Projective modules over smooth, affine varieties over Archimedean real closed fields

S.M.Bhatwadekar, Sarang Sane

School of Mathematics, Tata Institute of Fundamental Research Homi Bhabha Road, Mumbai 400 005, India.

e-mail: smb@math.tifr.res.in, sarang@math.tifr.res.in

Abstract

Let $X = \operatorname{Spec}(A)$ be a smooth, affine variety of dimension $n \geq 2$ over the field \mathbb{R} of real numbers. Let P be a projective A-module of rank n such that its n^{th} Chern class $C_n(P) \in \operatorname{CH}_0(X)$ is zero. In this set-up, Bhatwadekar-Das-Mandal showed (amongst many other results) that $P \simeq A \oplus Q$ in the case that either n is odd or the topological space $X(\mathbb{R})$ of real points of X does not have a compact, connected component. In this paper, we prove that similar results hold for smooth, affine varieties over an Archimedean real closed field \mathbf{R} .

Key words: Projective modules, Euler Class Groups, real closed fields, semi-algebraically connected semi-algebraic components.

Mathematics Subject Classifications: 13C10, 14P10

1 Introduction

Let $X = \operatorname{Spec}(A)$ be a smooth affine variety of dimension $n \geq 2$ over a field k and let P be a projective A-module of rank n. It is well-known that in general P may not split off a free summand of rank one. Hence, it is of interest to find

sufficient conditions for this to happen. When k is an algebraically closed field, a result of Murthy [9, Theorem 3.8] says that if the top Chern class $C_n(P)$ in $CH_0(X)$ is zero, then P splits off a free summand of rank one (i.e. $P \simeq A \oplus Q$). Note that over any base field, the vanishing of the top Chern class is a necessary condition for P to split off a free summand of rank one. However, the example of the tangent bundle of an even dimensional sphere shows that this condition is not sufficient. Therefore, it is natural to ask: under what further conditions $C_n(P) = 0 \stackrel{?}{\Rightarrow} P \simeq A \oplus Q$. In the case $k = \mathbb{R}$, this question was intially investigated in [2] and brought to a satisfactory conclusion in [1], e.g. it has been shown (amongst many other results) in [1, Theorem 4.30] that when n is odd, then $C_n(P) = 0$ implies that $P \simeq A \oplus Q$. Moreover it is also shown that in the case n is even, $\wedge^n(P) \not\simeq K_A$, then $C_n(P) = 0$ is a sufficient condition for P to have a free summand of rank one, where K_A denotes the canonical module of A over \mathbb{R} . In this paper we extend these results to the case when the base field k is an Archimedean real closed field. More precisely, we prove:

Theorem 1.1. Let \mathbf{R} be an Archimedean real closed field. Let $X = \operatorname{Spec}(A)$ be a smooth affine variety of dimension $n \geq 2$ over \mathbf{R} . Let $X(\mathbf{R})$ denote the \mathbf{R} -rational points of the variety. Let K denote the canonical module $\wedge^n(\Omega^*_{A/\mathbf{R}})$. Let P be a projective A-module of rank n and let $\wedge^n(P) = L$. Assume that $C_n(P) = 0$ in $\operatorname{CH}_0(X)$. Then $P \simeq A \oplus Q$ in the following cases:

- 1. $X(\mathbf{R})$ has no closed and bounded semi-algebraically connected component.
- 2. For every closed and bounded semi-algebraically connected component W of $X(\mathbf{R})$, $L_W \not\simeq K_W$ where K_W and L_W denote restriction of (induced) line bundles on $X(\mathbf{R})$ to W.
- 3. n is odd.

Moreover, if n is even and L is a rank 1 projective A-module such that there exists a closed and bounded semi-algebraically connected component W of $X(\mathbf{R})$ with the property that $L_W \simeq K_W$, then there exists a projective A-module P of rank n such that $P \oplus A \simeq L \oplus A^{n-1} \oplus A$ (hence $C_n(P) = 0$) but P does not have a free summand of rank 1.

Note that when the base field is \mathbb{R} , the semi-algebraically connected semi-algebraic components are the connected components of $X(\mathbb{R})$ in the Euclidean topology.

We thank the referee for pointing out an error in the proof of (3.1) in an earlier version and suggesting a way to correct it.

2 Preliminaries

The first part can be looked upon as a quick reference guide to the theory of real closed fields and the topological notions related to them. More details can be found in [4].

Definition 2.1. A field **R** is said to be real if it can be ordered in a way such that addition and multiplication are compatible with the ordering. An equivalent definition is that $\sum_{i=1}^{n} a_i^2 = 0 \Rightarrow a_i = 0 \forall i$. A real closed field is a real field which has no algebraic extensions which are real, equivalently attaching a root of -1 makes it algebraically closed.

Such fields come with a natural topology based on intervals like in the case of \mathbb{R} . However, under this topology, the field itself is not connected (except in the case of \mathbb{R}).

Definition 2.2. A subset V of \mathbb{R}^n is called a basic semi-algebraic set if V is of the form

$${x \in \mathbf{R}^n | f_i(x) = 0, g_j(x) > 0, 1 \le i \le r, 1 \le j \le s},$$

where $f_i(x), g_j(x) \in \mathbf{R}[X_1, X_2, \dots, X_n]$. A subset W of \mathbf{R}^n is called a semi-algebraic set if W is a finite union of basic semi-algebraic sets.

A semi-algebraic subset W of \mathbb{R}^n is semi-algebraically connected if for every pair of disjoint, closed, semi-algebraic subsets F_1 and F_2 of W, satisfying $F_1 \cup F_2 = W$, either $F_1 = W$ or $F_2 = W$.

Now we quote a result, the proof of which can be found in [4, Theorem 2.4.4].

Theorem 2.3. Every semi-algebraic subset W of \mathbb{R}^l is the disjoint union of a finite number of semi-algebraically connected semi-algebraic subsets W_1, W_2 ,

..., W_s which are closed in W. The $W_1, W_2, ..., W_s$ are called the **semi-algebraically connected semi-algebraic components** of W.

Remark 2.4. When the field is \mathbb{R} , the semi-algebraically connected semi-algebraic components are same as the connected components by [4, Theorem 2.4.5].

Let $\mathbf{R} \hookrightarrow \mathbf{R}'$ be real closed fields. Let $X = \operatorname{Spec}(A)$ be a smooth affine variety over \mathbf{R} and let $X(\mathbf{R})$ denote the set of \mathbf{R} -rational points of X. Let $A' = A \otimes_{\mathbf{R}} \mathbf{R}'$ and let $X' = \operatorname{Spec}(A')$ be the corresponding (smooth) affine variety over \mathbf{R}' . Note that, fixing a closed embedding of $X(\mathbf{R})$ in \mathbf{R}^l (for suitable l), we can regard the topological space $X(\mathbf{R})$ as a subspace of $X(\mathbf{R}')$. Let W'_1, W'_2, \ldots, W'_s be the semi-algebraically connected semi-algebraic components of $X(\mathbf{R}')$. Let $W_i = W'_i \cap X(\mathbf{R})$. Then, W_1, W_2, \ldots, W_s are precisely the semi-algebraically connected semi-algebraic components of $X(\mathbf{R})$ (for a proof of a more general result see [4, Proposition 5.3.6]). Note that W'_i is closed and bounded if and only if W_i closed and bounded.

Now we state the Artin-Lang homomorphism theorem ([4, Thm. 4.1.2]).

Theorem 2.5. Let A be a finite type \mathbf{R} -algebra. If there exists an \mathbf{R} -algebra homomorphism $\phi: A \to \mathbf{R}'$ into a real closed extension \mathbf{R}' of \mathbf{R} , then there exists an \mathbf{R} -algebra homomorphism $\psi: A \to \mathbf{R}$.

In particular, if A is an \mathbf{R} -subalgebra of \mathbf{R}' , then we get a retraction from A to \mathbf{R} .

To make the paper self-contained, we define the Euler Class Group. Once again, more details can be obtained in either [1] or [3].

Definition 2.6. Definition of E(A, L) and $E_0(A, L)$

Let A be a ring of dimension $n \geq 2$ and let L be a projective A-module of rank 1. Write $F = L \oplus A^{n-1}$. Let $J \subset A$ be an ideal of height n such that J/J^2 is generated by n elements. Two surjections α, β from F/JF to J/J^2 are said to be related if there exists $\sigma \in SL_{A/J}(F/JF)$ such that $\alpha\sigma = \beta$. Clearly this is an equivalence relation on the set of surjections from F/JF to J/J^2 . Let $[\alpha]$ denote the equivalence class of α . Such an equivalence class $[\alpha]$ is called a local L-orientation of J. By abuse of notation, we shall identify an equivalence class

[α] with α . A local L-orientation α is called a global L-orientation if $\alpha: F/JF \to J/J^2$ can be lifted to a surjection $\theta: F \to J$.

