa

subspace of C",

Proof Letv e C'thenv e E;, @ Av=Ave (A-AD)v=0sv e Ker{(A A} . Therefore,

E; is the Kernel of the matrix (A — Al).

Note If A is real matrix, we know Ker(A) is a subspace of R" . Therefore, extending that result

shows that E; is a subspace of C". . ..

Theorem 7.5 Eigenvectors corresponding to distinct eigenvalues are linearly independent.

Proof Will be discussed during the lecture.

Remark It is significant that one can define eigenvalues and eigenvectors for a linear

transformation T: V — V without any reference to a matrix representation and without even

assuming that V is finite—dimensional.
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Example 7.6 Not every linear transformation has eigenvectors. Rotation of the plane anticlockwise
through a positive angle 0 is a linear transformation. If 0 < < 180°, then no vector is mapped
onto one parallel to it — that is, no vector is an eigenvector.

If 8 =180° then every non zero vector is an eigenvector and they all have the same associated

eigenvalue A; = —1.

Example 7.7 The linear transformation, T: R> — R? that reflects vectors in the line x + 2y=0

' 2 2 1 -1
maps (2, —1) onto itself and (1, 2) onto (-1, -2). Therefore, T( ]j = ( ]] and T(zj = ( 2).

2 1 . . .
This shows that ( ]J and [2) are eigenvectors of T with corresponding eigenvalues 1 and -1
respectively.
Remark For a linear transformation T: R” — R", one can find the eigenvalues and eigenvectors

of T by finding those of its standard matrix representation.

Example 7.8 T: R’ 5 R? is defined by T (x1 X2, X3)=(X1,—8X; +4x; - 6x3, 8x; + x5 + 9x3 ).

1 0 0
The matrix of the linear transformation with respect to the standard bases is A = | -8 4 —6 ,
8 1 9

whose characteristic polynomial is | A - A | =0givenby (1 -X) A -6) (A —=7) =0. The

-15/16 0 0
eigenvalues are 1, 6 and 7 and the corresponding eigenvectors are [ ~1/2 |, | -3 | and |-2
1 1 1

respectively.

Example 7.9 Let Do be the vector space of all functio_rég mapping R into R and having

derivatives of all orders. Let T: Dy — Do be defined by T(f) = f'. The eigenvalues and

eigenvectors of T can be described as follows.
We need to find scalars A and non zero functions f such that T = 2, f,thatis A f= ',

Consider two cases: if A =0, and A= 0.

If A =0, then we need to solve f' = 0. The only solutions of f' = 0 are the constant functions.

Thus, in this case, non zero constant functions are eigenvectors corresponding to the eigenvalue 0.
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If A# 0, then we need to solve f' = Af which gives f=k e as an eigenvector for every non zero

scalar k. The eigenvectors are of the form f=k e

Remark Computing the eigenvalues of a matrix is one of the toughest jobs in Linear Algebra.
Many algorithms have been developed, but no single method is considered the best for all cases.
We now discuss the algebraic eigenvalue problem of locating and computing eigenvalues in
special cases.

The following theorems show how to locate, crudely, the eigenvalues of any matrix with
practically no computation.

Theorem 7.10 (Gerschgorin) Modulus of every eigenvalue of a square matrix A is less than or
equal to the largest sum of the moduli of the elements along any row or any column.

Proof Will be discussed during the lecture.

Theorem 7.11 (Brauer) Let P, be the sum of the moduli of the elements along the k™ row
excluding the diagonal element ay. Then, every eigen value of A lies inside or on the

boundary of at least one of the circles |A-aw|= Py, k=12,...n

A=a,]= Y la,|=P..
i=l

12k

( xl 1 XI 2 Xl n
Proof We have 2 —a, =a, | —— |+a,,| — | +...+a,,| — |. Therefore,
LX) Xk \ Rk

Thus, all the eigenvalues of A lie inside or on the union of the above circles. Since A and A" have
the same eigenvalues. we find that all the eigenvalues lie in the union of the n circles

Vn _akk[S i

=l
1=k

a .k=1..,n

7k

e The bounds obtained here are all independent. Hence, all the eigenvalues of A must lie in
the intersection of these bounds.

e These circles are called the Gerschgorin circles and the bounds are the Gerschgorin bounds.

e If A is a real symmetric matrix, then we obtain an interval which contains all the
eigenvalues of A.

e The eigen values of the matrix A are given by the diagonal elements when it has one of
the following three forms: A = D or A = L or A = U. Therefore, methods of finding the

eigenvalues of A will generally be based on reducing A to either D or L or U or LU.

