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1. INTRODUCTION

All graphs we consider are finite, simple, and undirected. For a graph G, let V (G)

and E(G), respectively, denote the sets of vertices and edges of G. A proper edge k-
coloring of a graph G is a map C : E(G) �→ [k] so that adjacent edges (edges sharing
a common vertex) receive different colors (numbers), where [k] = {1, 2, . . . , k}. The
smallest positive integer k for which a graph G admits a proper edge k-coloring is known
as the chromatic index of G denoted χ ′(G). An analogous notion for the vertex coloring
is known as the chromatic number.

A proper edge coloring is called a strong edge coloring, if every color class is an
induced matching in G. In other words, for any edge e = uv, the sets of colors seen by u
and v has exactly one color in common. (In an edge coloring, we say that a vertex sees
color c, if c is assigned to any of the edges incident to it). That is, the distance between
any two edges having the same color is at least two. The minimum k such that G admits a
strong edge k-coloring is the strong chromatic index of G denoted χ ′

s(G). Let � = �(G)

denote the maximum degree of a vertex in G.
Molloy and Reed [10] proved a conjecture by Erdős and Nešetřil (see [5]) that for large

�, there is a positive constant c such that χ ′
s(G) ≤ (2 − c)�2. Mahdian [9] proved that

for a C4-free graph G, χ ′
s(G) ≤ (2 + o(1))�2/ ln �.

For integers 0 ≤ � ≤ k ≤ m, Sm(k, �) is the bipartite graph with vertex set {x ⊆ [m] :
|x| = k or �} and a k-subset x is adjacent to an �-subset y if y ⊆ x. Quinn and Benjamin
[14] proved that Sm(k, �) has strong chromatic index (

m
k − � ). The �-graph �(G) of a

partial cube (distance-invariant subgraph of some n-cube) G is the intersection graph of
the equivalence classes of the Djoković-Winkler relation � defined on the edges of G
such that xy and uv are in relation � if d(x, u) + d(y, v) �= d(x, v) + d(y, u). Recently,
Šumenjak [15] showed that the strong chromatic index of a tree-like partial cube graph
G is at most the chromatic number of �(G).

Some of the many unsolved conjectures include χ ′
s(G) ≤ 5�2/4 for all graphs,

χ ′
s(G) ≤ �2 for bipartite graphs, and χ ′

s(G) ≤ 9 for 3-regular planar graphs. See the
open problems pages of Douglas West for more details.

A chord in a graph is an edge that joins two nonconsecutive vertices of a cycle. The
set of all graphs in which every cycle is induced, and so do not contain chords for any
cycle, are called chordless graphs [7,11]. A 2-connected graph is minimally 2-connected
(block line critical), if for any e ∈ E, G − e is not 2-connected. It can be easily verified
that a graph is minimally 2-connected if and only if it is 2-connected and chordless.

Faudree et al. [6] proved that for graphs where all cycle lengths are multiples of
four, χ ′

s(G) ≤ �2. They mention that this result probably could be improved to a linear
function of the maximum degree. Brualdi and Quinn [3] improved the upper bound to
χ ′

s(G) ≤ αβ for such graphs, where α and β are the maximum degrees of the respective
partitions. Nakprasit [12] proved that if G is bipartite and the maximum degree of one
partite set is at most 2, then χ ′

s(G) ≤ 2�.
A graph is 2-degenerate, if every subgraph has a vertex of degree at most 2. For any

minimally 2-connected graph G, G \ D is a forest (possibly empty), where D is the set
of all vertices of degree 2 [1]. This implies that they are 2-degenerate. In this work, we
prove that χ ′

s(G) is linear in � for a 2-degenerate graph G. Notice that graphs whose
cycles have lengths divisible by 4 are chordless graphs, for otherwise a chord will divide
a cycle of length 4k into two cycles with sum of lengths 4k + 2 and then at least one
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FIGURE 1. Vertex v in a k-degenerate graph.

of the cycle has a length not divisible by 4. Consequently, our result settles the above
question by Faudree et al. in the positive.

Specifically, we prove the following.

Theorem 1. If G is 2-degenerate, then χ ′
s(G) ≤ 10� − 10.

The class of chordless graphs is a strict subclass of 2-degenerate graphs and has more
desirable structural properties that enable us to improve the upper bound as follows.

Theorem 2. If G is chordless, then χ ′
s(G) ≤ 8� − 6.