Let G be the free abelian group on the set of pairs $(\mathcal{N}, \omega_{\mathcal{N}})$ where \mathcal{N} is an \mathcal{M} -primary ideal for some maximal ideal \mathcal{M} of height n such that $\mathcal{N}/\mathcal{N}^2$ is generated by n elements and $\omega_{\mathcal{N}}$ is a local L-orientation of \mathcal{N} . Now let $J \subset A$ be an ideal of height n such that J/J^2 is generated by n elements and ω_J be a local L-orientation of J. Let $J = \cap_i \mathcal{N}_i$ be the (irredundant) primary decomposition of J. We associate to the pair (J, ω_J) , the element $\sum_i (\mathcal{N}_i, \omega_{\mathcal{N}_i})$ of G where $\omega_{\mathcal{N}_i}$ is the local orientation of \mathcal{N}_i induced by ω_J . By abuse of notation, we denote $\sum_i (\mathcal{N}_i, \omega_{\mathcal{N}_i})$ by (J, ω_J) .

Let H be the subgroup of G generated by the set of pairs (J, ω_J) , where J is an ideal of height n and ω_J is a global L-orientation of J. The Euler class group of A with respect to L is $E(A, L) \stackrel{\text{def}}{=} G/H$. We write E(A) for E(A, A).

Further, let G_0 be the free abelian group on the set (\mathcal{N}) where \mathcal{N} is an \mathcal{M} -primary ideal for some maximal ideal \mathcal{M} of height n such that $\mathcal{N}/\mathcal{N}^2$ is generated by n elements. Let $J \subset A$ be an ideal of height n such that J/J^2 is generated by n elements. Let $J = \bigcap_i \mathcal{N}_i$ be the (irredundant) primary decomposition of J. Let (J) denote the element $\sum_i (\mathcal{N}_i)$ of G_0 . Let H_0 be the subgroup of G_0 generated by elements of the type (J), where J is an ideal of height n such that there exists a surjection $\alpha: L \oplus A^{n-1} \twoheadrightarrow J$. Then, $E_0(A, L) \stackrel{\text{def}}{=} G_0/H_0$. From the definitions of E(A, L) and $E_0(A, L)$, it is clear that there is a canonical surjection from $E(A, L) \twoheadrightarrow E_0(A, L)$.

Now let P be a projective A-module of rank n such that $L \simeq \wedge^n(P)$ and let $\chi: L \xrightarrow{\simeq} \wedge^n P$ be an isomorphism. Let $\varphi: P \twoheadrightarrow J$ be a surjection where J is an ideal of height n. Therefore we obtain an induced surjection $\overline{\varphi}: P/JP \twoheadrightarrow J/J^2$. Let $\overline{\gamma}: L/JL \oplus (A/J)^{n-1} \simeq P/JP$ be an isomorphism such that $\wedge^n(\overline{\gamma}) = \overline{\chi}$. Let ω_J be the local L-orientation of J given by $\overline{\varphi} \circ \overline{\gamma}: L/JL \oplus (A/J)^{n-1} \twoheadrightarrow J/J^2$. Let $e(P,\chi)$ be the image in E(A,L) of the element (J,ω_J) of G. The assignment sending the pair (P,χ) to the element $e(P,\chi)$ of E(A,L) is well defined. The $Euler\ class\ of\ (P,\chi)$ is defined to be $e(P,\chi)$.

We note that for an affine ring over a real closed field \mathbf{R} , a maximal ideal \mathfrak{m} of A is called real if $A/\mathfrak{m} \simeq \mathbf{R}$. Now we state a few results for later use.

We begin with a lemma which can be easily deduced from the Eisenbud-Evans theorem as stated in [10, pg. 1420].

Lemma 2.7. Let R be a Noetherian ring and let K be a proper ideal of height d such that K/K^2 is generated by d elements. Then we can choose g_1, \ldots, g_d which are generators of K/K^2 and $ht.(g_1, \ldots, g_{d-1}) = d-1$.

Proof. Choose f_1, \ldots, f_d which generate K/K^2 . Then, $(f_1, \ldots, f_d) + K^2 = K$. Hence, there exists $e \in K^2$ such that $(f_1, \ldots, f_d, e) = K$. Since $ht.(K) = ht.(f_1, \ldots, f_d, e) = d$, by the Eisenbud-Evans theorem, there exists c_1, c_2, \ldots, c_d such that $ht.(f_1 + c_1e, \ldots, f_d + c_de) = d$. Let $f_i' = f_i + c_ie$. Again, using the Eisenbud-Evans theorem, there is a $b_1, b_2, \ldots, b_{d-1}$ such that if $g_i = f_i' + b_i f_d'$, then $ht.(g_1, \ldots, g_{d-1}) = d - 1$. Let $g_d = f_d'$. Then $(g_1, \ldots, g_d, e) = K$.

As an application, we deduce the following:

Lemma 2.8. Let A be a smooth, affine domain over a real closed field \mathbf{R} and let I be a proper ideal of height $n \geq 2$ such that I/I^2 is generated by n elements and I is not contained in any real maximal ideal of A. Then there exists $\{a_1, a_2, \ldots, a_{n-1}\} \subset I$ such that

- 1. $ht.(a_1, a_2, \dots, a_{n-1}) = n 1$.
- 2. $(a_1, a_2, \ldots, a_{n-1})$ is not contained in any real maximal ideal of A.
- 3. $I/(a_1, a_2, \ldots, a_{n-1})$ is an invertible ideal in $A/(a_1, a_2, \ldots, a_{n-1})$

Proof. Let b_1, b_2, \ldots, b_n be elements of I which generate I/I^2 . Then $(b_1, b_2, \ldots, b_n)+I^2=I$. Since I does not belong to any real maximal ideal, we can find an element $b \in I$ which does not belong to any real maximal ideal. By [2, Lemma 4.1] (which is true for any real closed field), there exists $c \in A$ such that the element $a_1 = b_1 + cb^2$ does not belong to any real maximal ideal of A. Let $R = A/(a_1)$ and let $K = I/(a_1)$. Then ht.(K) = n-1 and as $(a_1, b_2, \ldots, b_n) + I^2 = I$, K/K^2 is generated by n-1 elements. Therefore, by (2.7), there exist $a_2, \ldots, a_n \in I$ such that $ht.(\overline{a_2}, \ldots, \overline{a_{n-1}}) = n-2$ and $(\overline{a_2}, \ldots, \overline{a_{n-1}}, \overline{a_n}) + K^2 = K$. Hence, $ht.(a_1, a_2, \ldots, a_{n-1}) = n-1$ and $(a_1, a_2, \ldots, a_{n-1}, a_n) + I^2 = I$. Further, $(a_1, a_2, \ldots, a_{n-1})$ is not contained in any real maximal ideal of A.

Now note that $A/(a_1, a_2, \ldots, a_{n-1})$ is Cohen-Macaulay (since it is a quotient of a regular ring by a complete intersection), $I/(a_1, a_2, \ldots, a_{n-1})$ has height 1 and is locally generated by a_n . Hence, $I/(a_1, a_2, \ldots, a_{n-1})$ is an invertible ideal. This completes the proof of the lemma.

The proof of the following lemma is exactly same as [1, Lemma 4.28] when $\mathbf{R} = \mathbb{R}$.

Lemma 2.9. Let B be an affine ring of dimension 1 over a real closed field \mathbf{R} such that B does not have any real maximal ideal. Let L_1 be a projective B- module of rank 1 and let J be an invertible ideal of B. Then for any positive integer r there exists an invertible ideal J_1 of B such that $J + J_1 = B$ and $L_1 \simeq J \cap J_1^r$.

The following result is proved in [3, Lemma 5.4].

Lemma 2.10. Let A be a Noetherian ring of dimension $n \geq 2$. Let $J \subset A$ be an ideal of height n and ω_J be a local L-orientation of J. Let $\overline{a} \in A/J$ be a unit. Then $(J, \omega_J) = (J, \overline{a^2}\omega_J)$ in E(A, L).

