EULER CLASS GROUPS AND 2-TORSION ELEMENTS

S. M. BHATWADEKAR, J. FASEL, AND S. SANE

ABSTRACT. We exhibit an example of a smooth affine threefold A over a field of characteristic 0 for which there exists non trivial 2-torsion elements in the Euler class group E(A) vanishing in the weak Euler class group $E_0(A)$. This gives a positive answer to a question of the first author and Raja Sridharan.

Introduction

Let $X = \operatorname{Spec}(A)$ be a smooth affine scheme of dimension d over a field k and let E be a vector bundle of rank r over X. If E decomposes as $E \simeq E' \oplus \mathcal{O}_X$, then the top Chern class $c_r(E)$ vanishes in $CH^r(X)$. When r = d = 3 and k is algebraically closed, N. Mohan Kumar and M. Pavaman Murthy proved in [13] that the converse statement holds, i.e. $E \simeq E' \oplus \mathcal{O}_X$ if and only if $c_3(E) = 0$. This result was further extended by M. Pavaman Murthy to the case $d = r \in \mathbb{N}$ and k algebraically closed. The well-known example of the tangent bundle to the real algebraic 2-sphere shows that such a result is in general not true over an arbitrary field.

To understand when a vector bundle of rank r=d splits off a free factor of rank one, the first author and Raja Sridharan introduced the Euler class groups E(A,L) of A with coefficients in a line bundle L (following an original idea of M. V. Nori), and associated to any projective module P its Euler class $e(P,\chi) \in E(A,L)$, where $\chi: \det P \xrightarrow{\sim} L$ is any isomorphism. Then the Euler class $e(P,\chi)$ vanishes if and only if P splits off a free factor of rank one ([5, Corollary 4.4]).

Around the same period, J. Barge and F. Morel associated to any smooth scheme X, any $r \in \mathbb{N}$ and any line bundle L over X modified versions of Chow groups, now called Chow-Witt groups, denoted by $\widetilde{CH^r}(X,L)$ ([2] and [8]). If E is a vector bundle of rank r then it has an associated Euler class $\widetilde{c}(E) \in \widetilde{CH^r}(X, \det E)$ which vanishes when $E \simeq E' \oplus \mathcal{O}_X$. If X is of dimension d and E is of rank d, then the analogue of the result in the setting of Euler class groups also holds, i.e. $\widetilde{c}(E) = 0$ if and only if $E \simeq E' \oplus \mathcal{O}_X$ ([8, Corollary 15.3.12], [7, Theorem 38] and [16, Theorem 61].

The two constructions are deeply related. By construction, there is a surjective homomorphism $E(A, L) \to \widetilde{CH^d}(X, L)$ and the question to know whether it is also injective is still open (for positive results in this direction, see Section 2).

In any case, these two theories provide a very good framework to understand when a vector bundle of top rank splits off a free factor of rank one. However, recall that the starting point of the story is the example of the tangent bundle T to the real algebraic 2-sphere. This vector bundle is stably free and indecomposable. If X

²⁰⁰⁰ Mathematics Subject Classification. Primary: 13C10; Secondary: 14C17, 14C25, 15A63, 19G38.

Key words and phrases. Chow groups, Chow-Witt groups, Euler class groups.

is smooth of odd dimension d over a field k, then any stably free module E of rank d decomposes as $E = E' \oplus \mathcal{O}_X$, and thus an example in the nature of T would be impossible in odd dimensions. Indeed, the following question is still open:

Question 1. Let X be a smooth affine d-fold over a field k, where d is odd. Let E be a vector bundle of rank d whose top Chern class $c_d(E)$ vanishes in $CH^d(X)$. Do we have $E \simeq E' \oplus \mathcal{O}_X$?

This question has a positive answer when d = 1 (obvious) and for any odd d when $k = \mathbb{R}$ by [3, Theorem 4.30].

In the context of the Euler class groups, there is an analogue of the Chow group $CH^d(X)$ called the weak Euler class group and denoted by $E_0(A)$ (it is independent of L). One can associate to any projective module P of rank d a weak Euler class $e(P) \in E_0(A)$. There is a canonical surjective homomorphism $E_0(A) \to CH^d(X)$ mapping e(P) to $c_d(P)$ and this homomorphism is an isomorphism if $k = \mathbb{R}$ or k is algebraically closed. In general, this homomorphism is conjecturally an isomorphism. In any case, there is a commutative diagram

$$E(A, L) \longrightarrow E_0(A)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\widetilde{CH^d}(X, L) \longrightarrow CH^d(X)$$

showing that the weak Euler class group is to the Euler class group what the Chow group is to the Chow-Witt group.

In this setup, Raja Sridharan and the first author observe that the Euler class $e(P,\chi) \in E(A, \det P)$ is 2-torsion if the weak Euler class e(P) vanishes in $E_0(A)$. This lead them to ask the following question ([5, Question 7.11]):

Question 2. Can the kernel of the canonical homomorphism $E(A, L) \to E_0(A)$ have non-trivial 2-torsion?

A negative answer to this question would clearly imply that the weak Euler class e(P) vanishes if and only if $P \simeq P' \oplus A$, thus solving the Euler class theory analogue of Question 1. It is known that Question 2 has a negative answer when $k = \mathbb{R}$.

In this note, we give an example to show that Question 2 has an affirmative answer. More precisely, we construct a smooth affine algebra A over the field $k = \mathbb{Q}(i)(t_1, t_2, \ldots, t_n)$ (where $n \geq 3$) such that the kernel of the homomorphism $E(A) \to E_0(A)$ is an \mathbb{F}_2 -vector space of dimension $\geq n-2$ (Theorem 4.1 in the text). Thus the hope to show that Question 2 had a negative answer to solve Question 1 was too much too ask. However, in the algebra A we constructed, any rank 3 projective module P with trivial determinant is of the form $P = Q \oplus A$ and thus Question 1 still remains tantalizingly open.

The paper is organized as follows: In Sections 1 and 2 we briefly recall the definitions of the Euler class groups, the weak Euler class groups and the Chow-Witt groups. After these preliminaries, we construct our example in Section 3 using the full power of the functorial properties of the Chow-Witt groups. This allows to show in Section 4 that Question 2 has a positive answer. In the last section, we prove that any projective module of rank 3 over the algebra A constructed in Section 3 is of the form $P = Q \oplus A$.