In addition, iterative methods are developed to compute largest or smallest eigenvalue in

magnitude.
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1 2 -1
Example 7.12 Estimate the eigenvalues of the matrix A = 1 1 I'| using
1 3 -1

Gerschgorin bounds.

(i) the eigenvalues lie in the regions |[A] < 5, |A| £ 6.

(i) the union of the circles [A -1] <3,|A-1| £2,]A+]| <4 and

(iii)  the union of the circles [A -1} <2, |A-1] S5, |A+]1| £2.

The first union gives | A -1| <3, | A +1|] <4 and the second union gives | A -1} < 5. The

intersection of the circles give the required region.

7.2 Power Method

The simplest methods for approximating eigenvalues are based on the observations that the
eigenvectors represent the direction in which the matrix operates and the eigenvalues represent the
gain along those directions. Thus, the quantity AMx should eventually begin to line up in the
direction of the eigenvector associated with the largest (in absolute value) eigenvalue. While this
is not an efficient approach for finding all the eigenvalues and eigenvectors of a matrix. it is useful
for finding some of them and much of the theory of more general methods is based on the essential

ideas of the power methods.

Theorem 7.13 Let A € R"*" be given, and assume that

1. A has n linearly independent eigenvectors, Xy, ISk <n

~

2. The eigenvalues X, satisfy || > |Xo] 2 |As] 2 > Al

3. The vectorz € R issuch thatz= )" &,x, and & # 0

k=1

AY z, A
Then lim \Z =Cx, forsome C # Oand lim &ﬁ\y‘z_): A
Noon X] No» (Z, A ) Z)

Proof Will be discussed during the lecture.

Remark The result of this theorem can be used to construct the most dominant eigenvalue, that is,

the largest in absolute value and the corresponding eigenvector.

) S -5

Example 7.14 Let A = | 2 6 —2 1. Let the initial vectorbe x=(-1.1, 1)
: i
2 5 -1
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x" = Ax Y = 2(~1.00000 . 0.333333, 0.333333)

x® = Ax Y = 2 (~1.00000, —0.111111,=0.111111)
X = Ax? = 22 (~1.00000 , —0.407407, —0.407407)
X = Ax D = 8.90909 (—1.00000 , —0.604938, —0.604938)

A = Ax @7 = 6.00007 (—1.00000 , —-0.999977, -0.999977)

The dominant eigenvalue is 6 and the corresponding eigenvector is (1, 1, 1).

Theorem 7.15 If A is an eigenvalue of A and if A is non-singular,then A ! is an eigenvalue of A
Proof Let Ax=Ax withx # 0. Thenx= AT (A x)=A A™' x. Hence A" x=2"'x and A" is an
eigenvalue of A

Inverse Power Method

The preceding theorem suggests a means of computing the smallest eigenvalue of A. Suppose the

eigenvalues of A can be arranged as follows: [A| 2 Ao 2 ... 2 [An-1] > |Aa] >0. This implies that A

is nonsingular, since 0 is not an eigenvalue. The eigenvalues of A are the numbers ', and

they are arranged like this: ‘l;'i >i )\;'_,12...2 l X[" >0. Consequently, we can compute A, by
applying the power method to Al

It is not a good idea to compute the inverse, A”', first and then use A™'x® =x*"". Rather, we
obtain x*" by solving the equation Ax*"” =x®_ This is done efficiently by using GEM. This

method is the inverse power method.

6 S -5
Example 7.16 Let A = | 2 6 -2
2 5 -1
6 5 s 1 0 016 S -5
D 1 13 1
lts LU factorization is | 2 6 -2 == 1 0110 — -
2 5 1 3 3 3
! 10 1{10 0 12
3 13 13

We begin with the vector x = (3. 7, -1 Ax=LUx=b=> U x®D =17 x® In each step, we

() = =140

obtain x**" by .solving Ux Then a ratio is computed and printed: namely.

(k=1
| k+1

. Before proceeding to the next step, x*Y is normalized: that is divided by its

O =%

X

{o: - norm. Then, one obtains




x" = (3.000, 7.000 , —13.000)

x'" = (~0.801653, -0.008264 , —1.00000). r, = —5.8889
x? = (~0.950887, -0.17735, —1.00000), r,= 1.19759
x? = (~0.987589, -0.007125, —1.00000), r,= —1.02750

x''" = (~1.00000, 0.00000 , —1.00000), 1o = 1.00000

Remark It is the inverse power method that opens up the possibility of efficient computation of
more eigenvalues, because by introducing shifts, we can converge to almost any eigenvalue we
want. The method will be discussed during the lecture.

