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Abstract

Data for evaluating circularity error can be obtained from coordinate measuring machines or form measuring instruments. In this article,
appropriate methods based on computational geometric techniques have been developed to deal with coordinate measurement data and form
data. The computational geometric concepts of convex hulls are used, and a new heuristic algorithm is suggested to arrive at the inner hull.
Equi-Distant (Voronoi) and newly proposed Equi-Angular diagrams are employed for establishing the assessment features under different
conditions. The algorithms developed in this article are implemented and validated with the simulated data and the data available in the
literature. © 2000 Elsevier Science Inc. All rights reserved.
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1. Introduction

Present day engineering components need closer di-
mensional and geometric tolerances to achieve high lev-
els of functional performance in the assemblies where
they are used. Computer-aided manufacturing procedures
have made it possible to produce the parts to satisfy the
specified tolerances. It is imperative that the manufac-
tured components be verified using compatible inspection
machines and procedures to check their conformance to
the design specifications. Computer-aided inspection
(CAI) procedures capable of achieving high levels of
performance in predicting the errors have gained popu-
larity in recent years. To produce the desired results of
inspection, data obtained from inspection devices must
be analyzed using appropriate computer-based algo-
rithms, and these algorithms must follow the specifica-
tions laid down in the standards. Moreover, these algo-
rithms must be efficient, robust, and should consume
optimal time for producing the results. In the past decade,
the computational geometric techniques have attracted
enormous attention from designers of algorithms for

solving geometric problems. These computational geom-
etry-based algorithms can be applied for evaluation of
form errors in the manufactured components.

The ANSI Dimensioning and Tolerance Standard Y14.5
specifies that the form tolerances on a component must be
evaluated with reference to an ideal geometric feature [1].
ISO Standards recommends a minimum zone evaluation of
form and specifies that the ideal/reference features must be
established from the actual measurement data such that the
deviation between it and the actual feature concerned will
be the least possible value [2]. However, neither of these
standards specifies the methods for establishing the ideal
feature and evaluation of form errors.

Various researchers have attempted to develop meth-
ods for establishing the reference feature and to evaluate
the circularity error. Least-squares method (LSM) is
based on sound mathematical principles that minimize
the sum of the squared deviations of the measured points
from the fitted feature [3, 4]. This method is robust, but
it does not follow the standards intently and will not
guarantee the minimum zone solution specified in the
Standards. In addition, the deviation values and geomet-
ric tolerances that are determined by LSM will be gen-
erally larger than the actual ones, and this may lead to
rejection of good parts. The normal least-squares fit has
also been tried by Murthy and Abdin [5]. To solve the
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equations of normal least- squares fit, very tedious math-
ematical calculations and trial-and-error procedures are
required. To obtain the minimum zone solution, the nu-
merical methods based on Monte Carlo, Simplex and
Spiral Search [5] and Simplex linear programming [6],
have been adopted.

Shunmugam [3] has suggested a new simple approach
called the median technique, which gives minimum value of
circularity error. Using discrete Chebshev approximations,
Danish and Shunmugam [7] have arrived at the minimum
zone values.

Computational geometry-based techniques show
greater promises for solving the minimum zone problems
encountered in the geometrical evaluations. Techniques
for dealing with datum-related features and definitions
based on computational geometry have been given to
formalize the meaning of geometric imperfections, ac-
cording to the implications of the Standards [8]. Compu-
tational geometry-based assessment techniques for eval-
uation of roundness based on medial axis and Voronoi
diagram methods have also been tried [9,10]. In a differ-
ent attempt, a minimum zone center (MZC) based on the
concept of Voronoi diagrams has been compared with
least-squares center (LSC)[11].

It is also important that the measurement and evaluation
of geometric errors should be carried out keeping in mind
the functional requirements [12]. The function-oriented
evaluation of engineering surfaces has greater practical sig-
nificance, because the contact between the workpieces oc-
curs at their extreme functional boundaries [8,13]. The im-
portance of function-oriented evaluation in assembly and
gauging has also been reported [14]. The concepts of ring
gauge (minimum circumscribed) and plug gauge (maximum
inscribed) centers are mentioned in the literature dealing
with roundness assessment. However, very little attention
has been given in the literature to the application of com-
putational geometric techniques for the function-oriented
form evaluation.