Acknowledgments. The second author wishes to thank TIFR where some of this work was done and the Swiss National Science Foundation, grant PAOOP2_129089, for support. The third author is thankful to TIFR, the University of Kansas and the Robert Adams Trust.

Conventions. The fields considered are of characteristic different from 2. If X is a scheme over a field k and $x_p \in X^{(p)}$, we denote by \mathfrak{m}_p the maximal ideal in \mathcal{O}_{X,x_p} and by $k(x_p)$ its residue field. Finally ω_{x_p} will denote the $k(x_p)$ -vector space $\operatorname{Ext}^p_{\mathcal{O}_{X,x_p}}(k(x_p),\mathcal{O}_{X,x_p})$ (which is one-dimensional if X is regular at x_p).

1. Euler class groups

Let $X = \operatorname{Spec}(A)$ be a smooth, affine k-variety of dimension d and P be a projective A-module of rank r. The top Chern class $c_r(P) \in CH^r(X)$ provides a natural obstruction to the existence of a free direct summand of P. Unfortunately, very often these are not exact obstructions, i.e. there are projective modules which do not split off free summands of rank 1 even though the top Chern class is 0. Euler class groups originated in order to obtain an exact obstruction class for such a splitting to exist when d = r. We define them below.

1.1. **Definition of** E(A, L) **and** $E_0(A, L)$. Let A be a smooth affine k-domain of dimension $d \geq 2$ and let L be a projective A-module of rank 1. Let \mathcal{M} be a maximal ideal of A of height d. Then, $\mathcal{M}/\mathcal{M}^2$ is generated by d elements. An isomorphism $\omega_{\mathcal{M}}: L/\mathcal{M}L \xrightarrow{\sim} \wedge^d(\mathcal{M}/\mathcal{M}^2)$ is called a *local L-orientation* of \mathcal{M} . Let G be the free abelian group on the set of pairs $(\mathcal{M}, \omega_{\mathcal{M}})$ where \mathcal{M} is a maximal ideal of height d and $\omega_{\mathcal{M}}$ is a local L-orientation of \mathcal{M} .

Let $J = \bigcap_{i=1}^n \mathcal{M}_i$ be an intersection of finitely many maximal ideals of height d. Then, J/J^2 is generated by d elements. An isomorphism $L/JL \xrightarrow{\sim} \wedge^d (J/J^2)$ is called a *local L-orientation* of J. Localizing, we see that any local L-orientation of J gives rise to local \mathcal{M}_i -orientations $\omega_{\mathcal{M}_i}$ of \mathcal{M}_i for $i = 1, 2, \ldots, n$. We denote the element $\sum_{i=1}^n (\mathcal{M}_i, \omega_{\mathcal{M}_i})$ in G as (J, ω_J) .

A local L-orientation $\omega: L/JL \twoheadrightarrow \wedge^d(J/J^2)$ is called a global L-orientation if there exists a surjection $\theta: L \oplus A^{d-1} \twoheadrightarrow J$, such that ω is the induced isomorphism

$$L/JL \xrightarrow{\overset{\alpha}{\sim}} \wedge^n (L/JL \oplus (A/J)^{d-1}) \xrightarrow{\overset{\wedge^n(\theta)}{\sim}} \wedge^d (J/J^2)$$

where $\alpha(\bar{e}) = \bar{e} \wedge \bar{e_2} \wedge \ldots \wedge \bar{e_d}$ (and $\{e_2, e_3, \ldots, e_d\}$ is a basis of A^{d-1}).

Let H be the subgroup of G generated by the set of pairs (J, ω_J) , where J is a finite intersection of maximal ideals of height d and ω_J is a global L-orientation of J.

Definition 1.1. The Euler class group of A with respect to L is E(A, L) = G/H. In case L = A, we write E(A) for E(A, A).

Further, let G_0 be the free abelian group on the set (\mathcal{M}) where \mathcal{M} is a maximal ideal of A. Let $J = \bigcap_{i=1}^n \mathcal{M}_i$ be a finite intersection of maximal ideals. Let (J) denote the element $\sum_i (\mathcal{M}_i)$ of G_0 . Let H_0 be the subgroup of G_0 generated by elements of the type (J), where J is a finite intersection of maximal ideals such that there exists a surjection $\alpha: L \oplus A^{d-1} \twoheadrightarrow J$.

Definition 1.2. The weak Euler class group of A is $E_0(A, L) := G_0/H_0$.

From the definitions of E(A, L) and $E_0(A, L)$, it is clear that there is a canonical surjection $E(A, L) \rightarrow E_0(A, L)$.

Now let P be a projective A-module of rank d such that $L \simeq \wedge^d(P)$ and let $\chi: L \xrightarrow{\sim} \wedge^d P$ be an isomorphism. Let $\varphi: P \twoheadrightarrow J$ be a surjection where J is a finite intersection of maximal ideals of height d. Therefore we obtain an induced isomorphism $\overline{\varphi}: P/JP \to J/J^2$. Let ω_J be the local L-orientation of J given by $\wedge^d(\overline{\varphi}) \circ \overline{\chi}$. Let $e(P,\chi)$ be the image in E(A,L) of the element (J,ω_J) of G. The assignment sending the pair (P,χ) to the element $e(P,\chi)$ of E(A,L) can be shown to be well defined from [5, Section 4].

Definition 1.3. The *Euler class* of (P, χ) is defined to be $e(P, \chi)$.

As mentioned earlier, the Euler class is a precise obstruction, i.e. with the above set-up, $P \simeq Q \oplus A$ for some projective A-module Q of rank d-1 if and only if $e(P,\chi)=0$ in $\mathrm{E}(A,L)$ [5, Corollary 4.4].

Much before these definitions were made, Murthy [17, Theorem 3.8] proved that when the base field k is algebraically closed, $c_d(P) = 0$ is also sufficient for the projective module to split off a free summand of rank 1. There is a natural map $\psi : E(A, L) \to CH^d(A)$ and under this map $e(P, \chi)$ gets mapped to $c_d(P)$. Thus, when $c_d(P) = 0$, $e(P, \chi)$ is in the kernel of the map ψ .

When the base field k is algebraically closed, $E(A, L) \xrightarrow{\sim} CH^d(X)$ for any invertible module L. Subsequently, using the notion of the Euler class group, it was shown in [4] and [3] that when d is odd and the base field k is \mathbb{R} , $e(P, \chi) = 0$ if and only if $c_d(P) = 0$.

