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Reáltanoda u. 13–15 1053, Hungary

Abstract. Given a vertex-coloured graph, a dominating set is said to
be tropical if every colour of the graph appears at least once in the set.
Here, we study minimum tropical dominating sets from structural and
algorithmic points of view. First, we prove that the tropical dominating
set problem is NP-complete even when restricted to a simple path. Last,
we give approximability and inapproximability results for general and
restricted classes of graphs, and establish a FPT algorithm for interval
graphs.
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1 Introduction

Vertex-coloured graphs are useful in various situations. For instance, the Web
graph may be considered as a vertex-coloured graph where the colour of a vertex
represents the content of the corresponding page (red for mathematics, yellow for
physics, etc.). Given a vertex-coloured graph Gc, a subgraph Hc (not necessarily
induced) of Gc is said to be tropical if and only if each colour of Gc appears
at least once in Hc. Potentially, any kind of usual structural problems (paths,
cycles, independent and dominating sets, vertex covers, connected components,
etc.) could be studied in their tropical version. This new tropical concept is
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close to, but quite different from, the colourful concept used for paths in vertex-
coloured graphs [1,15,16]. It is also related to (but again different from) the
concept of colour patterns used in bio-informatics [11]. Here, we study minimum
tropical dominating sets in vertex-coloured graphs. A general overview on the
classical dominating set problem can be found in [13].

Throughout the paper let G = (V,E) denote a simple undirected non-
coloured graph. Let n = |V | and m = |E|. Given a set of colours C = {1, ..., c},
Gc = (V c, E) denotes a vertex-coloured graph where each vertex has precisely
one colour from C and each colour of C appears on at least one vertex. The colour
of a vertex x is denoted by c(x). A subset S ⊆ V is a dominating set of Gc (or
of G), if every vertex either belongs to S or has a neighbour in S. The domi-
nation number γ(Gc) (γ(G)) is the size of a smallest dominating set of Gc (G).
A dominating set S of Gc is said to be tropical if each of the c colours appears
at least once among the vertices of S. The tropical domination number γt(Gc)
is the size of a smallest tropical dominating set of Gc. A rainbow dominating
set of Gc is a tropical dominating set with exactly c vertices. More generally,
a c-element set with precisely one vertex from each colour is said to be a rain-
bow set. We let δ(Gc) (respectively Δ(Gc)) denote the minimum (maximum)
degree of Gc. When no confusion arises, we write γ, γt, δ and Δ instead of γ(G),
γt(Gc), δ(Gc) and Δ(Gc), respectively. We use the standard notation N(v) for
the (open) neighbourhood of vertex v, that is the set of vertices adjacent to
v, and write N [v] = N(v) ∪ {v} for its closed neighbourhood. The set and the
number of neighbours of v inside a subgraph H is denoted by NH(v) and by
dH(v), independently of whether v is in H or in V (Gc) − V (H). Although less
standard, we shall also write sometimes v ∈ Gc to abbreviate v ∈ V (Gc).

Note that tropical domination in a vertex-coloured graph Gc can also be inter-
preted as “simultaneous domination” in two graphs which have a common vertex
set. One of the two graphs is the non-coloured G itself, the other one is the union
of c vertex-disjoint cliques each of which corresponds to a colour class in Gc. The
notion of simultaneous dominating set1 was introduced by Sampathkumar [17]
and independently by Brigham and Dutton [5]. It was investigated recently by
Caro and Henning [6] and also by further authors. Remark that δ ≥ 1 is regularly
assumed for each factor graph in the results of these papers that is not the case
in the present manuscript, as we do not forbid the presence of one-element colour
classes.

The Tropical Dominating Set problem (TDS) is defined as follows.

Problem 1. TDS
Input: A vertex-coloured graph Gc and an integer k ≥ c.
Question: Is there a tropical dominating set of size at most k?

1 Also known under the names ‘factor dominating set’ and ‘global dominating set’ in
the literature.
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The Rainbow Dominating Set problem (RDS) is defined as follows.

Problem 2. RDS
Input: A vertex-coloured graph Gc.
Question: Is there a rainbow dominating set?