Coordinate data obtained using coordinate measuring
machine (CMM) and form data obtained using roundness
measuring instruments/setups have to be handled differently
while evaluating the form errors. While analyzing the
roundness data, it is necessary to account for distortion from
size (radius) suppression and eccentricity in the measure-
ment set-up. However, this aspect has been overlooked in
some recent work reported in the literature, and it is found
that the same algorithms have been applied for both types of
data. In this article, appropriate methods are presented to
deal with CMM data as well as form data. Minimum zone
evaluation and function-oriented evaluation of circularity
have been proposed on the basis of computational geometric
techniques. Apart from such computational geometric con-
cepts as outer hull (convex hull) and inner hull, the existing
concept of Equi-distant (Voronoi) diagrams and newly in-
troduced concept of Equi-angular (EA) diagrams are em-
ployed in this article. The results obtained using simulated

data and the data reported in the literature are included in
this article.

2. Evaluation of circularity error

In general, the circularity error is evaluated with refer-
ence to the assessment feature as [Eq. (1)]

D 5 uemaxu 1 ueminu (1)

whereemax andemin are the maximum and minimum devi-
ations of the profile from the assessment feature.emax is
zero for minimum circumscribing feature, and the profile is
inside this feature.emin is zero in case of maximum inscrib-
ing feature, and the profile lies outside. For minimum zone
evaluation, the deviation can be computed from any one of
the assessment features enclosing the profile and having the
least separation.

For CMM data shown in Fig. 1, the deviation of a point
on the profile is given by [Eq. (2)]

ei 5 @~ xi 2 x0!
2 1 ~ yi 2 y0!

2#1/2 2 r0 (2)

where xi and yi are the coordinates of the point on the
circular feature and (x0, y0) is the center of the assessment
circle with radiusr0

For form data, the deviation is calculated from [Eq. (3)]

ei 5 r i 2 @r0 1 x0 cosui 1 y0 sinu i# (3)

where (ri, ui) is the polar coordinate of the point on the
circular profile. (x0, y0) is the center, andr0 is the radius of
the circle from which the limacon is obtained [15]. The
details are discussed in a later section with reference to Fig.
5(a).

3. Algorithms for CMM data

3.1. Crest circle (minimum circumscribed circle)

Fig. 1 schematically shows the measurement datapoints
and the profile of a circular feature. In reality, the deviations
from circularity will be far less than those shown in the
figure. The measurement data obtained from the machines
such as CMM will be in Cartesian coordinates, and there
will be no size suppression. Generally, the diameter of the
components will be of the order of millimeters, and the
circularity deviations will be in microns. The convex outer
hull (outer hull) of given set of points in Euclidean space is
the boundary of the smallest convex domain containing all
the points of the set. A domain is said to be convex if, for
any two points in the domain, the segment connecting them
should be entirely contained in the domain [16]. Because the
minimum circumscribed circle (MCC) will pass through the
three vertices on the outer hull, it is prudent to construct an
outer hull first. In this article, the outer hull is determined by
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using “Divide and Conquer” and “Merge” technique sug-
gested by Preparata and Hong [17]. This technique is very
elegant and runs in optimal time.

Fig. 2(a) shows the outer hull with vertices V1, V2, etc.
In the next step, equidistant (ED) lines, such as L12 L23, and
L34 are constructed for the edges V1V2, V2V3, and V3V4,
respectively, as shown in Fig. 2(b). For example, L23 is the
locus of the points equidistant from both the vertices V2 and
V3. Let us further consider the line L23. The line L23 inter-
sects with L12 of the previous edge V1 V2, and L34 of the
next edge V3 V4 at Cn and Cf, respectively. The intersection
point Cf, which is farthest from the edge V2 V3 is the
farthest center (C23). A circle can be drawn with this as
center and passing through V2 and V3. The portion of the
line L23 beyond Cf, away from the edge V2 V3 is the farthest
ED edge corresponding to the edge V2 V3 (FE23). The
concepts of Equi-Distant line and the farthest edge are
explained in Appendix A. Following the procedure outlined
in this section, the farthest ED edges corresponding to all
the edges of the outer hull are constructed. It is seen from
Fig. 2(b) that a few edges have common farthest centers.
For example, farthest edges FE23 and FE34 have C23 and C34