2. Chow-Witt groups

In this section, we refer to [2] and [8] for more information on Chow-Witt groups. Let F be a field and L be a F-vector space of dimension 1. Let W(F,L) be the Witt group of non-degenerate symmetric bilinear forms with coefficients in L. The tensor product induces a structure of W(F)-module on W(F,L) where W(F) := W(F,F) is the classical Witt ring. Let $I(F) \subset W(F)$ be the fundamental ideal of even dimensional symmetric bilinear forms, and $I^n(F)$ its n^{th} -power for $n \in \mathbb{N}$. For convenience of notations, we also set $I^n(F) = W(F)$ for $n \leq 0$. We denote by $I^n(F,L)$ the group $I^n(F) \cdot W(F,L)$. By definition, $I^{n+1}(F,L) \subset I^n(F,L)$ for any $n \in \mathbb{Z}$ and we set $\overline{I}^n(F) := I^n(F,L)/I^{n+1}(F,L)$. As suggested by the notation, the group $\overline{I}^n(F)$ is completely independent of L.

For any $n \in \mathbb{N}$, let $K_n^M(F)$ the the n-th Milnor K-theory group of F as defined in [15]. We set $K_n^M(F) = 0$ if n < 0. Recall from [15, Theorem 4.1] that for any $n \in \mathbb{Z}$ there is a homomorphism $s_n : K_n^M(F) \to \overline{I}^n(F)$ defined on symbols by $s_n(\{a_1, \ldots, a_n\}) = \langle 1, -a_1 \rangle \otimes \ldots \otimes \langle 1, -a_n \rangle$. We define the group $G^n(F, L)$ as the fibre product

$$G^{n}(F,L) \longrightarrow I^{n}(F,L)$$

$$\downarrow \qquad \qquad \downarrow^{\pi_{n}}$$

$$K_{n}^{M}(F) \xrightarrow{s_{n}} \overline{I}^{n}(F)$$

where $\pi_n: I^n(F, L) \to \overline{I}^n(F)$ is the projection.

Let A be a discrete valuation ring and L be an invertible A-module. Let F be the quotient field of A and k be its residue field. For any $n \in \mathbb{Z}$, there is a

residue homomorphism $d_K^n: K_n^M(F) \to K_{n-1}^M(k)$ ([15, Lemma 2.1] and a residue homomorphism $d_I^n: I^n(F,L) \to I^{n-1}(k,\operatorname{Ext}_A^1(k,L))$ ([8, Chapter 7, Chapter 9]) which induce the same homomorphism $\overline{I}^n(F) \to \overline{I}^{n-1}(k)$ ([8, Proposition 10.2.5]). Therefore we get a residue homomorphism $d_G^n: G^n(F,L) \to G^{n-1}(k,\operatorname{Ext}_A^1(k,L))$.

Let X be an integral regular scheme over a field k and let $U \subset X$ be an open subset. Let L be a line bundle over X. Any point $x \in U^{(1)}$ yields a discrete valuation on k(U) = k(X) and we get for any $n \in \mathbb{Z}$ a homomorphism

$$d_G^n: G^n(k(X), L) \to \bigoplus_{x \in U^{(1)}} G^{n-1}(k(x), \omega_x \otimes L).$$

Associating $G^n(U, L) := \ker d_G^n$ to $U \subset X$ defines a presheaf on X and we consider its associated sheaf \mathcal{G}_L^n (in the Zariski topology).

Definition 2.1. Let X be a regular scheme over a field k and let L be a line bundle over X. For any $n \in \mathbb{Z}$ the Chow-Witt group $\widetilde{CH^n}(X, L)$ is defined as the cohomology group $H^n(X, \mathcal{G}_L^n)$. We denote by $\widetilde{CH^n}(X)$ the group $\widetilde{CH^n}(X, \mathcal{O}_X)$.

Let \mathcal{K}_n^M be the Zariski sheaf associated to the presheaf $U\mapsto K_n^M(U):=\ker d_K^n$, where d_K^n is defined for Milnor K-theory in the same way as d_G^n is defined above. Then the homomorphism $G^n(k(X),L)\to K_n^M(k(X))$ induces a morphism of sheaves $\mathcal{G}_L^n\to\mathcal{K}_n^M$. By Bloch's formula, we have $H^n(X,\mathcal{K}_n^M)=CH^n(X)$ and therefore there is a natural homomorphism $\widetilde{CH^n}(X,L)\to CH^n(X)$ for any $n\in\mathbb{Z}$.

In a similar fashion, we can associate a sheaf to the unramified elements in $I^n(k(X), L)$, which we denote by \mathcal{I}^n_L . By definition of the sheaves, we get an exact sequence

$$0 \longrightarrow \mathcal{I}_L^{n+1} \longrightarrow \mathcal{G}_L^n \longrightarrow \mathcal{K}_n^M \longrightarrow 0$$

which is useful for computations.

In case $X = \operatorname{Spec}(A)$ is an affine (regular) scheme of dimension d over a field k, the Chow-Witt group of closed points $\widetilde{CH^d}(X)$ admits a presentation by generators and relations ([8, Theorem 10.3.5]). It follows immediately that there is a surjective homomorphism $\eta: E(A) \to \widetilde{CH^d}(X)$ ([8, Proposition 17.2.8]). The question to know whether this homomorphism is an isomorphism is still open. It is known to be the case when X is a surface over a field of characteristic 0 ([8, Corollary 17.4.2]), or when X is of dimension d over $\mathbb R$ and oriented ([8, Corollary 17.4.6]).

3. The example

Let $k = \mathbb{Q}(i)(t_1, t_2, \dots, t_n)$, where $n \geq 3$. Consider the Pfister quadratic form $q := \langle 1, -t_1, -t_2, t_1 t_2 \rangle$ on k and the associated smooth quadric Q in \mathbb{P}^3 . It is easy to check that q is anisotropic on k (use for instance the residues associated to the t_1 and t_2 valuations defined in [15, Corollary 5.1]).

Let $U = \mathbb{P}^3 - Q$ be the open complement of Q. Then U is affine, and we set $U = \operatorname{Spec}(A)$ with $A = \mathcal{O}_U(U)$. Our goal in this section is to prove that the kernel of the homomorphism $\widetilde{CH^3}(U) \to CH^3(U)$ is a non trivial 2-torsion abelian group. We begin with the well-known computation of $CH^3(U)$.

Lemma 3.1. We have $CH^3(U) = \mathbb{Z}/2$.