The paper is organized as follows. In Sect. 2 we give approximability and
inapproximability results for TDS. We also show that the problem is FPT (fixed-
parameter tractable) on interval graphs when parametrized by the number of
colours.

2 Approximability and Fixed Parameter Tractability

We begin this section noting that the problem is intractable even for paths.

Theorem 1. The RDS problem is NP-complete, even when the input is
restricted to vertex-coloured paths.

In the sequel, we assume familiarity with the complexity classes NPO and PO
which are optimisation analogues of NP and P. A minimisation problem in NPO
is said to be approximable within a constant r ≥ 1 if there exists an algorithm
A which, for every instance I, outputs a solution of measure A(I) such that
A(I)/Opt(I) ≤ r, where Opt(I) stands for the measure of an optimal solution.
An NPO problem is in the class APX if it is approximable within some constant
factor r ≥ 1. An NPO problem is in the class PTAS if it is approximable within r
for every constant factor r > 1. An APX-hard problem cannot be in PTAS unless
P = NP. We use two types of reductions, L-reductions to prove APX-hardness,
and PTAS-reductions to demonstrate inclusion in PTAS. In the Appendix we
give a slightly more formal introduction and a description of reduction methods
related to approximability. For more on these issues we refer to Ausiello et al. [3]
and Crescenzi [8].

A problem is said to be fixed parameter tractable (FPT) with parameter
k ∈ N if it has an algorithm that runs in time f(k) |I|O(1) for any instance (I, k),
where f is an arbitrary function that depends only on k.

In this section, we study the complexity of approximating and solving TDS
conditioned on various restrictions on the input graphs and on the number of
colours. First, we show that TDS is equivalent to MDS (Minimum Dominating
Set) under L-reductions. In particular, this implies that the general problem lies
outside APX. We then attempt to restrict the input graphs and observe that if
MDS is in APX on some family of graphs, then so is TDS. However, there is also
an immediate lower bound: TDS on any family of graphs that contains all paths
is APX-hard. We proceed by adding an upper bound on the number of colours.
We see that if MDS is in PTAS for some family of graphs with bounded degree,
then so is TDS when restricted to n1−ε colours for some ε > 0. Finally, we show
that TDS on interval graphs is FPT with the parameter being the number of
colours and that the problem is in PO when the number of colours is logarithmic.
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Proposition 1. TDS is equivalent to MDS under L-reductions. It is approx-
imable within ln n + Θ(1) but NP-hard to approximate within (1 − ε) ln n.

Proof. MDS is clearly a special case of TDS. For the opposite direction, we
reduce an instance of TDS to an instance I of the Set Cover problem which
is known to be equivalent to MDS under L-reductions [14]. In the Set Cover
problem, we are given a ground set U and a collection of subsets Fi ⊆ U such
that

⋃
i Fi = U . The goal is to cover U with the smallest possible number of sets

Fi. Our reduction goes as follows. Given a vertex-coloured graph Gc = (V c, E),
with the set of colours C, the ground set of I is U = V c ∪ C. Each vertex v
of V gives rise to a set Fv = N [v] ∪ {c(v)}, a subset of U . Every solution to I
must cover every vertex v ∈ V either by including a set that corresponds to v
or by including a set that corresponds to a neighbour of v. Furthermore, every
solution to I must include at least one vertex of every colour in C. It follows
that every set cover can be translated back to a tropical dominating set of the
same size. This shows that our reduction is an L-reduction.

The approximation guarantee follows from that of the standard greedy algo-
rithm for Set Cover. The lower bound follows from the NP-hardness reduction
to Set Cover in [9] in which the constructed Set Cover instances contain o(N)
sets, where N is the size of the ground set.

When the input graphs are restricted to some family of graphs, then mem-
bership in APX for MDS carries over to TDS.

Lemma 1. Let G be a family of graphs. If MDS restricted to G is in APX, then
TDS restricted to G is in APX.