as their centers, and for any point in the region enclosed by
these two edges, the vertex V3 will be the farthest. The outer
hull is, therefore, updated by dropping the vertex V3. Sim-
ilarly, the vertices V1 and V6 are dropped, and a new hull is
formed as shown in Fig. 2(c). New farthest ED edges are
formed for this updated hull following the same procedure.
In the next updating, the vertices V4 and V7 get dropped and
only vertices V2 and V5 would remain. The equidistant line
for these two vertices would pass through the common
centers; namely, C72, (C57), and C24, (C45). The new edges
FE24, FE57, and FE72 pass through the common centers of
the initial hull and, therefore, would end at these common
centers, as shown in Fig. 2(d). The completed diagram is

also referred to as farthest Voronoi diagram in the compu-
tational geometry literature. By taking the centers of the
completed ED diagrams, a number of circumscribing circles
can be drawn for the given dataset. Out of these circles, one
having the least radius is the Minimum Circumscribed or
Crest Circle, as shown in Fig. 2(d). It should also be noted
that MCC passes through V2, V5, and V7, and its center is
actually the intersection of the perpendicular bisectors of the
sides of the triangle formed by V2, V5, and V7.

3.2. Valley circle (maximum inscribed circle)

The convex inner hull (inner hull) of a set of points in
Euclidean space is the boundary of the largest empty subset
of given points. The inner hull for given set of datapoints
representing the profile of the circle is determined for con-
structing the nearest ED diagram. Roy and Zhang [10]
suggested that different inner hulls can be constructed start-
ing from different initial points, and the hull with maximum
width can be selected. This leads to several trials and fre-
quently ambiguous results are obtained. A new heuristic
algorithm for finding inner hull is proposed in the present
work. This method involves profile inversion, and the orig-
inal data are transformed with reference to an assumed
circle, as shown in Fig. 3(a). For this purpose, a suitable
center is to be determined for the given set of datapoints.
The MCC center obtained while evaluating the circularity
error may be taken as a center. With this as centerO, a
suitable diameter of the circle is selected such that all the
points on the profile are within this assumed circle. The
transformation is done by plotting the radial deviations
between the points on the original profile and the corre-
sponding points on the assumed circle. For example, the
point P39 is obtained by marking along the radial line the
distancea that represents the deviation P3 S3.

Fig. 1. CMM data of circular feature (xi and yi in mm)—for illustration only.
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Mathematically, it is expressed as [Eq. (4)]

r i9 5 ra 2 r i (4)

where ri9 represents the radius of the points on inverted
profile, ra is the radius of the assumed circle, andri is the
radius of the point on the original profile. Assuming a very
large radiusra can lead to considerable profile distortion. A
simple heuristic rule to select the radius of this circle is [Eq.
(5)]

ra 5 rmax1 d (5)

whered 5 k(rmax2 rmin), and k can be selected between 0.5
and 1.0.rmax andrmin are the maximum and minimum radii
with respect to the selected center.

The convex outer hull for the transformed profile is
determined as explained earlier. The points of the original
dataset corresponding to the vertices of the outer hull of the
transformed profile are taken as the vertices of the inner
hull, as shown in Fig. 3(b) schematically. The procedure for
constructing the nearest ED diagram is similar to that of the
farthest ED diagram, except that the nearest intersection
points are considered as end points of the nearest ED edges
instead of farthest intersection points. Fig. 3(b) shows the

Fig. 2. Constuction of farthest ED diagram: (a) outer hull; (b)initial farthest ED edges; (c) updated hull and farthest ED edges; (d) farthest ED diagram and
minimum circumscribed circle.
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nearest ED edges for the initial hull. The nearest ED edge
for V2 V3 is obtained from the three ED lines; namely,
L12, L23, and L34. The nearest intersection point is taken
as the nearest ED center C23, and the ED line toward the
edge V2 V3 from this nearest center is the nearest ED
edge NE23. The hull is updated by dropping the vertices
that have common nearest ED centers. For example, the
ED centers C12 and C23 are common, and hence the
vertex V2 is dropped. Fig. 3(c) shows the complete near-

est ED diagram and the Maximum Inscribed Circle
(MIC) or Valley circle.