Proof. Recall first that the push-forward homomorphism $p_*: CH^3(\mathbb{P}^3) \to \mathbb{Z}$ is an isomorphism ([10, Chapter 3]). The exact sequence

$$CH^2(Q) \longrightarrow CH^3(\mathbb{P}^3) \longrightarrow CH^3(U) \longrightarrow 0$$

of [10, Proposition 1.8] becomes then an exact sequence

$$CH^2(Q) \xrightarrow{p'_*} \mathbb{Z} \longrightarrow CH^3(U) \longrightarrow 0$$

where $p': Q \to \operatorname{Spec}(k)$ is the projection. A closed point on Q corresponds to a field F such that the quadratic form $q := \langle 1, -t_1, -t_2, t_1t_2 \rangle$ is isotropic on F. By Springer's theorem [14, VII, Theorem 2.3], the extension of fields [F:k] is of even degree. On the other hand, it is clear that there exists a field F of degree 2 such that q is isotropic on F. Thus $CH^3(U) = \mathbb{Z}/2$.

We want now to estimate $\widetilde{CH^3}(U)$. As for Chow groups, we use the exact sequence associated to an open embedding ([8, Corollary 10.4.9])

$$H^3_O(\mathbb{P}^3, \mathcal{G}^3) \longrightarrow \widetilde{CH^3}(\mathbb{P}^3) \longrightarrow \widetilde{CH^3}(U) \longrightarrow 0.$$

To compute $\widetilde{CH^3}(\mathbb{P}^3)$, recall first that since $\mathcal{O}(-4) = \mathcal{O}(-2) \otimes \mathcal{O}(-2)$ there is a natural isomorphism $\widetilde{CH^3}(\mathbb{P}^3) \to \widetilde{CH^3}(\mathbb{P}^3, \mathcal{O}(-4))$. Now $\mathcal{O}(-4)$ is the canonical bundle of \mathbb{P}^3 and we therefore obtain a push-forward homomorphism ([8, Corollary 10.4.5])

$$p_*: \widetilde{CH^3}(\mathbb{P}^3, \mathcal{O}(-4)) \to \widetilde{CH^0}(k) = GW(k).$$

where $p: \mathbb{P}^3 \to \operatorname{Spec}(k)$ is the projection. We still denote by p_* the composition $\widetilde{CH^3}(\mathbb{P}^3) \to \widetilde{CH^3}(\mathbb{P}^3, \mathcal{O}(-4)) \to GW(k)$.

Proposition 3.2. The push-forward homomorphism $\widetilde{CH^3}(\mathbb{P}^3) \to GW(k)$ is an isomorphism.

Proof. First observe that the exact sequence of sheaves

$$0 \longrightarrow \mathcal{I}^4 \longrightarrow \mathcal{G}^3 \longrightarrow \mathcal{K}_3^M \longrightarrow 0$$

induces a long exact sequence of localization

$$\ldots \longrightarrow H^2(\mathbb{P}^3,\mathcal{K}_3^M) \stackrel{\delta}{\longrightarrow} H^3(\mathbb{P}^3,\mathcal{I}^4) \stackrel{h}{\longrightarrow} H^3(\mathbb{P}^3,\mathcal{G}^3) \longrightarrow H^3(X,\mathcal{K}_3^M) \longrightarrow 0.$$

The push-forward homomorphisms give by definition a commutative diagram with exact lines

$$H^{3}(\mathbb{P}^{3},\mathcal{I}^{4}) \xrightarrow{h} H^{3}(\mathbb{P}^{3},\mathcal{G}^{3}) \longrightarrow H^{3}(X,\mathcal{K}_{3}^{M}) \longrightarrow 0$$

$$\downarrow^{p_{*}} \qquad \qquad \downarrow^{p_{*}} \qquad \qquad \downarrow^{p_{*}}$$

$$0 \longrightarrow H^{0}(k,\mathcal{I}) \longrightarrow H^{0}(k,\mathcal{G}^{0}) \longrightarrow H^{0}(k,\mathcal{K}_{0}^{M}) \longrightarrow 0.$$

It follows from [9, Theorem 9.4] that the left p_* is an isomorphism and therefore h is also injective. The right hand p_* is also an isomorphism by [10, Theorem 3.3(b)] and the five lemma allows to conclude.

The image of the push-forward isomorphism $\widetilde{CH^3}(\mathbb{P}^3) \to GW(k)$ of Proposition 3.2 is given by the images of the trace maps $Tr_x : GW(k(x)) \to GW(k)$ where $x \in \mathbb{P}^3$ is a closed point. We briefly recall the definition of the trace maps, or more generally of the transfer maps, since we use them in the sequel.

For a finite extension of fields $K \subset L$ (say, of dimension n), choose any non-zero K-linear map $s: L \to K$. Then one defines a transfer map $s_*: GW(L) \to GW(K)$ as follows:

Let $e_i, 1 \leq i \leq n$ be a basis of L over K and $a \in L^{\times}$. Consider the map sending $q:(e_i,e_j)\mapsto s(ae_ie_j)$. This defines a symmetric bilinear form on a n-dimensional vector space over K. It can be checked that this is non-degenerate ([14, VII, Proposition 1.1]). Then define the map $s_*: GW(L) \to GW(K)$ by sending the form $\langle a \rangle \in GW(L)$ to the form q defined above. It turns out that the image is independent of the choice of s ([14, Remark (C), p. 194]).

When the extension is separable, one can choose s to be the trace map, in which case the corresponding map of Grothendieck-Witt groups is called the trace form and denoted by $Tr_{L/K}$.

Observe that for any non trivial $s: L \to K$ the corresponding homomorphism s_* on Grothendieck-Witt groups is GW(K)-linear.

In view of Proposition 3.2, we get a presentation

$$\bigoplus_{x \in Q^{(2)}} GW(k(x)) \xrightarrow{\sum (s_x)_*} GW(k) \longrightarrow \widetilde{CH^3}(U) \longrightarrow 0$$

with $s_x: k(x) \to k$ any nonzero k-homomorphism.

Lemma 3.3. The group $\widetilde{CH}^3(U)$ is 2-torsion.