We conclude this section by stating a result of Bhatwadekar-Raja Sridharan which is crucial for the results to follow ([3, Corollary 4.4])

Theorem 2.11. Let A be a ring of dimension $n \geq 2$ containing the field \mathbb{Q} of rationals. Let L be a projective A-module of rank 1 and P be a projective A-module of rank n with $L \simeq \wedge^n(P)$. Let $\chi : L \xrightarrow{\simeq} \wedge^n P$ be an isomorphism. Let $J \subset A$ be an ideal of height n and ω_J be a local L-orientation of J. Then,

- 1. Suppose that the image of (J, ω_J) is zero in E(A, L). Then there exists a surjection $\alpha : L \oplus A^{n-1} \twoheadrightarrow J$ such that ω_J is induced by α (in other words, ω_J is a global L-orientation).
- 2. $P \simeq Q \oplus A$ for some projective A-module Q of rank n-1 if and only if $e(P,\chi) = 0$ in E(A,L).

3 Structure of the Euler Class Group

We give the set-up which will be used subsequently:

Let \mathbf{R} be a real closed field. Let $X = \operatorname{Spec}(A)$ be an affine variety of dimension $n \geq 2$ over \mathbf{R} . Let $X(\mathbf{R})$ denote the set of the real maximal ideals of A (the set of \mathbf{R} -rational points of X). Let $\mathbf{R}(X)$ denote the localization of A with respect to the multiplicatively closed subset of A consisting of all elements which do not belong to any real maximal ideal. Note that since \mathbf{R} is real closed, $X(\mathbf{R})$ can be thought of as the set of maximal ideals of $\mathbf{R}(X)$. Moreover, by ([4, Theorem 4.4.5]), $\mathbf{R}(X) = S_A^{-1}(A)$, where $S_A = \{1 + \sum_{i=1}^p f_i^2 | f_1, f_2, \dots, f_p \in A\}$.

For a finitely generated projective A-module of rank 1, L, we denote $L_X = L \otimes_A \mathbf{R}(X)$. Throughout this paper, we assume that $X(\mathbf{R})$ is not empty.

Now let X be smooth. The group of zero cycles of X modulo rational equivalence will be denoted by $\operatorname{CH}_0(X)$. Recall that if I is an ideal in A of height n such that I/I^2 is generated by n elements, then [I] denotes the cycle associated to A/I in $\operatorname{CH}_0(X)$ and (I) denotes an element of $\operatorname{E}_0(A,L)$ associated to I.

From the definition of $\operatorname{CH}_0(X)$, it is clear that there exists a natural surjection $\operatorname{E}_0(A,L) \twoheadrightarrow \operatorname{CH}_0(X)$. Then, the induced map $\Theta_L : \operatorname{E}(A,L) \twoheadrightarrow \operatorname{CH}_0(X)$ has the property that if P is a projective A-module of rank n with an isomorphism $\chi : \wedge^n(P) \simeq L$, then $\Theta_L(e(P,\chi)) = C_n(P)$, where $C_n(P)$ denotes the n^{th} Chern class of P (which is an element of $\operatorname{CH}_0(X)$). Therefore, in view of (2.11), in order to conclude that $P \simeq A \oplus Q$ given $C_n(P) = 0$, it is enough to prove that $e(P,\chi) = 0$ for some χ , and hence computation of the Euler class group $\operatorname{E}(A,L)$ is crucial.

Further, there exists a natural surjection $\Gamma_L : \mathcal{E}(A,L) \to \mathcal{E}(\mathbf{R}(X),L_X)$. Note that by [1, Lemma 2.7], it can be shown that every element of $\ker \Gamma_L$ is of the form (I,ω_I) where I is an ideal of height n not contained in real maximal ideal and ω_I is a local L-orientation. Hence, we denote $\ker \Gamma_L$ by $\mathcal{E}^{\bar{\mathbf{R}}}(L)$ where $\bar{\mathbf{R}}$ denotes the algebraic closure of \mathbf{R} . We first show that $\mathcal{E}^{\bar{\mathbf{R}}}(L)$ is a torsion-free and divisible group, and hence $\mathcal{E}(A,L) \simeq \mathcal{E}(\mathbf{R}(X),L_X) \oplus \mathcal{E}^{\bar{\mathbf{R}}}(L)$.

Let $A_{\bar{\mathbf{R}}} = A \otimes_{\mathbf{R}} \bar{\mathbf{R}}$ and $Y = \operatorname{Spec}(A_{\bar{\mathbf{R}}})$. Then $A_{\bar{\mathbf{R}}}$ is a smooth affine $\bar{\mathbf{R}}$ -algebra of dimension $n \geq 2$ and hence $\operatorname{CH}_0(Y)$ is a divisible group. Let $\pi: Y \to X$

be the canonical map. Note that π is a finite morphism and it induces group homomorphisms $\pi^*: \operatorname{CH}_0(X) \to \operatorname{CH}_0(Y)$ and $\pi_*: \operatorname{CH}_0(Y) \to \operatorname{CH}_0(X)$ such that the composition $\pi_*\pi^*$ is multiplication by 2. Let $G = \pi_*(\operatorname{CH}_0(Y))$. Then, Gis torsion-free and divisible (see [1, Lemma 4.25] for a proof). Therefore, it suffices to show that $\operatorname{E}^{\bar{\mathbf{R}}}(L) \simeq G$. In view of the description of the elements of $\operatorname{E}^{\bar{\mathbf{R}}}(L)$, it is easy to see that the image of $\operatorname{E}^{\bar{\mathbf{R}}}(L)$ under the map $\Theta_L: \operatorname{E}(A,L) \to \operatorname{CH}_0(X)$ is contained in G and therefore it suffices to prove the following proposition.

Proposition 3.1. $(\Theta_L)|_{(\mathbf{E}^{\bar{\mathbf{R}}}(L))}$ is an isomorphism with image G.

Remark 3.2. This proposition has been proved in [1] in the case $\mathbf{R} = \mathbb{R}$. The proof in [1] depends on two key results namely (i) $\mathbf{E}_0(A, L) \simeq \mathrm{CH}_0(X)$ and (ii)the topological result that every topological line bundle is 2-torsion on a real manifold. Though our proof is on similar lines, we circumvent these results. More precisely, we do not use (i), and instead of (ii), we prove that any rank 1 projective module over $\mathbf{R}(X)$ is 2-torsion.

Proof. We first prove that the map $E^{\bar{\mathbf{R}}}(L) \to G$ is injective. Let $x = (I, \omega_I) \in E^{\bar{\mathbf{R}}}(L)$ such that $\Theta_L((I, \omega_I)) = 0$ where I is an ideal of A of height n contained in only non-real maximal ideals. First note that since I is contained in only non-real maximal ideals, every unit of A/I is a square. Therefore, in view of (2.10), in order to prove that $(I, \omega_I) = 0$ in E(A, L) it is enough to show that there is a surjection $\alpha: L \oplus A^{n-1} \to I$.

Since I is not contained in any real maximal ideals and I/I^2 is generated by n elements, using (2.8) we obtain $\{a_1, \ldots, a_{n-1}\} \subset I$ such that $(a_1, a_2, \ldots, a_{n-1})$ is not contained in any real maximal ideal of $A, I/(a_1, a_2, \ldots, a_{n-1})$ is an invertible ideal in $A/(a_1, a_2, \ldots, a_{n-1})$ and $ht.(a_1, a_2, \ldots, a_{n-1}) = n-1$.

Let $B = A/(a_1, \dots a_{n-1})$ and $J = I/(a_1, \dots a_{n-1})$. Then B is an affine ring of dimension 1 over \mathbb{R} which does not have any real maximal ideal and J is an invertible ideal of B. Hence, letting r = 2(n-1)!, lemma 2.9 gives an invertible ideal J_1 of B such that $J + J_1 = B$ and $J \cap J_1^r$ is a surjective image of $L \otimes_A B$. Let I_1 be an ideal of A such that $(a_1, \dots a_{n-1}) \subset I_1$ and $I_1/(a_1, \dots a_{n-1}) = J_1$. Let $I_1^{(r)} = (a_1, \dots a_{n-1}) + I_1^r$. From construction it is clear that there exists a surjection $\beta: L \oplus A^{n-1} \to I \cap I_1^{(r)}$. Thus, the class corresponding to $I \cap I_1^{(r)}$ is

0 in E(A, L). Hence, if we can prove that there is a surjection $L \oplus A^{n-1} \twoheadrightarrow I_1^{(r)}$, then we are done.

Now, we know that $\Theta_L((I,\omega_I)) = [I] = 0$ and note that the image of $(I \cap I_1^{(r)}, *)$ under Θ_L is also 0. Hence, $[I_1^{(r)}] = 0$. But, as I_1 is contained only in non-real maximal ideals, $[I_1]$ also lies in G, and $[I_1^{(r)}] = r[I_1]$ and so $r[I_1] = 0$. Since G is torsion-free, $[I_1] = 0$.