3.3. Minimum zone circles

The minimum zone circles are obtained when two con-
centric circles contain all the points of the dataset and have
minimum radial distance between them. To meet these
criteria, the minimum zone circles should pass through at

Fig. 3. Constuction of nearest ED diagram;(a) transformed data and its hull; (b) initial nearest ED edges; (c) nearest ED diagram and maximum inscribed
circle.
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least four points of the dataset. This can occur when the
three points lie on one circle and the fourth point on the
other circle concentric to it or when two points are on each
circle.

The farthest and nearest ED diagrams are superimposed,
as shown in Fig. 4. The intersection points of these two
diagrams are the candidate centers [9,10]. The smallest
possible circumscribing circle and largest possible inscrib-
ing circle with center at the intersection points of farthest
and nearest ED diagrams are established. Such circles will
contain all the points of the dataset in between them. In case
an intersection point coincides with a common center of
either the farthest or nearest ED edges, one of circles would
be controlled by three points. Otherwise, both circles are
controlled by two points each. The radial distance between
these concentric circles is found, and a pair having mini-
mum radial separation gives the Minimum Zone Circles
(MZC). Examination of Equation 2 would also reveal that a
pair of concentric circles resulting in a minimum difference
between the radius of the outer circle and that of the inner
circle would be the MZC, and the minimum difference is the
form error. It may be noted in Fig. 4 that the outer circle
passes through two points, P3 and P8; whereas, the inner
circle passes through P7 and P10.

4. Algorithms for form data

The form data will be different from CMM data, because
there will be distortion from radius suppression and eccen-
tricity in form measurement setup. The data obtained from
the roundness measuring instruments/set-ups will be in the
polar form, with the radial values in microns and the angles

in degrees. Even when a truly circular workpiece is mea-
sured, if the axis does not coincide with axis of the rotating
table of the measuring instrument, a noncircular profile is
obtained. It has been proved in the literature that this profile
can be approximated to a limacon and expressed in the
linear form as [EQ. (6)]

Ri 5 r0 1 x0 cosui 1 y0 sinu i (6)

Therefore, the evaluation of the form data is carried out with
reference to a limacon, because it is difficult to eliminate the
setting error completely during the measurement.

4.1. Crest and valley features

Fig. 5 (a) shows the form data of the circular feature with
uniform angular spacing. It also shows a limacon assess-
ment feature and the manner in which the error is obtained
with reference to this limacon. The relevant aspects of
limacon are discussed in Appendix B. The outer hull is
established for the form data also using “Divide and Con-
quer” and “Merge” techniques. The construction details
further discussed here for form data relate to the EA con-
cepts shown in Appendix A. At each vertex, a line is drawn
perpendicular to the radial line joining the vertex and the
center. Fig. 5(b) shows perpendicular lines L1, L2, L3, etc.
for vertices V1, V2, V3, etc. At the intersection of these
perpendicular lines; namely, I12, I23, I34, etc., equi-angle
(EA) lines are constructed as the angle bisectors. The con-
cepts of the farthest center and the farthest edge are same as
ED edges, but the circle with suitable radius drawn with
farthest center on EA line will be tangential to the respective
perpendicular lines. For example, the circle can be drawn
with center C23 tangential to the lines L2 and L3. It should
be noted that the circle being referred to here represents the
circle from which the limacon is constructed. Fig 5(c) shows
the complete farthest EA diagram along with the candidate
centers for constructing the circles for establishing the cir-
cumscribing limacons. The smallest circle is chosen to ob-
tain the Minimum Circumscribing Feature (MCF) or lima-
con. Fig 5(c) shows that the smallest circle thus obtained is
tangential to the perpendicular lines at V2, V5, and V7. In
other words, the center of this circle is actually the inter-
section of the angle bisectors of the triangle formed by the
three perpendicular lines. For the sake of understanding, the
limacon established from this circle is also shown in Fig.
5(c), and this limacon passes through V2, V5, and V7. This
figure is given to illustrate the concepts involved. The ap-
plication of these concepts to the actual data is discussed in
the section on results and discussions.