Note The power methods are very useful and efficient for finding single eigenvalues and
eigenvectors; for finding many — or all — of the eigenvalues and eigenvectors of a matrix, power
methods are too costly. The standard algorithm for computing all the eigenvalues and eigenvectors
of a general matrix has been the QR iteration and this method will be discussed in detail during the

lecture.
7.3 Diagonalization

Let V be a finite dimensional vector space and T: V — V be a linear transformation. Let

A = {a,,...,a,} be a basis of V and suppose [au]=[T]A , the matrix of T with respect to the basis

A. Recall that this means that T(a )=Zaq a ,j=1l..,n.
i=]

g

Recall that the operator T is called diagonalizable if there is a basis B of V such that [T]B is a
diagonal matrix. In this section, we shall discuss the condition under which T is diagonalizable.

We say that a square matrix M = [a,/]of order n x n is diagonalizable if the corresponding
operator T given by T(a/)zZaU a ,j=1,...nis diagonalizable.
=1

Suppose T is diagonalizable, this means there is a basis B such that the matrix N = [ﬂil]= [T]B isa

diagonal matrix. We have already seen that in such a situation, these exists an invertible matrix P

such that N = P M P. M is said to be similar to N. Thus a matrix is diagonalizable iff it is similar

to a diagonal matrix. Since N = [,B,,]:[T]B, we have T(b/)zzﬂ:ﬁ,/ b,....j=1.,n If Nis a

=]
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diagonal matrix, then f =0 for i # j.Then the above becomes T(bl)=ﬁ” b,,i=1....n In other

words, T(bl_) is a scalar multiple of b; This naturally leads to the following Definition.
Definition 7.17 A nonzero vector x € V is called an eigenvector of T if 3 a scalar A such that
T(x) = Xx.

A is called an eigenvalue of T corresponding to the eigenvector x. Also x is called an eigenvector

of T corresponding to the eigenvalue A.

In this terminology, saying that an operator T is diagonalizable is equivalent to saying that V has a
basis consisting of eigenvectors of T. In particular, if Dim(V) = n, then T has n linearly

independent eigenvectors. This fact deserves to be stated prominently.

T:V — Visdiagonalizable <> V has a basis consisting of eigenvectors of T.

Next. we discuss how to determine whether a given operator is diagonalizable. For this purpose, it
is convenient to assume that V is a complex vector space of dimension n and T is a linear operator

in V. Suppose x is an eigenvector of T and A is the corresponding eigenvalue. Then

T(x)=Ax, x#0. Thus, (T-A/)(x)=0,with x#0. Hence 0#xeN(T-Al)=(Ker(T-A1)),
where A'(T- A7) denotes the Null space of (T—-A47). Hence T - A/ is not invertible. If A is any

basis of V. then the matrix [T—/U]A is not inversible. Hence det([T~/11]A):0. det([T—l[]A)

is a polynomial in A of degree n. This is known as the Characteristic polynomial of T.

Note that, this is independent of the matrix representation of T~A[l, that is, independent
of the choice of basis A. This can be seen as follows: If B is any other basis, then

there exists an invertible matrix P such that [T—}LI]BzP"[T—/U]A P.Hence

det([ T—], ) =det( P~ ) det ([ T~AL], ) det(P)=det([T-A1], ), because det(P"')det(P)=det(I)=I.

The equation det ([T—l 1], )z 0 is called the characteristic equation of T.

Eigenvalues of T are the roots of the characteristic equation, that is, the zeros of the characteristic
polynomial. Thus, in principle, all the eigenvalues of T can be found by determining all the roots
of the characteristic equation. In practice, this is an impossible task as there are no methods of

finding all the roots exactly of a polynomial equation, unless the degree of a polynomial is

small (<4). Hence we need to use numerical/approximate methods of finding the eigenvalues.
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Next suppose one such eigenvalueiis found by some method. To find corresponding

eigenvectors, we need to solve the equation Tx=Ax, x#0. This is a relatively easier task. We need
to solve a homogeneous system of equations. [Tx-Ax], =0, that is, [T-4/], [x], = 0.

This can be done by usual methods of solving systems of equations. As noted above, x is an
eigenvector corresponding to the eigenvalue A iff xeN(T—-A17). The null space of
T-AI, N(T-AI),which is a subspace of V is called an eigenspace of 4. Every non-zero vector

in this eigenspace is an eigenvector of T corresponding to the eigenvalue A. Dimension of this

space is called the Geometric multiplicity of the eigenvalue A . If d is the geometric multiplicity

of A, then the eigenspace of V has a basis consisting of d vectors. Now let 4 ,,.... 1 be distinct
eigenvalues of T with the geometric multiplicities d,....,dx respectively. No nonzero vector can
belong to eigenspaces of different eigenvalues. Using this, it is easy to show that the set of
d; +....+ di vectors, obtained by taking the union of basis of all the eigenspaces is linearly
independent. If d| + dz +....+ dy = n, then this set is a basis. Thus we have proved the following:

Theorem 7.18 Let V be a complex vector space of dimension n. Then T : V— V is diagonalizable
iff the sum of geometric multiplicities of all distinct eigenvalues of T equals the dimension n of V.