Proof. Assume that MDS restricted to G is approximable within r for some
r ≥ 1. Let Gc be an instance of TDS. We can find a dominating set of the
uncoloured graph G of size at most rγ(G) in polynomial time, and then add one
vertex of each colour that is not yet present in the dominating set. This set is of
size at most rγ(G)+ c− 1. The size of an optimal solution of Gc is at least γ(G)
and at least c. Hence, the computed set will be at most r + 1 times the size of
the optimal solution of Gc.

For Δ ≥ 2, let Δ-TDS denote the problem of minimising a tropical domi-
nating set on graphs of degree bounded by Δ. The problem MDS is in APX for
bounded-degree graphs, hence Δ-TDS is in APX by Lemma 1. The same lemma
also implies that TDS restricted to paths is in APX. Next, we give explicit
approximation ratios for these problems.

Proposition 2. TDS restricted to paths can be approximated within 5/3.

Proof. Let P c = v1, v2, . . . , vn be a vertex-coloured path. For i = 1, 2, 3 let
σi = {vj | j ≡ i (mod 3), 1 ≤ j ≤ n}. Select any subset σ′

i of V that contains
precisely one vertex of each colour missing from σi. Let Si = σi∪σ′

i. By definition,
Si is a tropical set.

Taking into account that each colour must appear in a tropical dominating
set, moreover any vertex can dominate at most two others, we see the following
easy lower bounds:
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n ≤ 3γt(P c),
2c ≤ 2γt(P c),

1
5
(n + 2c) ≤ γt(P c).

Suppose for the moment that each of S1, S2, S3 dominates Gc. Then, since
each colour occurs in at most two of the σ′

i, we have |S1| + |S2| + |S3| ≤ n + 2c
and therefore

γt(P c) ≤ min(|S1|, |S2|, |S3|) ≤ 1
3
(n + 2c).

Comparing the lower and upper bounds, we obtain that the smallest set Si pro-
vides a 5/3-approximation. It is also clear that this solution can be constructed
in linear time.

The little technical problem here is that the set Si does not dominate vertex
v1 if i = 3, and it does not dominate vn if i ≡ n − 2 (mod 3). We can overcome
this inconvenience as follows.

The set S3 surely will dominate v1 if we extend S3 with either of v1 and
v2. This means no extra element if we have the option to select e.g. v1 into σ′

3.
We cannot do this only if c(v1) is already present in σ3. But then this colour
is common in σ1 and σ3; that is, although we take an extra element for S3, we
can subtract 1 from the term 2c when estimating |σ′

1| + |σ′
2| + |σ′

3|. The same
principle applies to the colour of vn, too.

Even this improved computation fails by 1 when n ≡ 2 (mod 3) and c(v1) =
c(vn), as we can then write just 2c−1 instead of 2c−2 for |σ′

1|+ |σ′
2|+ |σ′

3|. Now,
instead of taking the vertex pair {v1, vn} into S3, we complete S3 with v2 and
vn. This yields the required improvement to 2c − 2, unless c(v2), too, is present
in σ3. But then c(v2) is a common colour of σ2 and σ3, while c(v1) is a common
colour of σ1 and σ3. Thus |σ′

1|+ |σ′
2|+ |σ′

3| ≤ 2c−2, and |S1|+ |S2|+ |S3| ≤ n+2c
holds also in this case.

Remark 1. In an analogous way — which does not even need the particular
discussion of unfavourable cases — one can prove that the square grid Pn�Pn

admits an asymptotic 9/5-approximation. (This extends also to Pn�Pm where
m = m(n) tends to infinity as n gets large.) A more precise estimate on grids,
however, may require a careful and tedious analysis.

Proposition 3. Δ-TDS is approximable within ln(Δ + 2) + 1
2 . Moreover, there

are absolute constants C > 0 and Δ0 ≥ 3 such that for every Δ ≥ Δ0, it is
NP-hard to approximate Δ-TDS within ln Δ − C ln lnΔ.