Proof. Consider the fields $L_1 = k(\sqrt{t_1}), L_2 = k(\sqrt{t_2}), L_3 = k(\sqrt{t_1t_2})$ which are all degree 2 extensions of k and correspond to closed points on Q (for L_3 recall that -1 is a square in k). For any $1 \le i \le 3$, define a k-homomorphism $s_i : L_i \to k$ by $s_i(1) = 1$ and $s_i(\sqrt{t_i}) = 0$. We observe then that $(s_i)_*(\langle 1 \rangle) = \langle 1, t_i \rangle$ and therefore

$$(s_1)_*(\langle 1 \rangle) + (s_3)_*(\langle 1 \rangle) - (s_2)_*(\langle t_1 \rangle) = \langle 1, t_1 \rangle + \langle 1, t_1 t_2 \rangle - \langle t_1, t_1 t_2 \rangle = \langle 1, 1 \rangle.$$

Thus
$$\widetilde{CH^3}(U)$$
 is 2-torsion. \Box

Consider the group

$$\begin{split} G_k(q) &:= \{a \in k^\times | aq \simeq q\} \\ &= \{a \in k^\times | aq = q \in W(k)\} \\ &= \{a \in k^\times | < 1, -a > \otimes q = 0 \in W(k)\}. \end{split}$$

Clearly $(k^{\times})^2 \subseteq G_k(q) \subseteq k^{\times}$ and hence we have a short exact sequence

$$0 \longrightarrow \frac{G_k(q)}{(k^{\times})^2} \longrightarrow \frac{k^{\times}}{(k^{\times})^2} \longrightarrow \frac{k^{\times}}{G_k(q)} \longrightarrow 0.$$

Now the determinant map det : $GW(k) \to \frac{k^{\times}}{(k^{\times})^2}$ gives us a diagram with exact bottom row

$$\begin{array}{c} GW(k) \\ & \downarrow^{\det} \\ 0 \longrightarrow \frac{G_k(q)}{(k^{\times})^2} \longrightarrow \frac{k^{\times}}{(k^{\times})^2} \longrightarrow \frac{k^{\times}}{G_k(q)} \longrightarrow 0 \end{array}$$

Remark 3.4. Note that since -1 is a square in k, the determinant map coincides with the more classical discriminant map.

Lemma 3.5. Let L/k be a finite separable extension and let $s: L \to k$ be any non-zero linear map. Then the image of the composition

$$GW(L) \xrightarrow{s_*} GW(k) \xrightarrow{\det} \frac{k^{\times}}{(k^{\times})^2}$$

is contained in the image of $\bar{N}_{L/k}: L^{\times} \to \frac{k^{\times}}{(k^{\times})^2}$ induced by the norm map.

Proof. Let r = [L:k]. The image of s_* being independent of s, we can choose any non-zero s to prove the lemma. Since -1 is a square in k^{\times} , the determinant induces a map

$$\det: W(k) \to \frac{k^{\times}}{(k^{\times})^2}$$

and it suffices to prove that the image of the composition

$$W(L) \xrightarrow{s_*} W(k) \xrightarrow{\det} \frac{k^{\times}}{(k^{\times})^2}$$

is contained in the image of $N_{L/k}$ to conclude.

Since L is finite and separable, the primitive element theorem gives us that L=k(y). Then $1,y,y^2,\ldots,y^{r-1}$ is a k-basis of L as a vector space. Hence, choosing s(1)=1 and $s(y^i)=0, i=1,2,\ldots,r-1$, we get a non-zero k-linear transformation. For this transformation, Scharlau [14, VII, Theorem 1.6] has computed the transfer map s_* , namely

$$s_*(\langle 1 \rangle) = \begin{cases} \langle 1 \rangle & r = 2m + 1 \\ \langle 1, -N_{L/k}(y) \rangle & r = 2m. \end{cases}$$

Since $-1 \in (k^{\times})^2$, it follows that $\det(s_*(\langle 1 \rangle)) \in \bar{N}_{L/k}(L^{\times})$. Since $\langle -1 \rangle = \langle 1 \rangle$ in W(L), the same is true of $\langle -1 \rangle$.

Now, for any $a \in L^{\times}$, we have $\langle -a \rangle = \langle 1, -a \rangle + \langle -1 \rangle$ and therefore

$$\det(s_*(\langle -a \rangle)) = \det(s_*(\langle 1, -a \rangle)) \det(s_*(\langle -1 \rangle)).$$

So it is enough to prove that $\det(s_*(\langle 1, -a \rangle)) \in \bar{N}_{L/k}(L^{\times})$. However, these are exactly the generators of the fundamental ideal $I(L) \subset W(L)$ and it is known from [8, Lemma 10.2.3] that there is a commutative diagram

$$\begin{split} I(L) & \xrightarrow{Tr_{L/k}} I(k) \\ \det & & \downarrow \det \\ \frac{L^{\times}}{(L^{\times})^2} & \xrightarrow{\bar{N}_{L/k}} \frac{k^{\times}}{(k^{\times})^2}. \end{split}$$

Now [14, Remark (C), p. 194] shows that $s_*(\underline{\ }) = Tr_{L/k}(\langle b \rangle \cdot \underline{\ })$ for some $b \in L^{\times}$. Since any $\alpha \in I(L)$ is of even rank, we have $\det(\alpha) = \det(\langle b \rangle \cdot \alpha)$ and then

$$\det(s_*(\alpha)) = \det(Tr_{L/k}(\langle b \rangle \cdot \alpha)) = \bar{N}_{L/k}(\det(\langle b \rangle \cdot \alpha)) = \bar{N}_{L/k}(\det(\alpha)).$$

We now deal with the composition $GW(k) \xrightarrow{\det} \frac{k^{\times}}{(k^{\times})^2} \to \frac{k^{\times}}{G_k(q)}$.

Lemma 3.6. Let $x \in Q$ be a closed point and $s_x : k(x) \to k$ be a nonzero k-homomorphism. Then the composition

$$GW(k(x)) \xrightarrow{(s_x)_*} GW(k) \xrightarrow{\det} \xrightarrow{k^{\times}} \xrightarrow{k^{\times}} \xrightarrow{k} \xrightarrow{G_k(q)}$$

is trivial.

Proof. Note that Lemma 3.5 implies that $\det((s_x)_*(GW(k(x)))) \subseteq \bar{N}_{k(x)/k}(k(x)^\times)$. Hence, if we prove that $N_x(k(x)^\times) \subset G_k(q)$, we will have proved the lemma. But observe that for every point $x \in Q$, the form $q_{k(x)}$ is isotropic, hence hyperbolic (since it is a Pfister form). An easy consequence of Scharlau's Norm Principle [14, VII, Corollary 4.5] gives us $N_{k(x)/k}(k(x)^\times) \in G_k(q)$ for all $x \in V$. Hence, the lemma stands proved.