Thus to decide whether T is diagonalizable, we must

l. find all the distinct eigenvalues 4, ..., 1 of T.
2. find the corresponding geometric multiplicities d, ... , dx.
3. check whetherd;+ .... + dy, =n.

Example 7.19 Let T : C* — C? be defined by T((z,,2,))=(z,+2,,2,) . The matrix of T with

11
respect to the standard ordered basis is {O J. Characteristic equation is (A -1)* = 0, hence 1 is

the only eigenvalue. T(z)=z, z=(z,z,) € C leads to the system of equation z,+z,=2,z,=2,.

This gives z,= 0. Thus the eigenspace consists of all vectors of the form (z;, 0). This is of
dimension 1. Hence the geometric multiplicity of 1 is 1. Since this is the only eigenvalue, the sum
of geometric multiplicities is 1 2. Hence T is NOT diagonalizable.

It is clear that it is not easy to follow the above procedure unless the operator is very simple or/and
dimension is very small. The situation is somewhat better in the Inner Product spaces. First of all

the entries of the matrix of an operator can be expressed in a nice way using an orthonormal basis.
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Let V be an inner product space and A={a,,...,a,,}be an orthonormal basis of V. Suppose

<T(aj),ak>=<znlau.a’,ak >=iaii (a,,a,)=q, because (a,,a,)=1ifi=k
- - =0ifi#k
Thus «, =<T(a/),a,‘> k,j= 1,'...,n.
Definition 7.20 Let V be an inner product space. A linear operator T: V — V is said to be
self-adjoint (or Hermitian) if <T(x),y>=<x,T(y)> YV x,y € V.

It is easy to recognize self-adjoint operators from their matrix representation with respect to an

orthonormal basis.

Now, let Az{a,,...,a,,} be an orthonormal basis and let M :[T],1 =[a,/] Then as we have

nxn'®

seen above, a, =<T(al ),ak>. If T is self-adjoint, then

a, =<T(al ),ak>=<aj,T(a, )> =<T(ak),aj> =ax Yjk=l..,n
Thus if M" denotes the conjugate transpose of M, then M" = M. Such matrices are called Hermitian

matrices. If V is a real inner product space, then a,=a, for all k, j. In other words, M is a real

symmetric matrix.

Theorem 7.21 Let V be a finite dimensional inner product space and T be a self-adjoint operator
on V. Then there exists an orthonormal basis of V consisting of eigenvectors of T. In other words,
T is diagonalizable.

Proof Let Dim (V) = n. Proof is by induction on n. Let n = 1 = Dim (V). Then Ja, e V such that
ljaii = 1 and V = span({a\}). T(a,) € V = span({a,}). Hence 34, such that T(a,)=4 a,. Thus a,

is an eigenvector of T and {a,} is basis of V. Thus Theorem is true forn=1.

Next suppose Theorem is true for all vector spaces of dimension < m. Let Dim (V)=m+1land T

be a self-adjoint operator on V. Let A, be an eigenvalue of T and a, be a corresponding
eigenvector. Dividing by ||a,||, if necessary we may assume |ja||| = 1. Let W={x eV :<a,,x>:0}.

Then W is a subspace of V. Since a,¢ W, Dim(W) < Dim(V)=m + 1. Thus Dim(W) <m. In fact

Dim(W) = m. This can be seen by applying Gram Schmidt Process to any basis of V containing a,.
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Let xe W. We claim that T(x) e W. Consider <a,,T(x)>=<T(al),x>=</11a,,x>=/l1 (a,,x)=0.
Thus T(x) € W . Consider the map T|y:W— W. Clearly, <T(x),y>=<x,T(y)> vx,y € W. Thus
T‘W is a self-adjoint operatoé on W. Hence there is an orthonormal basis {az,...,am}of W

consisting of eigenvectors of T‘ w - Then A={al,...,am+l} is an orthonormal set of eigenvector of T.
To conclude the proof, we show that A is a basis of V. Since A is already orthonormal, it is enough

to show that span (A)=V.lLetz€ V. Consider x=z—<z,a,>al. Then <x,a|>:0. Hence x e W..

m+1 m+i
Hence x="Z:<x,a,>a, . Then. z=(z.a,)a, +x=<z,a|>a,+i<x,a,>a, € span({al,...,aw}) .
j=2 }=2

Let M be a square matrix of order n x n. The above theorem says that if M is Hermitian, that is,
M’ = M, then M is diagonalizable.
As a special case, this says that every real symmetric matrix is diagonalizable. More generally. it
can be proved that if M commutes with M’, that is M M = MM, (Such a matrix is called
normal), then M is diagonalizable.