Proof. The second assertion follows from [7, Theorem 3]. For the first part, we
apply reduction from Set Cover, similarly as in the proof of Proposition 1. So, for
Gc = (V c, E) we define U = V c ∪C and consider the sets Fv = N [v]∪{c(v)} for
the vertices v ∈ V c. Every set cover in this set system corresponds to a tropical
dominating set in Gc. Moreover, the Set Cover problem is approximable within∑k

i=1
1
i − 1

2 < ln k + 1
2 [10], where k is an upper bound on the cardinality of any

set of I. In our case, we have k = Δ + 2 since |N(v)| ≤ Δ for all v. Hence, TDS
is approximable within ln(Δ + 2) + 1

2 .
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We now show that TDS for paths is APX-complete.

Theorem 2. TDS restricted to paths is APX-hard.

Proof. We apply an L-reduction from the Vertex Cover problem (VC): Given
a graph G = (V,E), find a set of vertices S ⊆ V of minimum cardinality such
that, for every edge uv ∈ E, at least one of u ∈ S and v ∈ S holds. We write
3-VC for the vertex cover problem restricted to graphs of maximum degree three
(subcubic graphs). The problem 3-VC is known to be APX-complete [2]. For a
graph G, we write OptV C(G) for the minimum size of a vertex cover of G.

Let G = (V,E) be a non-empty instance of 3-VC, with V = {v1, . . . , vn}
and E = {e1, . . . , em}. Assume that G has no isolated vertices. The reduction
sends G to an instance φ(G) of TDS which will have m + n + 1 colours: B (for
black), Ei with 1 ≤ i ≤ m (for the ith edge), and Sj with 1 ≤ j ≤ n (for the
jth vertex). The path has 9n + 3 vertices altogether, starting with three black
vertices of Fig. 1(a), we call this triplet V0. Afterwards blocks of 6 and 3 vertices
alternate, we call the latter V1, . . . , Vn, representing the vertices of G. Each Vj

(other than V0) is coloured as shown in Fig. 1(c). Assuming that vj (1 ≤ j ≤ n)
is incident to the edges ej1 , ej2 , and ej3 , the two parts Vj−1 and Vj are joined
by a path representing these three incidences, and coloured as in Fig. 1(b). If vj

has degree less than 3, then the vertex in place of Ej3 is black; and if d(vj) = 1,
then also Ej2 is black.

Fig. 1. Gadgets for the reduction of Theorem 2

Let σ ⊆ V be an arbitrary solution to φ(G). First, we construct a solution
σ′ from σ with more structure, and with a measure at most that of σ. For every
j, σ contains the vertex coloured Sj . Let σ′ contain these as well. At least one
of the first two vertices coloured B must also be in σ. Let σ′ contain the second
vertex coloured B. Now, if any Vj (0 ≤ j ≤ n) has a further (first or third) vertex
which is an element of σ, then we can replace it with its predecessor or successor,
achieving that they dominate more vertices in the path. This modification does
not lose any colour because the first and third vertices of any Vj are black, and
B is already represented in σ ∩ V0.
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Now we turn to the 6-element blocks connecting a Vj−1 with Vj . Since the
third vertex of Vj−1 and the first vertex of Vj are surely not in the modified
σ, which still dominates the path, it has to contain at least two vertices of
the 6-element block. And if it contains only two, then those necessarily are the
second and fifth, both being black. Should this be the case, we keep them in σ′.
Otherwise, if the modified σ contains more than two vertices of the 6-element
block, then let σ′ contain precisely Ej1 , Ej2 , and Ej3 . Since σ is a tropical
dominating set, the same holds for σ′. It is also clear that |σ′| ≤ |σ|.

Next, we create a solution ψ(G, σ) to the vertex cover problem on G, using
σ′. Let vj ∈ ψ(G, σ) if and only if {Ej1 , Ej2 , Ej3} ⊆ σ′. Then, |ψ(G, σ)| =
|σ′| − 1 − 3n ≤ |σ| − 1 − 3n, and when σ is optimal, we have the equality
OptV C(G) = γt(φ(G)) − 1 − 3n. Therefore,

|ψ(G, σ)| − OptV C(G) ≤ |σ| − γt(φ(G)). (1)