Proposition 3.7. For any $3 \leq j \leq n$, the element $\langle -1, t_j \rangle \in \widetilde{CH^3}(\mathbb{P}^3)$ gives a non trivial element in $\widetilde{CH^3}(U)$.

Proof. The presentation

$$\bigoplus_{x \in Q^{(2)}} GW(k(x)) \xrightarrow{\sum (s_x)_*} GW(k) \longrightarrow \widetilde{CH^3}(U) \longrightarrow 0$$

shows that we have to prove that $\langle -1, t_j \rangle$ is not in the image of $\sum (s_x)_*$. Now Lemma 3.6 shows that we have a commutative diagram with exact rows

$$\bigoplus_{x \in V} GW(k(x)) \xrightarrow{\sum (s_x)_*} GW(k) \longrightarrow \widetilde{CH^3}(U) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

Thus, it is enough to prove that $\det(\langle -1, t_j \rangle)$ is non-zero in $\frac{k^*}{G_k(q)}$, which amounts to show that $t_j \notin G_k(q)$. But $\langle 1, -t_1 \rangle \otimes \langle 1, -t_2 \rangle \otimes \langle 1, -t_j \rangle \neq 0$ in W(k) as the successive use of the residue maps in the t_1 , t_2 and t_j -valuations show.

As a corollary, we get the following theorem.

Theorem 3.8. Let $k = \mathbb{Q}(i)(t_1, t_2, \dots, t_n)$ with $n \geq 3$. Consider the Pfister form $q := \langle 1, -t_1, -t_2, t_1 t_2 \rangle$ and its associated smooth quadric Q in \mathbb{P}^3 . Let $U = \mathbb{P}^3 - Q$ be the open (affine) complement of Q and let $u \in U$ be a closed rational point. The element $\langle -1, t_j \rangle \in \widetilde{CH_u^3}(U)$ yields a non trivial 2-torsion element in the kernel of the homomorphism $\widetilde{CH^3}(U) \to CH^3(U)$.

Proof. In view of Proposition 3.7, we know that $\langle -1, t_j \rangle$ is non trivial. Moreover, $\widetilde{CH^3}(U)$ is 2-torsion by Lemma 3.3 and it suffices to check that $\langle -1, t_j \rangle$ vanishes under the homomorphism

$$\widetilde{CH^3}(U) \to CH^3(U)$$

to conclude. But $\langle -1, t_j \rangle$ is supported on a vector-space of dimension 2 and Lemma 3.1 gives the result.

Remark 3.9. One can in fact prove that the elements $\langle -1, t_j \rangle$ for $3 \leq j \leq n$ are independent in $\widetilde{CH^3}(\mathbb{P}^3)$, and thus the kernel of $\widetilde{CH^3}(U) \to CH^3(U)$ is an \mathbb{F}_2 -vector space of dimension $\geq n-2$.

4. 2-TORSION IN THE EULER CLASS GROUP

Let $A = \mathcal{O}_U(U)$ where U is as in the previous section. In this section, we use Theorem 3.8 to produce an element which is 2-torsion in the Euler class group E(A) and vanishes in $E_0(A)$.

To start with, recall from [8, Proposition 17.2.8] that there is a natural surjective homomorphism

$$\eta: E(A) \to \widetilde{CH^3}(A).$$

Consider the closed point x := [1:0:0:0] of \mathbb{P}^3 and the corresponding maximal ideal \mathfrak{m} of A. The orientation class of $[9,\S 6]$ (see also [1, Definition 7.3]) yields an isomorphism $k \simeq \operatorname{Ext}_{\mathcal{O}_{\mathbb{P}^3}}^3(i_*\mathcal{O}_x,\mathcal{O}_{\mathbb{P}^3})$ and thus an orientation $\omega_{\mathfrak{m}}$ of \mathfrak{m} . Let $\alpha := (\mathfrak{m}, \omega_{\mathfrak{m}}) + (\mathfrak{m}, -t_3\omega_{\mathfrak{m}}) \in E(A)$.

Then under the above map, $\alpha \mapsto \langle 1, -t_3 \rangle \in \widetilde{CH^3}(A)$. Since the image of α is non-zero in $\widetilde{CH^3}(A)$, α is non-zero in E(A). We will now prove it is 2-torsion. To show that, note that

$$2\alpha = (\mathfrak{m}, \omega_{\mathfrak{m}}) + (\mathfrak{m}, -t_3\omega_{\mathfrak{m}}) + (\mathfrak{m}, \omega_{\mathfrak{m}}) + (\mathfrak{m}, -t_3\omega_{\mathfrak{m}})$$

$$= (\mathfrak{m}, \omega_{\mathfrak{m}}) + (\mathfrak{m}, -t_3\omega_{\mathfrak{m}}) + (\mathfrak{m}, -\omega_{\mathfrak{m}}) + (\mathfrak{m}, t_3\omega_{\mathfrak{m}})$$

$$= [(\mathfrak{m}, \omega_{\mathfrak{m}}) + (\mathfrak{m}, -\omega_{\mathfrak{m}})] + [(\mathfrak{m}, -t_3\omega_{\mathfrak{m}}) + (\mathfrak{m}, t_3\omega_{\mathfrak{m}})]$$

By [3, Lemma 3.6], we have

$$(\mathfrak{m}, \omega_{\mathfrak{m}}) + (\mathfrak{m}, -\omega_{\mathfrak{m}}) = (\mathfrak{m}, -t_3\omega_{\mathfrak{m}}) + (\mathfrak{m}, t_3\omega_{\mathfrak{m}})$$

and further, $(\mathfrak{m}, \omega_{\mathfrak{m}}) + (\mathfrak{m}, -\omega_{\mathfrak{m}})$ is the image of $(\mathfrak{m}) \in E_0(A)$ under the homomorphism $\theta : E_0(A) \to E(A)$ as in [3, Proposition 3.7]. Then, putting it all together, we get that

$$\theta(2(\mathfrak{m})) = 2\theta((\mathfrak{m})) = 2\alpha.$$

Hence, it is enough to prove that $2(\mathfrak{m}) = 0$ in $E_0(A)$.