By [6, Theorem 4.1], we obtain that $(n-1)!(I_1) = (I_1^{((n-1)!)}) = 0$ in $E_0(A)$. Now by [1, Lemma 3.6] and [1, Proposition 3.7], we have a natural map $E_0(A, L) \to E(A, L)$ so that $(I_1^{((n-1)!)}) \mapsto (I_1^{(2(n-1)!)}, *)$ where * denotes an orientation of $I_1^{(2(n-1)!)}$. Recall that r = 2(n-1)!. Hence, $(I_1^{(r)}, *) = 0$ in E(A, L), which means $\exists L \oplus A^{n-1} \to I_1^{(r)}$. Hence we have proved injectivity.

Surjectivity follows by imitating proofs of [1, Lemma 4.2] and [1, Lemma 4.26] once we show that if $Z = \operatorname{Spec}(B)$ is a smooth, affine domain of dimension 1 over \mathbf{R} and \mathfrak{n} is a maximal ideal of $\mathbf{R}(Z)$, then \mathfrak{n}^2 is a principal ideal. The next result shows that indeed such is the case. This completes the proof of the isomorphism.

Proposition 3.3. Let \mathbf{R} be a real closed field and let $Z = \operatorname{Spec}(B)$ be an affine algebra over \mathbf{R} . Let E be a finitely generated projective module of rank 1 over $\mathbf{R}(Z)$. Then, $E \otimes_{\mathbf{R}(Z)} E \xrightarrow{\sim} \mathbf{R}(Z)$.

Thus, the group of rank one projective $\mathbf{R}(Z)$ -modules is 2-torsion.

Proof. We first note that if R is a ring and \mathfrak{m} is a maximal ideal of R such that R/\mathfrak{m} is a real field, then $\sum_{i=1}^{n} a_i^2 \in \mathfrak{m}$ implies that $\sum_{i=1}^{n} \bar{a_i}^2 = 0$ in $R/\mathfrak{m} \Rightarrow \bar{a_i} = 0$ $\forall i \Rightarrow a_i \in \mathfrak{m} \ \forall i$. Thus, $\sum_{i=1}^{n} a_i^2 \in \mathfrak{m} \Longrightarrow a_i \in \mathfrak{m} \ \forall i$.

Let (e_1, e_2, \ldots, e_n) be a set of generators for E. We claim that $e = \sum_{i=1}^n e_i \otimes e_i$ generates $E \otimes_{\mathbf{R}(Z)} E$. To check this, it is enough to check it in every localization at a maximal ideal. All maximal ideals are real. Let \mathfrak{m} be one such. Then $E_{\mathfrak{m}}$ is a free module of rank 1, hence generated by e_i for some $i, 1 \leq i \leq n$. Without loss of generality, we assume that it is generated by e_1 . Then, $E_{\mathfrak{m}} \otimes_{\mathbf{R}(Z)_{\mathfrak{m}}} E_{\mathfrak{m}}$ is generated by $e_1 \otimes e_1$. Further, $e_i = a_i e_1$, $a_i \in \mathbf{R}(Z)_{\mathfrak{m}}$ and $a_1 = 1$. Then, $e = \sum_{i=1}^n e_i \otimes e_i = (\sum_{i=1}^n a_i^2)(e_1 \otimes e_1)$. Since $1 = a_1$ and the residue field of the local ring is \mathbf{R} , $\sum_{i=1}^n a_i^2$ is a unit in $\mathbf{R}(Z)_{\mathfrak{m}}$. Thus, $E_{\mathfrak{m}} \otimes_{\mathbf{R}(Z)_{\mathfrak{m}}} E_{\mathfrak{m}}$ is generated by $e = \sum_{i=1}^n e_i \otimes e_i$. Thus, we see that $E \otimes_{\mathbf{R}(Z)} E \xrightarrow{\sim} \mathbf{R}(Z)$.

As a consequence of the above proposition, we have the following generalisation of [1, Lemma 4.2] which can be proved along similar lines.

Corollary 3.4. Let \mathbf{R} be a real closed field and let $X = \operatorname{Spec}(A)$ be an affine variety of dimension $n \geq 2$. Let L_X be a $\mathbf{R}(X)$ -projective module of rank 1 and I be an ideal of $\mathbf{R}(X)$ of height n such that I/I^2 is generated by n elements. Let ω_I be a local L_X -orientation. Then, $(I, \omega_I) + (I, -\omega_I) = 0$ in $\mathrm{E}(\mathbf{R}(X), L_X)$. Hence, the canonical surjection $\mathrm{E}(\mathbf{R}(X), L_X) \twoheadrightarrow \mathrm{E}_0(\mathbf{R}(X), L_X)$ factors through $\mathrm{E}(\mathbf{R}(X), L_X)/2\,\mathrm{E}(\mathbf{R}(X), L_X)$.

In view of (3.1), to understand the structure of E(A, L), we need to investigate the structure of $E(\mathbf{R}(X), L_X)$. When the base field is \mathbb{R} , the following structure theorem has been proved in [1, Theorem 4.21] in terms of compact, connected components of $X(\mathbb{R})$.

Theorem 3.5. Let $Y = \operatorname{Spec}(B)$ be a smooth affine variety of dimension $n \geq 2$ over the field \mathbb{R} and let $K = \wedge^n(\Omega_{B/\mathbb{R}}^*)$ be the canonical module of B. Let E be a projective B-module of rank 1. Let $W_1, \dots, W_r, W_{r+1}, \dots, W_t$ be the compact connected components of $Y(\mathbb{R})$ in the Euclidean topology. Let K_{W_i} and E_{W_i} denote restriction of (induced) line bundles on $Y(\mathbb{R})$ to W_i . Assume that $E_{W_i} \simeq K_{W_i}$ for $1 \leq i \leq r$ and $E_{W_i} \not\simeq K_{W_i}$ for $r+1 \leq i \leq t$. Then,

$$E(\mathbf{R}(Y), E \otimes_B \mathbf{R}(Y)) = G_1 \oplus \cdots \oplus G_r \oplus G_{r+1} \oplus \cdots \oplus G_t,$$

where $G_i = \mathbb{Z}$ for $1 \leq i \leq r$ and $G_i = \mathbb{Z}/(2)$ for $r+1 \leq i \leq t$. Moreover, given any $\mathfrak{m} \in W_i$ and an E-orientation $\omega_{\mathfrak{m}}$, G_i is generated by $(\mathfrak{m}, \omega_{\mathfrak{m}})$ for $1 \leq i \leq t$.

Using this structure theorem, we now deduce a similar structure theorem when the base field \mathbf{R} is an Archimedean real closed field. Note that every Archimedean field is uniquely order isomorphic to a subfield of \mathbb{R} and hence we may assume it is actually contained in \mathbb{R} .

We begin with some generalities. Let $k \hookrightarrow k'$ be a field extension. Let $X = \operatorname{Spec}(A)$ be an affine variety of dimension $n \geq 2$ over k and let $A' = A \otimes_k k'$, $X' = \operatorname{Spec}(A')$. Let Υ be the indexing set for all finite type algebras C_{α} over k contained in k'. Then $\varinjlim_{\{\alpha \in \Upsilon\}} C_{\alpha} = k'$ and hence, $A' = \varinjlim_{\{\alpha \in \Upsilon\}} A_{\alpha}$ where $A_{\alpha} = A \otimes_k C_{\alpha}$.

Let L be a projective A-module of rank 1 and $L' = L \otimes_A A'$. Since A' is a ring of dimension n which is faithfully flat over A, it is easy to see that there exist canonical maps $E(A, L) \to E(A', L')$ and $E_0(A, L) \to E_0(A', L')$. Moreover, if k and k' are real closed fields, then we can extend these maps canonically to maps $E(k(X), L_X) \to E(k'(X'), L'_{X'})$ and $E_0(k(X), L_X) \to E_0(k'(X'), L'_{X'})$.

Now, we state a lemma, the proof of which is very easy and hence, we only outline the proof.

Lemma 3.6. Let $\{A_{\alpha} | \alpha \in \Upsilon\}$ be a direct system of rings. Let $A = \varinjlim_{\alpha \in \Upsilon} A_{\alpha}$.

- 1. Let M be a finitely presented A-module. Then, there exists $\alpha \in \Upsilon$ and a finitely presented A_{α} -module M_{α} such that $M \cong M_{\alpha} \otimes_{A_{\alpha}} A$.
- 2. Let $f: M \to N$ be a homomorphism between two finitely presented A-modules. Then, there exists $\alpha \in \Upsilon$, finitely presented A_{α} -modules M_{α} , N_{α} and an A_{α} -homomorphism $f_{\alpha}: M_{\alpha} \to N_{\alpha}$ such that $M \cong M_{\alpha} \otimes_{A_{\alpha}} A$, $N \cong N_{\alpha} \otimes_{A_{\alpha}} A$ and

$$M \xrightarrow{f} N$$

$$\downarrow^{l} \qquad \downarrow^{l}$$

$$M_{\alpha} \otimes_{A_{\alpha}} A \xrightarrow{f_{\alpha}} N_{\alpha} \otimes_{A_{\alpha}} A$$

In particular, if f is an epimorphism, then we can choose f_{α} to be an epimorphism.