In the following, the degree of a vertex v is denoted d(v). A vertex of degree k is called
a k-vertex. Vertices of degree at most k and at least k are, respectively, called k−-vertex
and k+-vertex. For a graph G and a vertex set S ⊆ V (G), let G \ S denote the subgraph
induced on V (G) \ S. For an edge e, let G − e be the subgraph by deleting e from E(G).
An edge incident to a 1-vertex is called a pendant edge.

2. PROOFS

In this section, we prove the results. First, we consider 2-degenerate graphs and then
show how the proof can be modified to improve the bounds for chordless graphs.

A. 2-Degenerate Graphs

In this subsection, we prove our main result for 2-degenerate graphs. The following
simple lemma throws light into the nice structure of k-degenerate graphs that enables us
to apply the coloring procedure.

Lemma 3. If G is a k-degenerate graph, then there is some v ∈ V (G) such that at least
max{1, d(v) − k} of its neighbors are k−-vertices.

Proof. By definition, G contains k−-vertices. Let S be the set of k−-vertices of
G. Again, by definition, G \ S (unless trivial) contains k−-vertices. Let v be any k−-
vertex in G \ S. It can have at most k neighbors in G \ S and all the remaining d(v) − k
neighbors should be in S. By selection, v has at least one neighbor in S. See Figure 1 for
illustration. �
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FIGURE 2. The local structure of a 2-degenerate graph.

For a 2-degenerate graph, this implies the following fact.

Fact 4. We can construct any 2-degenerate graph from the trivial graph by adding edges
ab such that at most 2 neighbors of a have degree more than 2, and degree of b is at most
2 (in the present graph).

Proof of Theorem 1. We use an induction on the number of edges. Let B =
{1, 2, . . . , 5� − 5} and A = {1′, 2′, . . . , (5� − 5)′} be the base set and additional set
of colors, respectively. For a set X ⊆ B ∪ A, the set B(X ) is the set obtained from X
by ignoring the apostrophe. For example, B({a, b, c, b′, d′}) = {a, b, c, d}. We use the
following induction hypothesis. �

For any 2-degenerate graph G on at most m edges, there is a strong edge coloring C
that satisfies the following.

(1) The coloring C uses at most 10� − 10 colors.
(2) Every pendant edge (if any) is colored from the base set B.
(3) For a pendant edge e colored c, no edge at a distance 1 is colored c′.
(4) No pair of edges incident to a vertex is coloured c and c′.

Base cases can be easily verified. Let G be a 2-degenerate graph on m + 1 edges. We
may assume that � > 2 as otherwise the bounds are trivial.

By Lemma 3, G contains a vertex v such that at least d(v) − 2 of its neighbors are
2−-vertices, see Figure 2 for illustration. Therefore, at most 2 neighbors of v can be of
higher degree. Let w be a 2−-neighbor of v. By assumption, the graph H = G − vw has
a strong edge coloring that satisfies the induction hypothesis.

Now consider G. When we add the edge vw, the distance between the edges incident
with v and the unique other edge incident with w becomes 1. This may create some
discrepancy to the existing strong edge coloring. We first show how to color the edge vw
and then describe how to deal with the discrepancy.
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Consider the set X of all colors used by the edges incident to the neighbors of v and w,
the edges enclosed by the dotted region in Figure 2. The total number of such edges is at
most 3 × � + (d(v) − 3) × 2 < 5� − 5. It is easy to see that |B(X )| ≤ |X | < 5� − 5.
This is clearly an upper bound on the number of colors unavailable to color vw. Since the
base set B has 5� − 5 colors, we can always choose one color for the edge vw from the
set B \ B(X ) of base colors.

Since the degree of w is at most 2, it can have at most one other neighbor, say w′. If
there is no such vertex, the coloring satisfies the induction hypothesis and we are done.
If it exists, the edge ww′ may have received the same color as one of the edges incident
to v, say vv′. If d(w′) ≤ 3, at most 3� colors are unavailable for ww′, and we can find a
new color from the base set B to recolor it to get a strong edge coloring of G that satisfies
the hypothesis. Similarly, if v′ is any of the 2− neighbors of v or d(v′) ≤ 3, then we can
recolor vv′ to get a strong edge coloring of G.

The only remaining case is that d(w′) > 3 and d(v′) > 3. In this case, if the edge ww′

was colored c, we recolor it with the corresponding color c′ from the additional set A.
We call this process as priming the color of an edge.

We claim that the resultant coloring satisfies the induction hypothesis.

Proof. It is easy to see that the coloring satisfies Property 1 of the hypothesis because
it uses at most 10� − 10 colors. Property 2 is also satisfied because, we never prime a
pendant edge and always color a new edge from the base set B.