We may assume that G does not contain any isolated vertices. Under this
assumption, we prove the lower bound OptV C(G) ≥ n/4 by induction, as follows:
The bound clearly holds for an empty graph. Suppose that the bound holds for all
graphs without isolated vertices with fewer than n vertices. Let σ∗ be a minimal
vertex cover of G and let v ∈ V \ σ∗. Then, all of v’s neighbours are in σ∗. Let
G′ be the graph G with N [v] removed as well as any isolated vertices resulting
from this removal. Let n′ be the number of vertices in G′. If v has 1 ≤ nv ≤ 3
neighbours, then 0 ≤ ni ≤ 2nv vertices become isolated when N [v] is removed,
so OptV C(G) = nv + OptV C(G′) ≥ nv + n′/4 = nv + (n − 1 − nv − ni)/4 ≥
nv + (n − 1 − 3nv)/4 ≥ n/4.

This allows us to upper-bound the optimum of φ(G):

γt(φ(G)) = OptV C(G) + 1 + 3n
≤ OptV C(G) + 1 + 12 · OptV C(G) ≤ 14 · OptV C(G). (2)

It follows from (1) and (2) that φ and ψ constitute an L-reduction.

Corollary 1. Fix 0 < ε ≤ 1, and let P be the family of all vertex-coloured paths
with at most nε colours, where n is the number of vertices. Then TDS restricted
to P is NP-hard.

Proof. We reduce from TDS on paths with an unrestricted number of colours
which is NP-hard by Theorem 2. Let P c be a vertex-coloured path on n ver-
tices with c ≤ n colours. Let Qc′

be the instance obtained by adding a path
v1, v2, . . . , vN with N = 	(n + 2)1/ε
 vertices to the end of P c (this is a
polynomial-time reduction for any fixed constant ε > 0). Let A and B be two
new colours. In the added path v1, v2, . . . , vN , let v2 have colour A and all the
other vertices have colour B. The instance Qc′

has n′ = n + N vertices and
c′ = c + 2 ≤ n + 2 ≤ N ε ≤ (n′)ε colours, so Qc′ ∈ P.

Given a minimum tropical dominating set σ of Qc′
, we see that v2 must be

in σ to account for the colour A. We may further assume that v1 is not in σ. If
it were, then we could modify σ by removing v1 and adding the last vertex of
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P c instead. It is now clear that taking σ restricted to {v1, v2, . . . , vN} together
with a tropical dominating set of P c yields a tropical dominating set of Qc′

and
that σ restricted to P c is a tropical dominating set of P c. Hence, σ restricted to
P c is a minimum tropical dominating set of P c.

We have seen that restricting the input to any graph family that contains at
least the paths can take us into APX but not further. To find more tractable
restrictions, we now introduce an additional restriction on the number of colours.
The following lemma says that if the domination number grows asymptotically
faster than the number of colours, then we can lift PTAS-inclusion of MDS to
TDS.

Lemma 2. Let G be a family of vertex-coloured graphs. Assume that there exists
a computable function f : Q∩ (0,∞) → N such that for every r > 0, γ(G) > c/r
whenever Gc ∈ G and n(Gc) ≥ f(r). Then, TDS restricted to G PTAS-reduces
to MDS restricted to G.
Proof. To design a polynomial-time (1+ε)-approximation for any rational ε > 0,
we pick r = ε/2; hence let n0 = f(ε/2). Let Gc ∈ G be a vertex-coloured
graph. The reduction sends Gc to φ(Gc) = G, the instance of MDS obtained
from Gc by simply forgetting the colours. Let σ be any dominating set in G.
Assuming that σ is a good approximation to γ(G), we need to compute a good
approximation ψ(Gc, σ) to γt(Gc). If n(Gc) < n0, then we let ψ(Gc, σ) be an
optimal tropical dominating set of Gc. Otherwise, let ψ(Gc, σ) be σ plus a vertex
for each remaining non-covered colour. Since n0 depends on ε but not on Gc or
σ, it follows that ψ can be computed in time that is polynomial in |V (Gc)| and
|σ|.