Diagonalization of a (diagonalizable) matrix M mean finding an invertible matrix P such that

p' MP is a diagonal matrix. In this case, we say that the matrix P diagonalizes M. Let
M be such a diagnalizable matrix of order n x n. Then it has n linearly independent

eigenvectors, say X,,... X, With  the corresponding eigenvalues Aysees A, Thus we have
Mx, = A X, . Mx, =4,X; ... Mx, =4,x,. Let P be the matrix where columns are X....X,,

Pz[xl....,x”] _ Since, the columns of P are linearly independent, P is invertible. Also

A .. 0
MP=M[x,,...x,] = [Mx,,....Mx, ] =[l,x‘,...,/1"x"] =[x X, ]| T : |=PD
0 - A

n

Where D= diag(ﬂq,...,/l,,). Hence P~'"MP=P'PD=D. Note that the matrix P is the matrix whose

columns are eigenvectors of M and the matrix D is the diagonal matrix where diagonal entries are

the eigenvalues of M.
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1 -3 3
Example 7.22 Let A=|0 -5 6 |. Eigenvalues of A are 1 and -2. Eigenspace
0 -3

1 0
corresponding to 1 has dimension 2 with a basis consisting of x,=|0]|and xz——-(l . The
0 L

I
eigenspace corresponding to —2 is of dimension 1 with a basis consisting of x,={2|.
1

Thus A has 3 linearly independent eigenvectors and is hence diagonalizable. Now let

(1 0 1 1 0o o
P=i 0 | 2|. Then P"'AP=|0 ! 0].
0 ! I 0 0 -2

I M is a Hermitian matrix, then all the eigenvalues are real and as proved above, we can find an

orthonormal basis {x,,....x,} consisting of eigenvectors of M. In this case, if P=[x,,...,x" , thein

P'P=I. thatis. P"=P~'. Such a matrix P is called a unitary matrix. As a special case, if M is real

and symmetric, then all the eigenvector are also real. In this case, P"=P" =P™'. Such a matrix is

called an orthogonal matrix. Thus,

Every Hermitian matrix can be diagonalized by a unitary matrix and every real

symmetric matrix can be diagonalized by an orthogonal matrix.

! -1 -1
Example 7.23 Let M=| -1 1 —1|. Note that M is real symmetric. Eigenvalues of M are
-1 -1 1

— &)-

-l and 2. x, = is an eigenvector corresponding to -l. x,=

are

e

5l- &
Sie &L &L

89




eigenvectors corresponding to 2. Note that all the eigenvalues and eigenvectors are real and

SlL

|

(X,,X,.X,} is an orthonormal basis. Let P=

o

<
(@)

< S-St
|

£l

- &l sl

-1 0 0
Note PTP = I, thus P is an orthogonal matrix. Also P'MP=P"MP=| 0 2 0.
0 0 2
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DEPARTMENT OF MATHEMATICS, LI.T. MADRAS
MA 203¢ Linear Algebra and Numerical Analysis

Problems Set - 1

. Show that a set of positive real numbers forms a vector space under

the operations defined by:
z +y=zy and az = %

_In each of the following parts (a),(b),(c) , a set V is given and some
operations are defined. Check whether V is a vector space with these
operations. Justify your answers.

(a) V =R?, for (a1,a2), (b1,b2) € V and o € R, define

(al,ag) + (bl, by) = (a1 + b1,a2 + b)

alay,a2) = (0,0) if @ =0 and alar,az) = (aay,az/a) if a # 0.

(b) V = C?, for (a1,a2), (b1,b2) €V anda€ C, define

(al,ag) + (bl,bz) = (a; + 2by,a2 + 3b2)

a(ay, az) = (aay, aaz).

(c) V =R?, for (a1,a2), (b1,b2) € V and a € R, define

(al, az) + (bl, b2) = (a1 + b1,a9 + bz)

a(ay,az) = (a1,0)

_ In each of the following a vector space V and a subset W is given.
Check whether W is a subspace of V.