Observe that in G − e, the edge ww′ is a pendant edge and satisfies Property 3. Since
the coloring of G − e is a strong edge coloring, no edge at a distance 1 from ww′ was
colored c. Similarly, no edge at a distance 1 is colored c′ due to Property 3. In G, the
edge vv′ that is colored c is not a pendant edge, as d(v), d(v′) > 3. The edge ww′ is not a
pendant edge in G, and thus after recoloring, Property 3 also holds. Finally, Property 4 is
unaffected by the recolouring. Therefore, we see that the coloring of G is a strong edge
coloring since the only conflicting edge has been recolored satisfying all the constraints.
Note that vertex v does not see colour c′ due to Property 4.

Thus, we have extended the strong edge coloring of H = G − e to G. Hence, using
induction and Fact 4, the theorem follows. �

B. Chordless Graphs

Next, we prove Theorem 2, which improves this bound for chordless graphs.

Proof of Theorem 2. We know that every minimally 2-connected graph is 2-
degenerate with minimum degree 2 [1]. Let G be a minimally 2-connected graph and let
S be the set of vertices of degree 2 in G. We call a path P = (v1, v2, . . . , vt ), t ≥ 3, in G
an S-path, if each of its intermediate vertices v2, v3, . . . , vt−1 are of degree 2. We have
the following result due to Plummer [13] and independently due to Dirac [4].

Theorem 5 (Dirac and Bollobás [1, 4]). If G is a minimally 2-connected graph, then
for any edge e, G − e decomposes into blocks such that each block is either an edge or a
minimally 2-connected subgraph of G.

Theorem 6 (Plummer [13]). If G is a minimally 2-connected graph that is not a cycle
and S is the set of all degree 2 vertices of G, then G − S is a forest with components
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FIGURE 3. The local structure of a minimally 2-connected graph.

T1, T2, . . . , Ts with s ≥ 2 such that there is no S-path joining two vertices of the same tree
Ti.

The following lemma is immediate from the above theorems.

Lemma 7. Every chordless graph G contains some vertex x such that at least d(x) − 1
of its neighbors are 2−-vertices.

Proof. If G is a cycle or a path, the lemma is trivial. Otherwise by Theorem 5, each
block is either an edge or minimally 2-connected. Therefore, by Theorem 6, we have
that G − S is a forest with at least two components. Since each component is a tree, it
contains some vertex of degree at most 1. Let x be any such vertex. Observe that each
neighbor of x other than its unique neighbor (if any) in its component belongs to S and
thus has degree at most 2 in G. The lemma follows. See Figure 3 for illustration. �

The rest of the proof uses essentially the same arguments as for the proof of 2-
degenerate graphs. The only difference is that we can always find a vertex having at most 1
high degree neighbor. Thus, for each newly added edge, the maximum number of unavail-
able colors is 2 × � + (d(v) − 2) × 2 ≤ 4� − 4. Thus setting B = {1, 2, . . . , 4� − 3}
and A = {1′, 2′, . . . , (4� − 3)′}, respectively, as the base and additional sets of colors,
the induction steps goes through and the result follows. �

3. ALGORITHMIC ASPECTS, CONCLUSION, AND REMARKS

Though we do not explicitly give an algorithm, our proof arguments are constructive and
inherently algorithmic. The algorithm is implicit in the arguments. Given a 2-degenerate
graph G, an ordering of the edges such that the graph can be constructed from the trivial
graph can be obtained efficiently. Since we do not try to analyze the complexity, a safe
upper bound seems to be O(|V |�|E|2). Once the ordering is available, none of the |E|
coloring steps take more than O(�) probes.
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We have shown that for a 2-degenerate graph, the strong chromatic index is linear in
terms of the maximum degree. We make use of a structural result on k-degenerate graphs
for the case k = 2. We believe that this result can be extended to arbitrary k. That is, we
conjecture the following.

Conjecture 8. There exists an absolute constant c such that for any k-degenerate graph
G, χ ′

s(G) ≤ ck2�. Thus for fixed k, χ ′
s(G) is linear in �.

In fact, we feel that something even stronger may be true and the exponent of k can be
made 1. Writing a bit speculatively, the main difficulty that arises for arbitrary k seems
to be in dealing with the situation when already primed edges are made adjacent. It may
be possible to address this by using a list of k2 alternatives associated with each color.

Note that, in our proofs, we double the colors in one step to avoid some technical
difficulty that may be possibly avoided, though we do not see a direct way yet. We leave
it as an open problem.
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