Let $Y = V(X_3) \cap X$. Since X is affine, $Y = V(\mathfrak{p})$ for a prime ideal \mathfrak{p} of height 1 of A. Since A is a regular domain, \mathfrak{p} is an invertible ideal, hence isomorphic to a projective A-module L of rank 1. Let $B = A/\mathfrak{p}$. Then there exists a canonical group homomorphism $\gamma : E_0(B) \to E_0(A, L)$ given by $(I) \mapsto (J)$ where J is the ideal of A containing \mathfrak{p} such that $I = J/\mathfrak{p}$. Further, we know by [5, Theorem 6.8]

that $\psi: E_0(A, L) \xrightarrow{\sim} E_0(A)$. Note that \mathfrak{m} contains the ideal \mathfrak{p} . Hence, letting \mathfrak{n} be the ideal $\mathfrak{m}/\mathfrak{p}$ of B, we have

$$\theta(\psi(\gamma(2(\mathfrak{n})))) = 2\theta((\mathfrak{m})) = 2\alpha.$$

Hence, it is enough to prove that $2(\mathfrak{n})$ is 0 in $E_0(B)$.

Since $\operatorname{Spec}(B) = \mathbb{P}_k^2 \setminus V(G)$ where $G(X_0, X_1, X_2) = X_0^2 - t_1 X_1^2 - t_2 X_2^2$, we see that B is an open set obtained as complement of a degree 2 hypersurface with no k-rational points. Now the exact sequence

$$CH^2(V(G)) \to CH^2(\mathbb{P}^2_k) \to CH^2(B) \to 0$$

gives us $CH^2(B) = \mathbb{Z}/2$ as in Lemma 3.1. Further, since B is 2-dimensional, we know that $E_0(B) \simeq CH^2(B)$ (this follows in particular from the results in [6]). Hence, $2(\mathfrak{n}) = 0$. Hence, we get that the non-zero element α of E(A) is indeed 2-torsion in E(A). We have thus proved:

Theorem 4.1. Let $k = \mathbb{Q}(i)(t_1, t_2, \dots, t_n)$ with $n \geq 3$. Consider the Pfister form $q := \langle 1, -t_1, -t_2, t_1 t_2 \rangle$ and its associated smooth quadric Q in \mathbb{P}^3 . Let $U = \mathbb{P}^3 - Q$ be the open (affine) complement of Q and $A = \mathcal{O}_U(U)$. Let $x := [1:0:0:0] \in U$ and $\mathfrak{m} \subset A$ be the corresponding maximal ideal. Then there exists a local orientation $\omega_{\mathfrak{m}}$ of \mathfrak{m} such that $(\mathfrak{m}, \omega_{\mathfrak{m}}) + (\mathfrak{m}, -t_3\omega_{\mathfrak{m}})$ is 2-torsion in E(A) and vanishes under the homomorphism $E(A) \to E_0(A)$.

5. Euler classes

Let A be the ring considered in the previous section. We prove that any projective A-module of rank 3 with trivial determinant admits a free factor of rank one.

The universal submodule $\mathcal{O}(-1) \to \mathcal{O}_{\mathbb{P}^3}$ yields an exact sequence of locally free $\mathcal{O}_{\mathbb{P}^3}$ -modules

$$0 \longrightarrow \mathcal{O}(-1) \xrightarrow{i} \mathcal{O}_{\mathbb{P}^3}^4 \longrightarrow G \longrightarrow 0$$

where G is the quotient. The dual of this sequence reads as

$$0 \longrightarrow G^{\vee} \longrightarrow (\mathcal{O}_{\mathbb{D}^3}^4)^{\vee} \xrightarrow{i^{\vee}} \mathcal{O}(1) \longrightarrow 0.$$

We can endow $\mathcal{O}_{\mathbb{P}^3}^4$ with the usual skew-symmetric isomorphism $\psi: \mathcal{O}_{\mathbb{P}^3}^4 \to (\mathcal{O}_{\mathbb{P}^3}^4)^{\vee}$. Since the only skew-symmetric morphism between a line bundle and its dual is trivial, it follows that $i^{\vee}\psi i = 0$ and therefore we get the following commutative diagram

$$0 \longrightarrow \mathcal{O}(-1) \xrightarrow{i} \mathcal{O}_{\mathbb{P}^{3}}^{4} \longrightarrow G \longrightarrow 0$$

$$\downarrow \psi \qquad \qquad \downarrow f \qquad \qquad \downarrow f$$

Let $F = \ker f$. The Snake lemma shows that F is endowed with a skew-symmetric isomorphism $\varphi : F \to F^{\vee}$ and it follows that F is of trivial determinant. We denote by F_A (resp. G_A) the restriction of F (resp. G) to A.

Lemma 5.1. The Chow group $CH^2(A)$ is generated by $c_2(F_A)$.

Proof. By definition of A, we have a surjective homomorphism $CH^2(\mathbb{P}^3) \to CH^2(A)$. It suffices thus to prove that $c_2(F)$ generates $CH^2(\mathbb{P}^3)$ to conclude. Now $CH^2(\mathbb{P}^3)$ is generated by $c_1(\mathcal{O}(-1))^2$ and a simple computation using Whitney formula ([10, Chapter 3, Theorem 3.2(e)]) on the exact sequences

$$0 \longrightarrow \mathcal{O}(-1) \xrightarrow{i} \mathcal{O}_{\mathbb{P}^3}^4 \longrightarrow G \longrightarrow 0$$

and

$$0 \longrightarrow F \longrightarrow G \stackrel{f}{\longrightarrow} \mathcal{O}(1) \longrightarrow 0$$

yields
$$c_2(F) = c_1(\mathcal{O}(-1))^2$$
 (recall that $c_1(F) = 0$).

Let $F^3K_0(A)$ be the subgroup of $K_0(A)$ generated by closed points. For any projective A-module P, we denote by [P] its class in $K_0(A)$.