We claim that φ and ψ provide a PTAS-reduction. This is clear if n(Gc) <
n0 since ψ then computes an optimal solution to Gc. Otherwise, assume that
n(Gc) ≥ n0 and that |σ| /γ(G) ≤ 1+ ε/2, i.e., σ is a good approximation. Then,

|ψ(Gc, σ)|
γt(Gc)

≤ |σ| + c

γ(G)
≤ 2 + ε

2
+

c

γ(G)
< 1 + ε,

where the last inequality follows from n(G) ≥ n0 and the definition of f .

Example 1. The problem MDS is in PTAS for planar graphs [4], but NP-hard
even for planar subcubic graphs [12]. Let G be the family of planar graphs of
maximum degree Δ, for any fixed Δ ≥ 3, and with a number of colours c < n1−ε

for some fixed ε > 0. Let f(r) = 	(Δ+1
r )1/ε
 and note that γ(G) ≥ n/(Δ +

1) > cnε/(Δ + 1) ≥ cf(r)ε/(Δ + 1) ≥ c/r whenever n ≥ f(r). It then follows
from Lemma 2 that TDS is in PTAS when restricted to planar graphs of fixed
maximum degree.

Example 2. As a second example, we observe how the complexity of TDS on a
path varies when we restrict the number of colours. For an arbitrary number
of colours, it is APX-complete by Lemma 1 and Theorem 2. If the number of
colours is O(n1−ε) for some ε > 0, then it is in PTAS by Lemma 2, but NP-hard
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by Corollary 1. Finally, if the number of colours is O(log n), then it can be shown
to be in PO by a simple dynamic programming algorithm.

In the rest of this section, we look at the restriction where we consider the
number of colours as a fixed parameter. We prove the following result.

Theorem 3. There is an algorithm for TDS restricted to interval graphs that
runs in time O(2cn2).

This shows that TDS for interval graphs is FPT and, furthermore, that if
c = O(log n), then TDS is in PO.

Let Gc be a vertex-coloured interval graph with vertex set V = {1, . . . , n}
and colour set C, and fix some interval representation Ii = [li, ri] for each vertex
1 ≤ i ≤ n. Assume that the vertices are ordered non-decreasingly with respect
to ri. For a, b ∈ V , we use (closed) intervals [a, b] = {i ∈ V | a ≤ i ≤ b} to denote
subsets of vertices with respect to this order.

Define an i-prefix dominating set as a subset U ⊆ V of vertices that contains
i and dominates [1, i] in Gc. We say that U is proper if, for every i, j ∈ U , we
have neither Ii ⊆ Ij nor Ij ⊆ Ii.

Let f : P(C)×[0, n] → N∪{∞} be the function defined so that, given a subset
S ⊆ C of colours and a vertex i ∈ V , f(S, i) is the least number of vertices in
a proper i-prefix dominating set that covers precisely the colours in S, or ∞ if
there is no such set. The value of f(S, 0) is defined to be 0 when S = ∅ and ∞
otherwise. Our proof is based on a recursive definition of f (Lemma 5) and the
fact that f determines γt (Lemma 4). First, we need a technical lemma.

Lemma 3. Let U ⊆ V and let i be the largest element in U . If U is i-prefix
dominating, then it dominates precisely the same vertices as [1, i]. In particular,
U dominates G if and only if [1, i] does.

Proof. Assume to the contrary that there is a j ∈ [1, i]−U that dominates some
k > i, and that k is not dominated by U . This means that j is connected to k in
G, so lk ≤ rj . But then we have lk ≤ rj ≤ ri ≤ rk, so [li, ri] ∩ [lk, rk] �= ∅, hence
i ∈ U dominates k, a contradiction.

Lemma 4. For every interval graph Gc, we have

γt(Gc) = min{f(S, i) + |C − S| | S ⊆ C, i ∈ V, [1, i] dominates Gc}.

Proof. f(S, i) is the size of some set U ⊆ V that covers the colours S and that,
by Lemma 3, dominates Gc. We obtain a tropical dominating set by adding a
vertex of each missing colour in C−S. Therefore, each expression f(S, i)+|C − S|
on the right-hand side corresponds to the size of a tropical dominating set, so
γt(Gc) is at most the minimum of these.