Proof. Since M is a finitely presented module, there is an exact sequence $A^n \xrightarrow{h} A^m \to M \to 0$. Then the map h is given by an $m \times n$ matrix H with coefficients in A. Since $A = \varinjlim_{\{\alpha \in \Upsilon\}} A_{\alpha}$, $\exists \alpha \in \Upsilon$ such that the entries of H come from A_{α} , i.e. there is a matrix H_{α} with entries in A_{α} which map to the corresponding entries of the matrix H. Let $h_{\alpha}: A_{\alpha}^n \to A_{\alpha}^m$ be the corresponding map. Let M_{α} be the cokernel of the map given by $A_{\alpha}^n \xrightarrow{h_{\alpha}} A_{\alpha}^m$. Then, M_{α} is finitely presented and $M \cong M_{\alpha} \otimes_{A_{\alpha}} A$. This proves the first part. For the second part, let g be the composite map $A^m \to M \xrightarrow{f} N$. Choose M_{β} and N_{β} as in the first part. Then, one can define a map $g_{\beta}: A_{\beta}^m \to N_{\beta}$ so that $g_{\beta} \otimes_{A_{\beta}} A = g$. Then, the composite map $g_{\beta} \circ h_{\beta}: A_{\beta}^n \to N_{\beta}$ is such that $g_{\beta} \circ h_{\beta} \otimes_{A_{\beta}} A = g \circ h = 0$.

Hence, by the property of the direct limit, and since n is finite, there exists $\alpha \succ \beta$ such that $g_{\alpha} \circ h_{\alpha} = (g_{\beta} \otimes_{A_{\beta}} A_{\alpha}) \circ (h_{\beta} \otimes_{A_{\beta}} A_{\alpha}) = g_{\beta} \circ h_{\beta} \otimes_{A_{\beta}} A_{\alpha} = 0$. Since $M_{\alpha} = M_{\beta} \otimes_{A_{\beta}} A_{\alpha}$ is the cokernel of $h_{\alpha} : A_{\alpha}^{n} \to A_{\alpha}^{m}$, there is an induced map $f_{\alpha} : M_{\alpha} \to N_{\alpha}$. Clearly, this map satisfies the required property. Further, if f was an epimorphism, then so is g and so one can choose g_{β} to be an epimorphism which will make g_{α} and hence f_{α} an epimorphism. Hence, proved.

Now we work in the following set-up: \mathbf{R} is an Archimedean real closed field and $X = \operatorname{Spec}(A)$ is a smooth, affine variety of dimension $n \geq 2$ over \mathbf{R} . Let $B = A \otimes_{\mathbf{R}} \mathbb{R}$ and let $Y = \operatorname{Spec}(B)$. Let L be a rank 1 projective A-module and let $L' = L \otimes_A B$. Note that $L'_Y = L_X \otimes_{\mathbf{R}(X)} \mathbb{R}(Y)$.

Proposition 3.7. The canonical maps $E(\mathbf{R}(X), L_X) \to E(\mathbb{R}(Y), L'_Y)$ and $E_0(\mathbf{R}(X), L_X) \to E_0(\mathbb{R}(Y), L'_Y)$ are isomorphisms. In particular, $E_0(\mathbf{R}(X), L_X)$ is a vector space of rank t over the field $\mathbb{Z}/(2)$ where t is the number of closed and bounded semi-algebraically connected semi-algebraic components of $X(\mathbf{R})$.

Proof. We first prove the isomorphism for $E(\mathbf{R}(X), L_X) \to E(\mathbb{R}(Y), L'_Y)$.

(i) Injectivity: Let J be an ideal of height n in $\mathbf{R}(X)$ such that J/J^2 is generated by n elements and let ω_J be a surjective map from $F = L_X \oplus \mathbf{R}(X)^{n-1} \twoheadrightarrow J/J^2$ (a local L-orientation). Let $I = J\mathbb{R}(Y)$. Now suppose there is a surjective map $\theta_I : F \otimes_{\mathbf{R}(X)} \mathbb{R}(Y) \twoheadrightarrow I$ which is a lift of $\omega_J \otimes_{\mathbf{R}(X)} \mathbb{R}(Y)$. Then, by lemma 3.6, there exists an affine \mathbf{R} -subalgebra C of \mathbb{R} such that if $T = \{1 + \sum_{i=1}^p f_i^2 | f_1, f_2, \dots, f_p \in A \otimes_{\mathbf{R}} C\}$, and $D = T^{-1}(A \otimes_{\mathbf{R}} C)$, then there is a surjection $\theta : F \otimes_{\mathbf{R}(X)} D \twoheadrightarrow JD$, which is a lift of $\omega_J \otimes_{\mathbf{R}(X)} D$.

Since $\mathbf{R} \hookrightarrow C \hookrightarrow \mathbb{R}$, by (2.5), \mathbf{R} is a retract of C and hence, A is a retract of $A \otimes_{\mathbf{R}} C$. Let $\beta : A \otimes_{\mathbf{R}} C \to A$ be an A-algebra homomorphism which gives rise to this retract. Let $S_A = \{1 + \sum_{i=1}^p f_i^2 | f_1, f_2, \dots, f_p \in A\}$. Since $S_A \subset T$ and $\beta(T) = S_A$, $\mathbf{R}(X) \subset D$ and β induces a retraction $\sigma : D \twoheadrightarrow \mathbf{R}(X)$. In view of this, it is easy to see that the map $\theta \otimes_D \mathbf{R}(X)$ is indeed a lift of ω_J . Thus, the map $\mathbf{E}(\mathbf{R}(X), L_X) \to \mathbf{E}(\mathbf{R}(Y), L_Y')$ is injective.

(ii) Surjectivity: Let $W_1, \dots, W_r, W_{r+1}, \dots, W_t$ be the compact connected components of $Y(\mathbb{R})$ in the Euclidean topology. Then by (3.5), we get that

 $E(\mathbb{R}(Y), L'_Y) = \bigoplus_{i=1}^t G_i$. Further, given any $\mathfrak{m} \in W_i$ and an L'_Y -orientation $\omega_{\mathfrak{m}}$, G_i is generated by $(\mathfrak{m}, \omega_{\mathfrak{m}})$ for $1 \leq i \leq t$. Note that by (2.4), if W is a connected component of $Y(\mathbb{R})$, then $W \cap X(\mathbf{R}) \neq \emptyset$. Hence, there exists a maximal ideal \mathfrak{m}_i of $\mathbf{R}(X)$, such that $\mathfrak{m}_i \in W_i \cap X(\mathbf{R})$. Now we choose any L_X -orientation ω_i of \mathfrak{m}_i . Then, (m_i, ω_i) maps to a generator of G_i . Hence, $E(\mathbf{R}(X), L_X) \to E(\mathbb{R}(Y), L'_Y)$ is surjective.

Using [2, Theorem 4.10] and (3.5), it is easy to see that the induced map $E(\mathbb{R}(Y), L'_Y)/2 E(\mathbb{R}(Y), L'_Y) \to E_0(\mathbb{R}(Y), L'_Y)$ is an isomorphism.

Therefore, the composite map $E(\mathbf{R}(X), L_X)/2 E(\mathbf{R}(X), L_X) \to E_0(\mathbb{R}(Y), L'_Y)$ is an isomorphism. But by (3.4), we know that this map is actually the composite map $E(\mathbf{R}(X), L_X)/2 E(\mathbf{R}(X), L_X) \to E_0(\mathbf{R}(X), L_X) \to E_0(\mathbb{R}(Y), L'_Y)$. Hence, $E_0(\mathbf{R}(X), L_X) \to E_0(\mathbb{R}(Y), L'_Y)$ is an isomorphism. Hence, by [2, Theorem 4.10] and (2.4), we see that $E_0(\mathbf{R}(X), L_X)$ is a vector space of rank t over the field $\mathbb{Z}/(2)$ where t is the number of closed and bounded semi-algebraically connected semi-algebraic components of $X(\mathbf{R})$.