Lemma 5.2. The group $F^3K_0(A)$ is generated by

$$\beta := [G_A^{\vee}] + [\det G_A^{\vee}] - [\wedge^2 G_A^{\vee}] - [A].$$

Proof. Mapping a closed point to a locally free resolution of its structure sheaf yields a surjective homomorphism $CH^3(A) \to F^3K_0(A)$. Lemma 3.1 proves therefore that $F^3K_0(A)$ is generated by the class of a closed point. Consider the exact sequence

$$0 \longrightarrow G^{\vee} \longrightarrow (\mathcal{O}_{\mathbb{P}^3}^4)^{\vee} \stackrel{i^{\vee}}{\longrightarrow} \mathcal{O}(1) \longrightarrow 0.$$

Projecting $(\mathcal{O}_{\mathbb{P}^3}^4)^{\vee}$ to the first factor yields a morphism $s: G^{\vee} \to \mathcal{O}_{\mathbb{P}^3}$. If we set x := [1:0:0:0] then we get an exact sequence

$$G^{\vee} \xrightarrow{s} \mathcal{O}_{\mathbb{P}^3} \longrightarrow \mathcal{O}_x \longrightarrow 0$$

and the Koszul complex associated to s is then a locally free resolution of \mathcal{O}_x . Thus the lemma is proved.

Proposition 5.3. Any projective A-module P of rank 3 with trivial determinant splits off a free factor of rank one.

Proof. In view of [5, Theorem 7.13] it suffices to prove that $[P] = [Q \oplus A]$ in $K_0(A)$ with Q a projective module of rank 2 with trivial determinant. Any such module is endowed with a skew symmetric isomorphism and we consider the Grothendieck group $K_0Sp(A)$ of symplectic modules and the forgetful homomorphism

$$f: K_0Sp(A) \to K_0(A)$$
.

Using [7, Proposition 11], we see that any $\alpha \in \operatorname{Im}(f)$ is of the form $\alpha = [Q] + 2m[A]$ for some $m \in \mathbb{Z}$ and some projective module Q of rank 2 with trivial determinant. Hence $[P] - [A] \in \operatorname{Im}(f)$ if and only if $[P] = [Q \oplus A]$ in $K_0(A)$. Lemma 5.1 shows that there exists Q' of rank 2 and trivial determinant such that $[P] - [Q' \oplus A]$ has trivial Chern classes c_0, c_1 and c_2 . It follows from the Riemann-Roch theorem without denominators in [12] that $[P] - [Q' \oplus A] \in F^3K_0(A)$. In view of Lemma 5.2, we are reduced to show that $\beta := [G_A^{\vee}] + [\det G_A^{\vee}] - [\wedge^2 G_A^{\vee}] - [A]$ is in $\operatorname{Im}(f)$. But $[G_A^{\vee}] = [F_A^{\vee}] - [\mathcal{O}(-1)_A]$ in $K_0(A)$ and therefore [11, Chapter 5, §1] yields $[\wedge^2 G_A^{\vee}] = [\wedge^2 F_A^{\vee}] + [F_A^{\vee} \otimes \mathcal{O}(-1)_A]$. Since $\det G^{\vee} = \mathcal{O}(-1)$ and F^{\vee} has trivial determinant, we find

$$\beta = [F_A^{\vee}] - [F_A^{\vee} \otimes \mathcal{O}(-1)_A].$$

Both terms on the right hand side are classes of rank 2 modules with trivial determinant (observe that $\mathcal{O}(-2)_A \simeq A$), hence endowed with skew symmetric forms. Thus $\beta \in \text{Im}(f)$.

Corollary 5.4. Any projective A-module P of rank 3 with trivial determinant satisfies $e(P, \chi) = 0$ for any orientation χ of P.

References

- Paul Balmer. Products of degenerate quadratic forms. Compos. Math., 141(6):1374-1404, 2005.
- [2] Jean Barge and Fabien Morel. Groupe de Chow des cycles orientés et classe d'Euler des fibrés vectoriels. C. R. Acad. Sci. Paris Sér. I Math., 330(4):287–290, 2000.
- [3] S. M. Bhatwadekar, Mrinal Kanti Das, and Satya Mandal. Projective modules over smooth real affine varieties. *Invent. Math.*, 166(1):151–184, 2006.
- [4] S. M. Bhatwadekar and Raja Sridharan. Zero cycles and the Euler class groups of smooth real affine varieties. *Invent. Math.*, 136:287–322, 1999.
- [5] S. M. Bhatwadekar and Raja Sridharan. The Euler class group of a Noetherian ring. Compositio Math., 122(2):183–222, 2000.
- [6] Mrinal Kanti Das and Satya Mandal. A Riemann-Roch theorem. J. Algebra, 301(1):148–164, 2006.
- [7] J. Fasel and V. Srinivas. Chow-Witt groups and Grothendieck-Witt groups of regular schemes. Adv. Math., 221(1):302–329, 2009.
- [8] Jean Fasel. Groupes de Chow-Witt. Mém. Soc. Math. Fr. (N.S.), 113:viii+197, 2008.
- [9] Jean Fasel. The projective bundle theorem for I^{j} -cohomology. Preprint available at http://www.mathematik.uni-muenchen.de/ \sim fasel/publikationen.php, 2009.
- [10] William Fulton. Intersection theory, volume 2 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics]. Springer-Verlag, Berlin, second edition, 1998.
- [11] William Fulton and Serge Lang. Riemann-Roch Algebra, volume 277 of Grundlehren der mathematischen Wissenschaften. Springer, New York, 1985.
- [12] A. Grothendieck. La théorie des classes de Chern. Bull. Soc. Math. France, 86:137-154, 1958.
- [13] N. Mohan Kumar and M. Pavaman Murthy. Algebraic cycles and vector bundles over affine three-folds. Ann. of Math. (2), 116(3):579–591, 1982.
- [14] T. Y. Lam. The algebraic theory of quadratic forms. W. A. Benjamin, Inc., Reading, Mass., 1973. Mathematics Lecture Note Series.
- [15] John Milnor. Algebraic K-theory and quadratic forms. Invent. Math., 9:318–344, 1969/1970.
- [16] Fabien Morel. A¹-algebraic topology over a field. To appear in Lecture Notes in Mathematics. Preprint available at http://www.mathematik.uni-muenchen.de/~morel/preprint.html, 2011.
- [17] M. Pavaman Murthy. Zero cycles and projective modules. Ann. of Math. (2), 140(2):405–434, 1994.
- S. M. Bhatwadekar, Bhaskaracharya Pratishthana, 56/14, Erandavane, Damale Path, Off Law College Road, Pune 411004, India

E-mail address: smbhatwadekar@gmail.com

J. Fasel, Mathematisches Institut der Universität München, Theresienstrasse 39, D-80333 München

E-mail address: jean.fasel@gmail.com

S. Sane, Department of Mathematics, University of Kansas, 405 Snow Hall, 1460 Jayhawk Blvd, Lawrence, Kansas 66045-7594

E-mail address: sarangsanemath@gmail.com