The nearest EA diagram is constructed using the inner
hull obtained based on the heuristic method explained ear-
lier and the Maximum Inscribing Feature (MIF) or limacon
is established from the largest circle obtained using the
nearest EA diagrams.

Fig. 4. Superimposed farthest and nearest ED diagrams along with MZC.
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4.2. Minimum zone features

The farthest and nearest EA diagrams are superimposed,
and the intersection points are considered as the centers of
the circles from which the limacons are established for form
error evaluation. A pair of limacons giving minimum value
of form error is identified as Minimum Zone Features. It is
interesting to note that the difference between the radius
values (r0) of the outer and inner circles corresponding to
the respective limacons denotes the minimum zone error.

Examination of the Equation 3 would confirm this, as the
centers (x0, y0) are same for both cases.

5. Results and discussion

Computer programs were written in C11 based on the
proposed algorithms and run on Pentium, 233 MHz ma-
chine. The package was run for the data available in the
literature and for the simulated data. The datasets are in-

Fig. 5. Form data and farthest EA diagram: (a) form data (ri in mm, ui in deg) (for illustration only); initial hull and farthest EA edges; (c) farthest EA diagram
and minimum circumscribing Limacon.
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cluded in Appendix C. The CMM dataset C1(a) is simulated
from the form dataset C1(b) available in the literature [3].
Dataset C2(a) shows the CMM data [18], and dataset C2(b)
shows the form data obtained by applying suitable transfor-
mations on dataset C2(a). The proposed algorithms work for
data with both uniform and nonuniform spacing. Tables 1(a)
and (b) shows the results of the function-oriented and min-
imum zone evaluation of circularity. The values obtained by
the least-squares method are also included in the tables for
comparison. The LSM is simple and straightforward, only
when it is applied to form data with the deviations expressed
as linear equation (Eq. 3). In case of CMM data, an appro-
priate search method [15] is used to minimize the sum of the
squares of the normal deviations where the normal devia-
tions are expressed by Eq. 2.

The datasets taken here serve as examples to bring out
the differences in approaches to be followed for evaluating

the CMM and form data. It should be remembered that the
data obtained by the roundness measurement are character-
ized by the size suppression; whereas, the CMM data con-
tain the size as well as the form information. The results
show that the form error values, for a given circular feature,
evaluated based on limacon in case of form data and circle
in case of CMM data are the same. The CMM data given in
Appendix C, dataset C1(a) are simulated from the form
dataset given in dataset C1(b) and expressed up to eight
decimal places. Generally, CMMs measure up to the third
decimal place. Therefore, simulation was carried out by
rounding off the values given in dataset C1(a) to the third
and fourth decimal places. It was observed that MZ values
of 2.003mm and 2.235mm were obtained, instead of an MZ
value of 2.24264mm obtained for form data.

It has also been observed in some recent works that the
form dataset C1(b) has been treated like coordinate data

Table 1
Results of circularity evaluation

1(a): CMM Data (given in Appendix C)

Data Parameters Reported Method Present Method LSM

MCC MIC MZ* MCC MIC MZ*

Set 1(a) x0 (mm) — — — 40.0000 40.00000 39.9998 40.0002
y0 (mm) — — — 30.0014 30.0010 30.0022 30.0012
r0 (mm) — — — 25.0040 25.0020 25.0030 25.0030
D (mm) — — — 2.4147 2.2945 2.2430 2.4657
Time (s) — — — 0.049 0.049 0.098 0.649

Set 2(a) x0 (mm) 40.0005[18] 40.0016[18] 40.0008[18] 40.0005 40.0016 40.0007 40.0014
y0 (mm) 50.0015[18] 50.0003[18] 40.0016[18] 50.0015 50.0003 50.0015 50.000
r0 (mm) 30.0145[18] 29.9865[18] 30.0001[18] 30.0145 29.9865 30.0000 30.0005
D (mm) 29.3630[18] 29.6270[18] 29.2860[18] 29.3541 29.61540 29.2816 29.7813
Time (s) 0.03[18] 0.03[18] 0.05[18] 0.050 0.050 0.100 0.990

*Assessment feature having equal magnitude of maximum deviations on either side

1(b): Form Data (given in Appendix C)