For the opposite inequality, let U be a minimum tropical dominating set of
Gc. Remove from U all vertices i for which there is some j ∈ U with Ii ⊆ Ij , and
call the resulting set U ′. By construction U ′ still dominates Gc. Let S be the set
of colours covered by U ′. Then U ′ is a minimum set with these properties, so by
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the definition of f , |U ′| = f(S, i), where i is the greatest element in U ′. Since
U ′ ⊆ [1, i], it follows that [1, i] dominates Gc. Therefore, the right-hand side is
at most f(S, i) + |C − S| = |U ′| + |C − S| ≤ |U | = γt(Gc).

The following lemma gives a recursive definition of the function f that per-
mits us to compute it efficiently when the number of colours in C grows at most
logarithmically.

Lemma 5. For every interval graph Gc, the function f satisfies the following
recursion:

f(S, 0) =

{
0 if S = ∅,

∞ otherwise;

f(S, i) = 1 + min{f(S′, j) | S′ ∪ {c(i)} = S, j ∈ Pi}, for i ∈ V,

where j ∈ Pi if and only if either j = 0 and {i} is i-prefix dominating, or j ∈ V ,
j < i, [1, j] ∪ {i} is i-prefix dominating, and Ii �⊆ Ij, Ij �⊆ Ii.

Proof. The proof is by induction on i. The base case i = 0 holds by definition.
Assume that the lemma holds for all 0 ≤ i ≤ k − 1 and all S ⊆ C.

Let U be a minimum proper k-prefix dominating set that covers precisely the
colours in S. We want to show that |U | = f(S, k). If U = {k}, then S = {c(k)},
and it follows immediately that f(S, k) = 1. Otherwise, U − {k} is non-empty.
Let j < k be the greatest vertex in U − {k}. Assume that U − {k} is not j-
prefix dominating. Then, there is some i < j that is not dominated by j but
that is dominated by k, hence l(k) ≤ r(i) < l(j). Therefore Ij ⊆ Ik, so U is
not proper, a contradiction. Hence, U − {k} is a proper j-prefix dominating
set. By induction, |U − {k}| ≥ min{f(S′, j) | S′ ∪ {c(k)} = S}. This shows the
inequality |U | ≥ f(S, k).

For the opposite inequality, it suffices to show that if [1, j] ∪ {k} is k-prefix
dominating, U ′ is any proper j-prefix dominating set, and Ik �⊆ Ij , Ij �⊆ Ik,
then U ′ ∪ {k} is a proper k-prefix dominating set. It follows from Lemma 3 that
U ′ ∪ {k} is k-prefix dominating. Since Ik �⊆ Ij , we must have ri ≤ rj < rk for all
i < j, hence Ik �⊆ Ii. Assume that Ii ⊆ Ik for some i < j. Then, since Ij �⊆ Ik,
we have lj < lk ≤ li ≤ ri ≤ rj , which contradicts U ′ being proper. It follows
that U ′ ∪ {k} is proper.

Proof of Theorem 3. The sets Pi for i ∈ V in Lemma 5 can be computed in time
O(n2) as follows. Let ai ∈ V be the least vertex such that i dominates [ai, i],
and let bj ∈ V be the least vertex such that [1, j] does not dominate bj , or ∞
if [1, j] dominates G. Note that i does not dominate any vertex strictly smaller
than ai since the vertices are ordered non-decreasingly with respect to the right
endpoints of their intervals. Therefore, Pi = {j < i | ai ≤ bj , Ii �⊆ Ij , Ij �⊆ Ii}.
The vectors ai and bj are straightforward to compute in time O(n2), hence Pi

can be computed in time O(n2) using this alternative definition.
When Pi is computed for all i ∈ V , the recursive definition of f in Lemma 5

can be used to compute all values of f in time O(2cn2), and it can easily be
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modified to compute, for each S and i, some specific i-prefix dominating set
of size f(S, i), also in time O(2cn2). Therefore, by Lemma 4, one can find a
minimum tropical dominating set in time O(2cn2). ��
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