(a) V= R2; W = {(:171,1172) Xy = 2%1 - 1}

(b) V=R®% W = {(z1,2,73): 221 — T2 — 73 = 0}

() V=C(0,1); W={feV:f is differentiable}
(d)V=C(-11); W={feV:f isanodd function}

() V=C(0,1); W={feV:f(z)20 forall z}

(f) V =Ps; W is the set of all polynomials ag + a1z + asz? + azx® for
which ag = 0.

(g) V = Ps; W is the set of all polynomials ao + a1z + apz?® + asz® for
which ag + a; + a2 + a3 =0.

(h) V =Ps; W is the set of all polynomials ag + a1z + asz? + aax® for
which ag, a1, ag, as are integers.

(i) V =Ps; W is the set of all polynomials of the form ag + a1z + axz?.

. Prove that the only proper subspaces of R? are the straight lines passing
through the origin.

. Let V be a vector space and W, A, B be subsets of V. Prove the fol-
lowing statements.




) W is a subspace of V' if and only if span(W) =W.
) If A C B, then span(A) C span(B).

) span(AU B) = span(A) + span(B)

(a
(b
(c
(d) span(AN B) C span(A)N span(B)

6. Let W, and W, be subspaces of a vector space V. Prove that
(a) Wi W, and W, + W, are subspaces of V.
(b) Wi + Wo = W, if and only if W, C Wi
(c) Wil W, is a subspace if and only if W; C W, or W, C W;.

7. Give an example of three linearly dependent vectors in R? such that
none of the three is a scalar multiple of another.

8. In each of the following , a vector space V and a set A of vectors in
V is given. Determine whether A is linearly dependent and if it is, ex-

press one of the vectors in A as a linear combination of the remaining
vectors.

(a) V=R A={(1,0

(b) V=R®  A={(1,2,3),(4,5,6),(7,8,9)}

( )V=R3, A= {(1’ -3, 2) ( -3,1 3)’(2,5,7)}

(d)V="P;, A={z?-3z+S5, z% + 20 — x+1 z® + 322 ~ 1}
(e) V =P, A-—-{—2x3—11x2+3x+2, 2 —22243z4+1, 2%+
z?+ 3z - 2}

)V =P, A={62°-32%+2+2, 23—22+22+3, 223 +22—3z+1}

,=1),(2,5,1),(0,—4,3)}

, : 10 00 01
(8) V is the set of all matrices of order 2x2, A = {[0 1] , [0 1} ; [1 0]}

(i) V is the vector space of all real valued functions defined on R.
A={2, sin’z, cos’z}

(J)) Vissame asin (i), A= {1, singz, sin2z}.
(k) V is same as in (i ) A ={cos2z, sin’z,cos’z}.

OV = C([-m,n], = {sinz, sin2z,...,sinnz} where n is some
natural number.




DEPARTMENT OF MATHEMATICS, I.I.T. MADRAS
MA 203¢ Linear Algebra and Numerical Analysis

Problems Set - 2

. Determine which of the following sets form bases for IP,.
(a){-1-—z—22%, 2+z—222, 1-2z+42%}

(b) {1+2z+2% 3+z% =z+2%}

(c) {142z +32?, 4-5z+62%, 3z+2?}

. Do the polynomials z% — 222 + 1, 422 — z + 3 and 3z — 2 span P5?
Justify your answer.

. Suppose that V is a vector space with a basis {a,b,c}. Show that
{a+b,b+c,c+ a} is also a basis for V.

. Show that the set of all solutions of the system
1 —229+23=0 , 221 —3z2+23=0
is a subspace of R3. Find a basis for this subspace.

. Suppose A = {a,...,an} and B = {by,...,b,} are subsets of a vector
space V such that A is linearly independent and span(B) = V. Show
that n > m. Using this, show that any two bases of V have the same

number of elements.

. Find bases and dimensions of the following subspaces of R®:
(a)W1 = {(z1, 22, T3, T4, 75) € R® : 71 — 23 — 74 = 0}

(b)Ws = {(z1, Z2, T3, %4, T5) € R® : T3 = 3 = 24,21 + 75 = 0}
(c) W3 = span({(1,-1,0,2,1), (2,1, -2,0,0), (0, -3,2,4,2),
(3,3,—4,-2,-1),(2,4,1,0,1),(5,7,-3,-2,0)})

. For each of the following matrix A, find a basis and dimension of the
following subspaces: row space of A, column space of A, null space of
A:={z: Az =0}, Rangeof A:={y: Az =y for some z}.

1 -1 203 00 1 2 -1 ¢4
(a)A={0 0 01 4/ (b)A=]00 0 1 -1 3

0 0 00O 24 -13 2 -1

. Find a basis and dimension of the subspace
span({1 + 2%, -1+ z + 2%, —6 + 3z, 1 + 2® + 2°,2%}) of Ps.