Data Parameters Reported Method Present Method LSM

MCF MIF MZ* MCF MIF MZ*

Set 1(b) x0 (mm) 0.000[3,18] 0.000[3,18] 0.000[3] 0.0000 0.0000 20.12132 0.1465
0.0752[10] 20.2500[10] 20.1280[10]

20.1213[18]
y0 (mm) 1.414[3,18] 1.000[3,18,10] 1.000[3,10] 1.4142 1.000 1.1213 1.200

1.4330[10] 1.1213[18]
r0 (mm) 4.000[3,18] 2.000[3,18] 3.1465[3] 4.0000 2.0000 3.0000 3.000

4.1783[10] 2.0156[10] 4.2474[10]
3.000[18]

D (mm) 2.414[3,18] 2.293[3,18] 2.293[3] 2.4142 2.2929 2.2426 2.455
2.6095[9,10] 2.3505[9,10] 2.2433[9,10]

2.2426[18]
Time (s) 0.02[18] 0.01[18] 0.02[18] 0.059 0.060 0.119 0.009

Set 2(b) x0 (mm) 26.200[18] 25.1000[18] 25.900[18] 25.9433 25.1229 25.9602 25.2984
y0 (mm) 10.600[18] 9.400[18] 10.700[18] 10.0263 9.4069 10.6228 9.1556
r0 (mm) 48.700[18] 20.700[18] 34.300[18] 48.7380 20.7026 34.2762 34.7609
D (mm) 29.3625[18] 29.6269[18] 29.2864[18] 29.3501 29.6179 29.2809 29.7564
Time (s) 0.03[18] 0.03[18] 0.05[18] 0.110 0.110 0.220 0.010

*Assessment feature having equal magnitude of maximum deviations on either side
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and, interestingly, the minimum zone values obtained are
closer [9,10]. This coincidence is a freak phenomenon,
because the values obtained for the minimum circumscrib-
ing and maximum inscribing features show clearly the error
introduced in ignoring the differences in the data. It is also
found that by treating the form data as coordinate data, the
parameters of the assessment features, such as x0, y0, and r0
are also different (Table 1(b)).

The values of the center position and size obtained by
LSM show considerable statistical stability, because all the
measured points are included in the computation of these
values. In case of MZ and function-oriented evaluation, the
center position and size are determined by the extreme
points. In the first instance, the features established by the
extreme points may seem to have little practical signifi-
cance. It should be remembered here that in any method
used for establishing the assessment/reference features, the
value of the circularity error is based on the extreme points
only. Therefore, proper care must be exercised in all cases
with regard to the unstable extreme points and uncertainty
in their measurements. The size value r0 is more significant
in case of function-oriented evaluation, because it decides
the size of the mating part during the assembly.

In the proposed algorithms, the convex outer hull and the
inner hull of the given set of datapoints are taken so that most
of the points that do not influence the final results are elimi-
nated, and the construction of ED and EA diagrams becomes
less cumbersome. To test the proposed method for datasets
containing large number of points, simulation was carried out
to arrive at MZ values for datasets with 100, 500, and 1,000
points, and the computation times of 0.21 s, 0.43 s, and 0.64 s,
respectively were obtained. It can also be shown that ifN
represents the number of points in the dataset, the computa-
tional complexity of finding the convex outer hull by divide
and conquer algorithm, isO(N log N). The complexity of
finding inner hull is alsoO(N log N), because the time required
for transforming the data isO(N)and for finding outer hull of
the transformed data isO(N log N). The ED and EA diagrams
can be constructed inO(N log N) time. Hence, the over-all
complexity of the algorithms isO(N log N). For comparison
with LSM, the computation times are also included in the
Tables 1(a) and (b).

6. Conclusions

Considering the need for algorithms for processing
geometric data in the modern measuring instruments, the

algorithms for form evaluation based on computational
geometric techniques have been developed in the present
work. These techniques are elegant, because the geomet-
rical aspects can be visualized much better than the
mathematical aspects of the numerical techniques. The
concept of Equi-distant and Equi-angular lines are more
fundamental in nature and are quite useful in understand-
ing the methods for establishing the assessment features.
The minimum zone as well as function-oriented evalua-
tions of circularity error have been carried out, and the
results are presented. The proposed algorithms can han-
dle data with both uniform and nonuniform spacing. The
proposed method uses the concepts of convex hulls and a
new heuristic approach for inner hull that gives unique
results, thereby achieving considerable reduction of the
computation times.