Remark 3.8. Let $\mathbf{R} \hookrightarrow \mathbf{R}'$ be an extension of real closed fields and let $X = \operatorname{Spec}(A)$ be an affine variety over \mathbf{R} and let L be a rank 1 projective A-module. Let $A' = A \otimes_{\mathbf{R}} \mathbf{R}'$, $X' = \operatorname{Spec}(A')$ and $L' = L \otimes_A A'$. Then the above proof shows that $\mathrm{E}(A, L) \to \mathrm{E}(A', L')$ and $\mathrm{E}(\mathbf{R}(X), L_X) \to \mathrm{E}(\mathbf{R}'(X'), L'_{X'})$ are both injective. As a consequence, we have the following result.

Corollary 3.9. Let R be a real closed field and let

$$B = \mathbf{R}[X_0, X_1, \dots, X_n] / (\sum_{i=0}^n X_i^2 - 1)$$

denote the coordinate ring of the sphere $S^n(\mathbf{R})$. Assume that n is even. Let Q be a projective B-module corresponding to the tangent bundle of $S^n(\mathbf{R})$. Then Q does not split off a free summand of rank 1.

Proof. Let K denote the algebraic closure of \mathbb{Q} in \mathbb{R} . It is easy to see that K is isomorphic to $\overline{\mathbb{Q}} \cap \mathbb{R}$ where $\overline{\mathbb{Q}}$ denotes the algebraic closure of \mathbb{Q} in \mathbb{C} . Let $A = K[X_0, X_1, \ldots, X_n]/(\sum_{i=0}^n X_i^2 - 1)$. Let P be the kernel of the map $A^{n+1} \to A$ sending e_i to \overline{X}_i . Then $\wedge^n(P) \simeq A$. Let χ be a generator of $\wedge^n(P)$.

Note that $B = A \otimes_K \mathbf{R}$ and $Q = P \otimes_A B$. Let $\chi' = \chi \otimes_A B$. To prove the result, it is enough to show that $e(Q, \chi') \neq 0$ in E(B). But since $e(Q, \chi')$ is the image of $e(P, \chi)$ under the *injective* map $E(A) \hookrightarrow E(B)$, it is enough to show that $e(P, \chi) \neq 0$ in E(A). But since K is an Archimedean field, by a result of Kong [8, Theorem 6.1], $e(P, \chi) \neq 0$.

We return back to the set-up we were in, namely that \mathbf{R} is an Archimedean real closed field, and $X = \operatorname{Spec}(A)$ is a smooth, affine variety over \mathbf{R} . Let W'_1, W'_2, \ldots, W'_t be the compact connected components of $Y(\mathbb{R})$. Then, in view of (3.7) and (3.5), we know that $E(\mathbf{R}(X), L_X) = \bigoplus_{i=1}^t G_i$ where $G_i = \mathbb{Z}$ or $G_i = \mathbb{Z}/(2)$. Let $W_i = W'_i \cap X(\mathbf{R})$. By (2.4), W_1, W_2, \ldots, W_t are precisely the closed and bounded semi-algebraically connected semi-algebraic components of $X(\mathbf{R})$. Let $x \in W_i$ and let \mathfrak{m} be the real maximal ideal of $\mathbf{R}(X)$ corresponding to x. Let $\omega_{\mathfrak{m}}$ be an L_X -orientation of \mathfrak{m} . Let G_i be the cyclic subgroup of $E(\mathbf{R}(X), L_X)$ generated by $(\mathfrak{m}, \omega_{\mathfrak{m}})$. We denote by \mathcal{L}_i the semi-algebraic line bundle on W_i induced by L_X and by \mathcal{L}'_i , the semi-algebraic line bundle on W'_i induced by L_Y . Now we prove some results which give us a criterion to determine whether $G_i = \mathbb{Z}$ or $G_i = \mathbb{Z}/(2)$ in terms of the semi-algebraic line bundle \mathcal{L}_i . We start with a lemma in this direction.

Lemma 3.10. Let V be a semi-algebraically connected semi-algebraic set and let $\pi : \mathcal{E} \to V$ be a semi-algebraic line bundle. Then, $\mathcal{E}^* = \mathcal{E} \setminus \{\text{zero section}\}$ has 2 semi-algebraically connected semi-algebraic components if and only if \mathcal{E} is semi-algebraically trivial.

Proof. If \mathcal{E} is semi-algebraically trivial, it is clear that $\mathcal{E}^* = \mathcal{E} \setminus \{zero\ section\}$ has two semi-algebraically connected semi-algebraic components. We now prove the other part.

In view of [4, Lemma 12.7.3], it is easy to see that every semi-algebraic vector bundle comes equipped with a continuous, semi-algebraic map $\mathcal{E} \oplus \mathcal{E} \xrightarrow{b} \mathbf{R}$ (called a Riemannian metric) such that restricted to each fibre, it is an inner product. Let θ be the composite map $\mathcal{E} \xrightarrow{\Delta} \mathcal{E} \oplus \mathcal{E} \xrightarrow{b} \mathbf{R}$ induced through the diagonal. Then, $\mathcal{E}^* = \theta^{-1}(0, \infty)$. Let $\mathcal{E}^* = \mathcal{U}_1 \sqcup \mathcal{U}_2, \mathcal{U}_1 \neq \phi, \mathcal{U}_2 \neq \phi$, where \mathcal{U}_1 and \mathcal{U}_2 are semi-algebraic open subsets.

Step 1: We shall prove that for every fibre the intersection with \mathcal{U}_1 and \mathcal{U}_2 is non-empty. Let $V_1 = \{x \in V : \mathcal{U}_1 \cap \mathcal{E}_x \neq \phi, \mathcal{U}_2 \cap \mathcal{E}_x \neq \phi\} = \pi(\mathcal{U}_1) \cap \pi(\mathcal{U}_2)$

$$V_2 = \{x \in V : \mathcal{U}_1 \cap \mathcal{E}_x = \phi\} = \{x \in V : \mathcal{E}_x^* \subseteq \mathcal{U}_2\} = \pi(\mathcal{U}_2) \cap (\pi(\mathcal{U}_1))^c \text{ and }$$

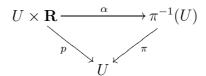
$$V_3 = \{x \in V : \mathcal{U}_2 \cap \mathcal{E}_x = \phi\} = \{x \in X : \mathcal{E}_x^* \subseteq \mathcal{U}_1\} = \pi(\mathcal{U}_1) \cap (\pi(\mathcal{U}_2))^c.$$

Since a line bundle is locally trivial, all the three sets are clearly open in V. Since π is semi-algebraic, these sets are also semi-algebraic. Again, they are clearly disjoint and span X. Since X is semi-algebraically connected, $V = V_i$ for some i. If $V = V_2$, then $\mathcal{E}_x^* \subseteq \mathcal{U}_2 \ \forall x \in X \Rightarrow \mathcal{E}^* = \mathcal{U}_2 \Rightarrow \mathcal{U}_1 = \phi$ which is a contradiction. Hence, $V \neq V_2$. Similarly, $V \neq V_3$. Hence, $V = V_1$. Therefore, given $x \in V$, $\mathcal{U}_1 \cap \mathcal{E}_x \neq \phi$ and $\mathcal{U}_2 \cap \mathcal{E}_x \neq \phi$. But \mathcal{E}_x^* has exactly two semi-algebraically connected components. Therefore, they are exactly $\mathcal{U}_1 \cap \mathcal{E}_x$ and $\mathcal{U}_2 \cap \mathcal{E}_x$.

Step 2: We will now define a section. Let $x \in V$ and restrict θ to \mathcal{E}_x . This is the square of a norm on the 1-dimensional vector space over \mathbf{R} . Therefore, there exist two elements of \mathcal{E}_x such that their evaluation under θ is 1. Further, if one of them is t, then the other is -t. From step 1, exactly one of these elements lies in \mathcal{U}_1 . In other words, $\theta^{-1}(1) \cap \mathcal{E}_x \cap \mathcal{U}_1$ is a singleton set. Define the map $\psi: V \to \mathcal{E}^*$ sending x to the element of $\theta^{-1}(1) \cap \mathcal{E}_x \cap \mathcal{U}_1$.

Step 3: We will now show that ψ is continuous and semi-algebraic. We first note that there is a finite, open, semi-algebraically connected, semi-algebraic covering of our base space V such that the bundle is trivial on them. Then, it is enough to prove that for each such open set U, $\psi|_U$ is continuous and semi-algebraic.

Let U be one of the open sets in the cover and let α be a local trivialization of \mathcal{E} over U, i.e.