10.

11.
12.

13.

14.

15.

16.

17.

Find a basis and dimension of each of the following subspaces of the
vector space V' of all thrice differentiable functions: ’

(@ Wi={zeV:z"+z=0}

(b) Wo={z eV : 2" -4 + 3z =0}

(Wi ={z€V: 2" -6z"+ 11z — 62 = 0}

Show that every linearly independent set in a finite dimensional vector
space can be extended to a basis. Using this show that if W is a
subspace of V, then Dim(W) < Dim(V).

Extend the set {1+ 22,1 — 22} to a basis of P,

Let W be a proper subspace of R3. Show that W must be a line passing
through the origin or a plane passing through the origin.

Let V be a vector space of dimension n. Show that

(a) every subset of V containing more than n vectors is linearly depen-
dent.

(b) no subset of V' containing less than n vectors can span V.

Let V be a vector space of dimension n and A be a subset of V con-
taining n vectors. Show that

(a) if A is linearly independent, then A is a basis of V,

(b)if span(A) = V, then A is a basis of V.

If W, and W, are subspaces of a vector space V and W, 4+ W, is finite
dimensional, then show that

Dzm(W1 + Wl) = Dzm(Wl) + DZ'ITL(WQ) - Dzm(W1 n W2)
Guess and prove a similar formula for three subspaces.

Let V be the vector space of all 2 x 2 matrices with real entries. Let

W) be the set of all matrices of the form [‘; —zx] and let W, be the

set of all matrices of the form b

(a) Prove that W, and W, are subspaces of V.
(b) Find dimensions of Wy, Wy, Wy + W, and Wi We.

Find dimensions of W, +W, and W, (| W, for the subspaces Wy, W,
in problems 6 and 9.




DEPARTMENT OF MATHEMATICS, I.I.T.MADRAS
MA 2030 Linear Algebra And Numerical Analysis
Problem Set-3

. For the following T : R? — R?, state with reasons whether T is linear.

(a) T(a1,a2) = (1,a2)

(b) T(a1,a2) = (a1, 43)

(c) T(ay,as) = (sina;,0)

(d) T(a1,a2) = (Jas, a2)

(e) T(a1,a2) = (a1 + 1,a2)

. Let V be a vector space with a basis {a1,...,a,}. Let W be a vec-

tor space and let b;,...,b, € W. Show that there is a unique linear
transformation T from V to W such that T'(a;) =b; for j=1,...,n

. Suppose T : R? — R? is linear and 7°(1,0) = (1,4) and T(1,1) = (2,5).
What is T'(2,3)? Is T one-to-one?

. Prove that there exist a linear transformation 7" : R? — R3such that
T(1,1) = (1,0,2) and T(2,3) = (1,—1,4). What is T(2,3)?

. Let V be an n-dimensional vector space over R. Prove that there exist
a linear transformation T": V — R™ such that T is bijective.

. Is there a linear transformation T : R® — R? such that
T(1,0,3) = (1,1) and T(=2,0, —6) = (2,1)?

. Let V, W be vector space over R and T': V — W be linear.
(a) N(T) = {x € V : Tz = 0} is called the null space of T. Show

that N(T') is subspace of V.

(b) R(T) ={Tz:z € V} is called the range of T. Show that R(T) is

a subspace of W.
Dimension of N(T') is called the nullity of T' and Dimension of

R(T) is called the rank of T

. In the following prove that T is a linear transformation and find bases
for both N(T') and R(T). Then compute the nullity and rank of T..

(8) T:R®*—>R?% T(a1,a2) = (a1 — a2,2a3)
(b) T:R?2 - R3; T(al,ag) = (al + as,0,2a; — (12)

1




(c) T : Mayxs — Mays;

(33 ) - (g o)
asr asz2 ass
(d) T:Py(R) - P3(R); T(f(z)) = zf(z) + f'(=).
() T : Muxn(R) — R;
T(A) =tr(A), where tr(A) = 37, a;; and A = (ai;)nxn-
9. Let V, W be vector space over R and T : V — W be linear. Prove that

if V' is finite dimensional, then N(T") and R(T) are finite dimensional
and dimension of V' =rank of T+ nullity of T..

10. Let V, W, T be as in the last problem with Dim(V) = Dim(W). Prove
that T is 1 — 1 if and only if T is onto.

11. Prove that row rank of a matrix A equals its column rank.

12, Let V and W be finite dimensional vector space and T : V — W be
linear.

(a) Prove that if dim(V)< dim(W), then T cannot be onto.
(b) Prove that if dim(V)> dim(W), then T cannot be one-to-one.