In some recent works on application of computational
geometric approaches for evaluation circularity, the results
have been reported treating the form data as coordinate data,
ignoring their differences. These reported results show con-
siderable variation from the actual values obtained by ap-
plying appropriate methods. While processing the CMM
data, a circular assessment feature must be considered. The
circular feature would pass through the selected datapoints.
In case of form data, because the size is suppressed, and the
axis of the inspected component and the measuring instru-
ment would not coincide, a limacon feature must be con-
sidered. The limacon would pass through the selected data-
points. However, the circle from which the limacon is
established would be tangential to the lines perpendicular to
radial lines of the selected datapoints.

The present method for minimum zone evaluation
always guarantees a minimum value for a given set of
datapoints. Function-oriented form evaluation has many
practical applications, because the contact between the
parts in assembly will occur at the functional boundaries.
In the present work, computational geometric approach
has been extended for function-oriented evaluation of
circularity, and the effectiveness of these techniques has
been demonstrated successfully using the simulated data
and the data reported in the literature. These algorithms
are computationally less complex, quite robust giving
unique solution and require short time for execution.
They are well suited for the evaluation of form in form
measuring instruments and CMMs. The present algo-
rithms can not only be applied to full circular feature but
also to the partial feature.
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Appendix A: Equi-distant (ED) and Equi-angular (EA)
lines

Considering two points, namely P1 and P2, the line
shown in Fig. A1 is a Equi-distant (ED) line. In other words,
any point X on ED-line has distances P1X and P2X equal. In
the present work, the term Equi-distant line is used, because
it represents this geometric property in a fundamental way.
With X as a center, if a circle is drawn through the point P1,
the circle will pass through P2 also. In the present work, an
Equi-angular (EA) line, which bisects the angle formed by
two lines; namely, L1 and L2, as shown in Fig. A2, also finds
an important application. Interestingly, the perpendicular
distances from any point X on this EA-line to lines L1 and

L2 are equal. If a circle is drawn with X as its center and
tangent to L1, the circle will also be tangential to L2. Fig. A3
shows the farthest and nearest centers based on equidistant
lines. The farthest center results in the biggest circle passing
through P1, P2, and P3. Any point away from Cf and along
the farthest edge, taken as a cener can yield a circle passing
through two points, in this case P2 and P3. The line beyond
Cf is also known as Farthest Voronoi Edge. In the same
way, the line from Cn as shown in Fig. A3 is the nearest
(Voronoi) edge. For the equi-angular lines, the farthest
center results in the biggest circle tangential to L1, L2, and
L3 as shown in Fig. A4. Along the line beyond the farthest
center Cf, the circle drawn will be tangential to L2 and L3.

Fig. A. A1: Equi-distant (ED) line; A2: Equi-angular (EA) line; A3: Equi-distant (ED) diagram; A4: Equi-angular (EA) diagram.
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Appendix B: A Note on Limacon

A limacon has a pole O and an axis OOo. There are two
ways of constructing a limacon geometrically. In Fig. B1, a
base circle is drawn with OOo as its diameter and a line is
drawn from the pole O. This line intersects the circle, say,
at P19 and a pont P1 is located on this line such that the
segment P19 P1 is equal to ro. By laying out the points P2, P3,
etc. in a similar manner, a limacon is obtained as a curve
passing through these points.

Alternatively, a circle of radius ro is drawn with a Oo as
its center, as shown in Fig. B2. Foot of the perpendicular
drawn from the pole O to the tangent of this circle lies on
the limacon. Certain interesting properties of the limacon
can be seen in Fig. B3. The perpendiculars darwn to the
lines OP1 and OP2 intersect at II. It can be seen that the
normals at T1 and T2 subtend an angleT1OoT2 at Oo. By
geometry, it is seen that the line I1Oo bisects the angles
T1OoT2 and P1I1P2. Also the angle subtended by the
normals OoT1 and OoT2 is equal to the angle between OP1

and OP2.

Fig. B. B1: Limacon from a given circle of radius r0; B2: Limacon from a given circle of radius r0; B3: Important properties of Limacon.
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