Now, note that $\pi^{-1}(U) \cap \mathcal{E}^*$ has exactly two semi-algebraically connected components, $\pi^{-1}(U) \cap \mathcal{U}_1$ and $\pi^{-1}(U) \cap \mathcal{U}_2$ which correspond to $U \times \mathbf{R}^+$ and $U \times \mathbf{R}^-$ through α . W.l.g. we can always assume that $U \times \mathbf{R}^+ \xrightarrow{\sim} \pi^{-1}(U) \cap \mathcal{U}_1$ (else we

choose $-\alpha$). Then, it is enough to prove the composite

$$U \xrightarrow{\psi} \pi^{-1}(U) \cap \mathcal{U}_1 \xrightarrow{\alpha^{-1}} U \times \mathbf{R}^+$$

is continuous and semi-algebraic. Let $w \in U$. Consider $\theta(\alpha(w, 1)) = r(w) > 0$. Then r is a continuous, semi-algebraic function on U. Therefore, we get

$$\frac{1}{r(w)}\theta(\alpha(w,1)) = 1 \Rightarrow \theta(\frac{1}{\sqrt{r(w)}}\alpha(w,1)) = 1 \Rightarrow \theta(\alpha(w,\frac{1}{\sqrt{r(w)}})) = 1.$$

$$\Rightarrow \alpha(w,\frac{1}{\sqrt{r(w)}}) \in \theta^{-1}(1) \cap \mathcal{E}_x \cap \mathcal{U}_1$$

$$\Rightarrow \psi(w) = \alpha(w,\frac{1}{\sqrt{r(w)}})$$

$$\Rightarrow \alpha^{-1}(\psi(w)) = (w,\frac{1}{\sqrt{r(w)}})$$

Hence, we are reduced to showing that $w \mapsto (w, \frac{1}{\sqrt{r(w)}})$ is continuous and semi-algebraic. But this is true since r was a continuous, non-zero, semi-algebraic function. Hence, we are done.

Let $K_A = \wedge^n(\Omega_{A/\mathbb{R}}^*)$ and $K_B = \wedge^n(\Omega_{B/\mathbb{R}}^*)$. We denote by \mathcal{K}_i the semi-algebraic line bundle on W_i induced by K_A and by \mathcal{K}_i' , the semi-algebraic line bundle on W_i' induced by K_B .

Lemma 3.11. $\mathcal{L}_i \simeq \mathcal{K}_i$ if and only if $\mathcal{L}'_i \simeq \mathcal{K}'_i$.

Proof. Let $E = L \otimes_A K_A$ and $E' = L' \otimes_B K_B$. Let \mathcal{E} be the line bundle on $X(\mathbf{R})$ corresponding to E and \mathcal{E}' be the line bundle on $Y(\mathbb{R})$ corresponding to E'. Let \mathcal{E}_i be the restriction of \mathcal{E} to W_i and \mathcal{E}'_i be the restriction of \mathcal{E}' to W'_i . Then $\mathcal{E}_i = \mathcal{L}_i \otimes \mathcal{K}_i$ and $\mathcal{E}'_i = \mathcal{L}'_i \otimes \mathcal{K}'_i$. In view of (3.3), it is enough to prove that \mathcal{E}_i is semi-algebraically trivial if and only if \mathcal{E}'_i is trivial. We proceed to show this.

Note first that in \mathbb{R} , semi-algebraic triviality of a semi-algebraic line bundle is same as topological triviality (remark 2.4). Without loss of generality, let \mathcal{E}_i be semi-algebraically trivial if and only if $1 \leq i \leq q$. Then, by lemma 3.10,

 \mathcal{E}_i^* has only one semi-algebraically connected semi-algebraic component when $sq+1 \leq i \leq s$ and 2 components otherwise. Thus, \mathcal{E}^* has exactly 2q+(s-q) semi-algebraically connected components. But then using remark 2.4, we know that \mathcal{E}'^* has exactly the same no. of connected components. But \mathcal{E}_i is semi-algebraically trivial implies that \mathcal{E}'_i is trivial. Hence, $\mathcal{E}'_1, \mathcal{E}'_2, \ldots, \mathcal{E}'_q$ are all trivial and so each of $\mathcal{E}'_1^*, \mathcal{E}'_2^*, \ldots, \mathcal{E}'_q^*$ has 2 connected components. Thus, \mathcal{E}'^*_i must have a single connected component for $q+1 \leq i \leq s$ and so \mathcal{E}'_i must be non-trivial. Hence, we see that \mathcal{E}'_i is trivial whenever \mathcal{E}_i is trivial and \mathcal{E}'_i is non-trivial whenever \mathcal{E}_i is non-trivial. Therefore, the lemma stands proved.

Now, using (3.7) and (3.11), we clearly obtain a structure theorem for the Euler class group $E(\mathbf{R}(X), L_X)$, which is very similar to (3.5), viz.

Theorem 3.12. Let \mathbf{R} be an Archimedean real closed field. Let $X = \operatorname{Spec}(A)$ be a smooth affine variety of dimension $n \geq 2$ over \mathbf{R} and let $K = \wedge^n(\Omega_{A/\mathbf{R}}^*)$ be the canonical module of A. Let L be a projective A-module of rank 1 and $L_X = L \otimes_A \mathbf{R}(X)$. Let $W_1, \dots, W_r, W_{r+1}, \dots, W_t$ be the closed and bounded semi-algebraically connected components of $X(\mathbf{R})$ in the Euclidean topology. Let K_{W_i} and L_{W_i} denote restriction of (induced) line bundles on $X(\mathbf{R})$ to W_i . Assume that $L_{W_i} \simeq K_{W_i}$ for $1 \leq i \leq r$ and $L_{W_i} \not\simeq K_{W_i}$ for $r+1 \leq i \leq t$. Then,

$$E(\mathbf{R}(X), L_X) = G_1 \oplus \cdots \oplus G_r \oplus G_{r+1} \oplus \cdots \oplus G_t,$$

where $G_i = \mathbb{Z}$ for $1 \leq i \leq r$ and $G_i = \mathbb{Z}/(2)$ for $r+1 \leq i \leq t$.

Moreover, for $1 \leq i \leq t$, if $x \in W_i$ and \mathfrak{m} is a maximal ideal of $\mathbf{R}(X)$ corresponding to x, then G_i is generated by $(\mathfrak{m}, \omega_{\mathfrak{m}})$ for any local L_X -orientation $\omega_{\mathfrak{m}}$ of \mathfrak{m} .

Remark 3.13. A special case of the above theorem, namely L=K has already been proved by Ian Robertson [11, Theorem 12.6].

4 Main Theorem

In this section, we prove the main theorem (Theorem 1.1). We first recall our set-up and some notations. Let \mathbf{R} denote an Archimedean real closed field and

let $\bar{\mathbf{R}}$ denote the algebraic closure of \mathbf{R} in \mathbb{C} . Let $X = \operatorname{Spec}(A)$ be a smooth affine variety of dimension $n \geq 2$ over \mathbf{R} . Let $A_{\bar{\mathbf{R}}} = A \otimes_{\mathbf{R}} \bar{\mathbf{R}}$ and $\bar{X} = \operatorname{Spec}(A_{\bar{\mathbf{R}}})$. Let $\pi : \bar{X} \to X$ be the canonical map and $\pi_* : \operatorname{CH}_0(\bar{X}) \to \operatorname{CH}_0(X)$. Let $G = \pi_*(\operatorname{CH}_0(\bar{X}))$. Let L be a rank 1 projective A-module.

Let $\Gamma_L : \mathcal{E}(A,L) \to \mathcal{E}(\mathbf{R}(X),L_X)$ and $\mathcal{E}^{\bar{\mathbf{R}}}(L) = \ker(\Gamma_L)$. Let Θ_L denote the map $\mathcal{E}(A,L) \to \mathcal{C}\mathcal{H}_0(X)$. Recall that $\Theta_L(\mathcal{E}^{\bar{\mathbf{R}}}(L)) \subseteq G$ and in fact by (3.1), $\Theta_L|_{\mathcal{E}^{\bar{\mathbf{R}}}(L)} : \mathcal{E}^{\bar{\mathbf{R}}}(L) \to G$ is an isomorphism. For the sake of convenience, we denote $\Theta_L|_{\mathcal{E}^{\bar{\mathbf{R}}}(L)}$ by Ψ_L . Keeping this notation in mind, we have the following commutative diagram :

$$\ker(\Theta_{L}) \xrightarrow{\sim} \ker(\Phi_{L})$$

$$\downarrow \qquad \qquad \downarrow$$

$$0 \longrightarrow E^{\overline{\mathbf{R}}}(L) \longrightarrow E(A, L) \xrightarrow{\Gamma_{L}} E(\mathbf{R}(X), L_{X}) \longrightarrow 0$$

$$\downarrow^{\Psi_{L}} \downarrow^{\wr} \qquad \Theta_{L} \downarrow \qquad \Phi_{L} \downarrow$$

$$0 \longrightarrow G \longrightarrow \mathrm{CH}_{0}(X) \longrightarrow \mathrm{CH}_{0}(X)/G \longrightarrow 0$$

Lemma 4.1. $\ker(\Phi_L)$ ($\simeq \ker(\Theta_L)$) is a free abelian group.