13. (a) Give an example of distinct linear transformations 7' : R2 — R?2
such that N(T) = R(T).
(b) Give an example of distinct linear transformations 7" and U such
that N(T) = N(U) and R(T) = R(U).
(c) Let T': R? — R3 be defined as T(a;, az) = (a; — as, a1, 2a; + az).
Let B be the standard ordered basis for R?, C = {(1,1,0), (0,1, 1), (2,2, 3)}
and D = {(1,2), (2, 3)}.Compute [T]$, [T]$.

. For the following parts,

leta={((1) g)(g (1))((1’ 8)(8 (1))},,3={1,3:,a:2},'y={1}

(a) Define T : Max2(R) — Raxa(R) by T(A4) = At. Compute [T],.

(b) Define T : Py(R) — Max2(R) by T'(f) = (f’(()O) 3{((;)))

. compute [T73.
(c) Define T : Ma,2(R) — R by T(A) = tr(A). Compute [T]7.
(d) Define T : Po(R) — R by T(f) = f(2). Compute (773

1

[




DEPARTMENT OF MATHEMATICS, I.I.T.MADRAS
MA 2030 Linear Algebra And Numerical Analysis
Problem Set-4

. Check whether each of the following are inner products on the given
vector spaces.

(a) {(a,b),(c,d)) = ac—bd on R?
(b) (A, B) = tr(A + B) on Maxa(R)
(c) {f,9) = fo f'(t)g(t)dt on P(R) where ' denotes the differentiation.

(d) (f,9) = Ja” f(t)g(t)dt on C[0, 1]

_ Let B be a basis for a finite-dimensional inner product space. Prove
that if (z,y) =0forallz € B, theny =0

. Let V be an inner product space, and suppose that z and y are or-

thogonal elements of V(that is (z,y) = 0). Prove that ||lz+y|* =
||:1:|| + |lyl|?, where ||z||* = (z,z). Deduce the Pythagorean theorem in

R2.
. Prove the parallelogram law in an inner product space V, that is show

that |z +y|> + |lz - ylI*> = = 2||z||* + 2|ly||? for all z,y € V. What does
this say about parallelograms in R%?

. Let V be an inner product space. Prove that
|z, y)| < |zl {ly]l forall z,y € V (This is known as the Cauchy-

Schwarz inequality.)

. Show that an orthogonal set of nonzero vectors in an inner product
space is linearly independent.

. Let V be an inner product space and {z1, s, ..., Zx} be an orthogonal
set in V, and let al,ag,é. .,ar €R.
Prove that || %, e = ok lail

. Suppose (.,.); and {(.,.), are two inner products on a vector spaceV'.
Prove that (.,.) = (.,.); + (., .), is another inner product on V.

. For vectors = and y in an inner product space V/, prove that z —y and
T + y are orthogonal to each other if and only if ||z|| = ||y]|-

1



10.

11.

12.

13.

14.

In each of the following parts, apply the Gram-Schmidt process to the
given subset S of the inner product space V. Then find an orthonormal

basis B for V.(exept in 10d)

(a) V=R%S={(1,0,1),(0,1,1),(1,3,3)}
(b) V=R S=1{(1,1,1),(0,1,1),(0,1,3)}
(c) V =Py(R) with the inner product (f, g) = fol f(t)g(t)dt,
S ={1,z,z%}
(d) V = C([-1,1]) with the inner product (f, g) = f_ll f(t)g(t)de,
S ={1,z,z?} :
(e) V=C3 8={(1,i,0),(1 —i,2,4i)}

For a subset S of an inner product space V. define the orthogonal

complement St of S by
St={zeV:{(r,y)=0 forall yeS}

(a) Show that S* is a subspace.

(b) Show that S C S+t

(c) Let V be finite dimensional and W be a subspace of V. Show that
Dim(W) + Dim(W+) = Dim(V).

(d) Let Wy and W, be subspaces of V. Prove that (W; + W)™ =
Wit W5 and if V is finite dimensional, then (W; (W)t =
Wit + Wit

Let {a1,...,a,} be an orthonormal set in an inner product space V
and let z € V. Show that }_;|(z,a;) [> < ||z/|* (This is known as
Bessel’s inequality . Hint: Define u = } . (z,a;) a; , show that z — u
is orthogonal to u and then use Problem 3. )

Let V' be a vector space , W be an inner product spaceand T': V — W
be a linear transformation. Defineforz, ye V, (z,y) = (T(z), T(y)).
What conditions must T satisfy so that this defines an inner product

on V?

Let V be an inner product space, and suppose that T': V — V is linear
and that ||T(z)|| = ||z|| for all z. Prove that T is one-to-one.