Proof. By a result of Colliot-Thélène and Scheiderer [5, Theorem 1.3(d)], the group $\operatorname{CH}_0(X)/G$ is a vector space of dimension t over the field $\mathbb{Z}/(2)$ where t is the number of closed and bounded semi-algebraically connected semi-algebraic components of $X(\mathbf{R})$. Therefore, $2\operatorname{E}(\mathbf{R}(X), L_X)$ is contained in $\ker(\Phi_L)$. But by (3.7), $\operatorname{E}(\mathbf{R}(X), L_X)/2\operatorname{E}(\mathbf{R}(X), L_X)$ is itself a vector space of dimension t over $\mathbb{Z}/(2)$. Therefore, $\ker(\Phi_L) = 2\operatorname{E}(\mathbf{R}(X), L_X)$ which is a free abelian group. \square

Lemma 4.2. The canonical map $E_0(A, L) \rightarrow CH_0(X)$ is an isomorphism.

 ${\it Proof.}$ Similar to the above diagram, we have another commutative diagram as follows :

$$0 \longrightarrow \operatorname{E}_{0}^{\overline{\mathbf{R}}}(L) \longrightarrow \operatorname{E}_{0}(A, L) \longrightarrow \operatorname{E}_{0}(\mathbf{R}(X), L_{X}) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

Note that the map $E^{\bar{\mathbf{R}}}(L) \to G$ factors through $E_0^{\bar{\mathbf{R}}}(L)$ and the map $E^{\bar{\mathbf{R}}}(L) \to E_0^{\bar{\mathbf{R}}}(L)$ is surjective. Hence, the induced map $E^{\bar{\mathbf{R}}}(L) \twoheadrightarrow E_0^{\bar{\mathbf{R}}}(L)$ is an isomorphism and therefore, $E^{\bar{\mathbf{R}}}(L) \to G$ is also an isomorphism. Now, (3.7) and the result of Colliot-Thélène and Scheiderer [5, Theorem 1.3(d)] imply that $E_0(\mathbf{R}(X), L_X)$ and $CH_0(X)/G$ are vector spaces over $\mathbb{Z}/(2)$ of the same dimension. Hence, the map $E_0(\mathbf{R}(X), L_X) \twoheadrightarrow CH_0(X)/G$ is an isomorphism. Then, using the 5-lemma in the above diagram, we see that $E_0(A, L) \twoheadrightarrow CH_0(X)$ is an isomorphism.

Theorem 4.3. Let \mathbf{R} be an Archimedean real closed field. Let $X = \operatorname{Spec}(A)$ be a smooth affine variety of dimension $n \geq 2$ over \mathbf{R} . Let $X(\mathbf{R})$ denote the \mathbf{R} -rational points of the variety. Let K denote the canonical module $\wedge^n(\Omega^*_{A/\mathbf{R}})$. Let P be a projective A-module of rank n and let $\wedge^n(P) = L$. Assume that $C_n(P) = 0$ in $\operatorname{CH}_0(X)$. Then $P \simeq A \oplus Q$ in the following cases:

- 1. $X(\mathbf{R})$ has no closed and bounded semi-algebraically connected component.
- 2. For every closed and bounded semi-algebraically connected component W of $X(\mathbf{R})$, $L_W \not\simeq K_W$ where K_W and L_W denote restriction of (induced) line bundles on $X(\mathbf{R})$ to W.
- 3. n is odd.

Moreover, if n is even and L is a rank 1 projective A-module such that there exists a closed and bounded semi-algebraically connected component W of $X(\mathbf{R})$ with the property that $L_W \simeq K_W$, then there exists a projective A-module P of rank n such that $P \oplus A \simeq L \oplus A^{n-1} \oplus A$ (hence $C_n(P) = 0$) but P does not have a free summand of rank 1.

Though the proof of the above is same as the proof of [1, Theorem 4.30], we repeat the arguments to make the paper self-contained.

Proof. Let P be a projective A-module of rank n with $\wedge^n(P) \simeq L$ and let $\chi: L \to \wedge^n(P)$ be an L-orientation of P. Then, $\Theta_L(e(P,\chi)) = C_n(P)$. In view of (2.11), to prove the theorem, it is enough to prove that $C_n(P) = 0 \Rightarrow e(P,\chi) = 0$ in all three cases.

Proof of 1. and 2.

Note that in this case, by the structure theorem of $E(\mathbf{R}(X), L_X)$, Φ_L is an isomorphism and hence, Θ_L is an isomorphism.

Proof of 3. When n is odd, there is an automorphism Δ of P with determinant -1. Let $\alpha: P \twoheadrightarrow I$ where I is an ideal of height n. Let ω_I be a local L-orientation of I induced by α . Using this and Δ , we get that $2e(P,\chi)=(I,\omega_I)+(I,-\omega_I)$. Since the canonical map $E_0(A,L) \twoheadrightarrow \operatorname{CH}_0(X)$ is an isomorphism by (4.2) and $(I) \mapsto C_n(P)$, we have (I) = 0 in $E_0(A,L)$. Therefore, by [1, Proposition 3.7], $2e(P,\chi) = (I,\omega_I) + (I,-\omega_I) = 0$. Since $C_n(P) = 0$, $e(P,\chi) \in \ker(\Theta_L)$, which is a free abelian group by (4.1). Hence, $e(P,\chi) = 0$.

Finally, let n be even, and $L_W \simeq K_W$ for some closed and bounded semialgebraically connected component W. Then, by our assumption, (3.7) and (4.1), $\ker(\Theta_L) \simeq \ker(\Phi_L) \neq 0$. Since $E_0(A, L) \to \operatorname{CH}_0(X)$ is an isomorphism, by abuse of notation, we denote the canonical map $E(A, L) \to E_0(A, L)$ by Θ_L . Then, as in [2, Lemma 3.3], there exists an ideal J of height n such that J is a surjective image of $L \oplus A^{n-1}$ and a local L-orientation ω_J which is not a global orientation, i.e. $(J, \omega_J) \neq 0$ in E(A, L). Since n is even, as in [2, Lemma 3.6], we can get a rank n projective module P, which is stably isomorphic to $L \oplus A^{n-1}$ (i.e. $P \oplus A \simeq L \oplus A^{n-1} \oplus A$) and $\chi : L \to \wedge^n(P)$ such that $e(P, \chi) = (I, \omega_I) \neq 0$ in E(A, L). Note that since P is stably isomorphic to $L \oplus A^{n-1}$, $C_n(P) = 0$ but $e(P, \chi) \neq 0$ and hence, by [3, Corollary 4.4], $P \not\simeq Q \oplus A$. This completes the proof.

References

- [1] S.M.Bhatwadekar, M.K.Das, Satya Mandal, Projective modules over smooth, real, affine varieties, *Invent. Math.* **166** (2006), 151-184.
- [2] S. M. Bhatwadekar, Raja Sridharan, Zero cycles and the Euler class groups of smooth real affine varieties, *Invent. Math.* **136** (1999), 287-322.
- [3] S. M. Bhatwadekar, Raja Sridharan, The Euler class group of a Noetherian ring, *Compositio Math.* **122**(2000), 183-222.
- [4] J. Bochnak, M. Coste, M.-F. Roy, Real algebraic geometry, Ergebnisse der Mathematik, Volume 36, Springer-Verlag, 1998.
- [5] J.-L.Colliot-Thélène, C.Scheiderer, Zero cycles and cohomology on real algebraic varieties, *Topology* **35** (1996), 533-559.
- [6] Mrinal Kanti Das, Satya Mandal, A Riemann-Roch theorem, J. Algebra 301 (2006), 148-164.
- [7] D. Eisenbud, E. G. Evans, Generating modules efficiently: Theorems from algebraic K-theory, J. Algebra 27 (1973), 278-305.
- [8] Maynard Kong, Euler classes of inner product modules, J. Algebra 49 (1977), no. 1, 276-303.
- [9] M.P.Murthy, Zero cycles and projective modules, Ann Math. **140** (1994), 405-435.
- [10] Plumstead, B.: The conjectures of Eisenbud-Evans, Am. J. Math. **105** (1983), 1417-1433
- [11] Ian Robertson, The Euler class group of a line bundle on an affine algebraic variety over a real closed field, Ph.D. thesis, University of Chicago, 1999.