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Panera: An innovative framework for surmounting
uncertainty in microbial community modeling
using pan-genera metabolic models

Indumathi Palanikumar,1,2,3 Himanshu Sinha,1,2,3 and Karthik Raman1,2,3,4,5,*
SUMMARY

Utilization of 16S rRNA data in constraint-based modeling to characterize microbial communities con-
fronts a major hurdle of lack of species-level resolution, impeding the construction of community models.
We introduce ‘‘Panera,’’ an innovative framework designed to model communities under this uncertainty
and yet perform metabolic inferences using pan-genus metabolic models (PGMMs). We demonstrated
PGMMs’ utility for comprehending the metabolic capabilities of a genus and in characterizing community
models using amplicon data. The unique, adaptable nature of PGMMs unlocks their potential in building
hybrid communities, combining genome-scale metabolic models (GSMMs) and PGMMs. Notably, these
models provide predictions comparable to the standard GSMM-based community models, while
achieving a nearly 46% reduction in error compared to the genus model-based communities. In essence,
‘‘Panera’’ presents a potent and effective approach to aid in metabolic modeling by enabling robust pre-
dictions of community metabolic potential when dealing with amplicon data, and offers insights into
genus-level metabolic landscapes.

INTRODUCTION

The past decade has witnessed unprecedented growth in metagenomics research, highlighting the significance of microbial communities in

diverse ecosystems. These microbial communities thrive in environments ranging from host-associated systems1–3 and environmental con-

ditions4 to even extreme environments like hot springs5 and the ocean floor.6 Unveiling the composition of thesemicrobiomes relies on tech-

niques like amplicon sequencing, which targets specific gene segments (often the 16S rRNA gene), and shotgun metagenomics, which se-

quences entire genomes present in a sample.7 By analyzing the compositional and functional profiles, the microbial habitats and their

activities within an ecosystem can be inferred.8 However, a deeper understanding of the intricate interactions within the microbial community

as well as with its host and environment is still lacking.

Genome-scale metabolic models (GSMMs) have emerged as a powerful tool for comprehending the complex relationship between an

organism’s genetic makeup (genotype) and its observable traits (phenotype).9,10 These models are instrumental in simulating the physiolog-

ical behavior of the biological organisms in silico and analyzing their responses to varying nutrient conditions and genetic modifications.11,12

Prior research analyses have harnessed GSMMs to reconstruct microbial communities in silico, providing insights into their metabolic depen-

dencies and functionalities.13–16 GSMMs have proved to be a valuable and standard resource for in-silico reconstruction of microbial com-

munities17,18 and are publicly available in databases such as AGORA, AGORA2, and BiGG.19 The metabolic characterization of these micro-

bial communities opened avenues for diverse applications, including biomarker identification,20 disease classification,21,22 host-microbiome

interaction exploration,23 and personalized treatment regimen development.24 However, a significant limitation of these simulations lies in

their reliance on GSMMs derived from whole genomes. These approaches are widely used but presuppose complete knowledge of all indi-

vidual species within a community, which is often not achievable from amplicon sequencing. The recent surge inmicrobiome research, partic-

ularly studies employing shotgun metagenomics, has opened avenues for enriching GSMMs using metagenome-assembled genomes

(MAGs). GSMMs reconstructed from MAGs hold promise for building microbial community models only when shotgun metagenomics

data are available for microbiome characterization.15,25,26 Given the limitations of amplicon sequencing in generating MAGs, existing model

reconstructions deposited in public databases such as AGORA, BiGG, KBase, and CarveMe become crucial resources for building and

analyzing microbial communities characterized through amplicon sequencing data.
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Amajor limitation of the GSMM-based modeling approach stems from the inherent ambiguity of using 16S rRNA sequencing data. Typi-

cally, only a short segment (250–500 bps) of the 16S rRNA gene is analyzed, representing just a fraction of the entire gene (1,500 bp). This

limited information often restricts taxonomy assignment to the genus level, formore than half of the sequencing read.27 Given thewidespread

availability of 16S datasets, there is a pressing need for novel frameworks that can leverage this genus-level information along with species-

level data. Pan-genus models, a genus-level metabolic model that captures the collective metabolism of all the species within a genus and a

GSMM equivalent for genus, emerge as a promising solution to model microbial communities characterized by incomplete taxonomic

information.

It is essential to appreciate the role of pan-genusmodels in elucidating the uniquemetabolic capabilities and physiological characteristics

of a genus. To date, two major approaches exist for pan-genus model reconstruction. The first involves building a pan-genome, which com-

bines the genome of all species within a genus.13 This pan-genome then serves as the basis for draft model reconstruction using tools like

KBase28 andCarveMe.29 For instance, the pan-genomemodels of Propionibacterium,30 Escherichia,31 and yeast32,33 have been reconstructed

from their respective pan-genomes to investigate diverse and shared metabolic traits within a genus and understand strain-specific adapta-

tions. However, this approach often necessitates extensive manual curation to address gaps and ensure model consistency.

An alternative, more streamlined approach relies on existing curated species-specific GSMMs from databases like AGORA34,35 and BiGG.

This approach circumvents the challenges of manual curation,30 making it more scalable for reconstructing models for multiple genera. Prior

studies have demonstrated the utility of the panModels built using the ‘‘createPanModels’’ routine from the Microbiome Modeling Toolbox

(MMT),36 in studying the alteration in the metabolism of the human microbiome under different disease conditions.21,37–39

However, existing tools like ‘‘createPanModels’’ suffer from significant limitations. These limitations hinder the ability of themodels to fully

exploit the potential of 16S rRNA sequencing data. This tool relies on a simplistic merging of existing models, creating a lumped biomass (as

demonstrated in Figure 1) and cannot leverage species-specific information in 16S data. Furthermore, these tools frequently restrict taxo-

nomic input at either the genus or species level. Given the inherent nature of amplicon sequencing data, which often provides amix of species

and genus-level taxonomic information, disregarding either level of resolution can lead to inaccurate metabolic predictions.

In this study, we propose a unique framework to address two critical challenges in microbial community characterization: (1) uncertainty

associated with taxonomic assignment in 16S rRNA sequencing data and (2) scarcity of representative genus-level models. Our framework

strives to unlock the full potential of pan-genus metabolic models (PGMMs) for improved characterization of microbial communities. Our

approach involves the generation of a comprehensive repository of flexible PGMMs constructed by harnessing curated GSMMs. We assess

the applicability of these reconstructed PGMMs in two key aspects: (1) modelingmicrobial communities characterized by uncertain taxonomic

information and varying resolution and (2) investigating the intricatemetabolism within individual genusmembers to understand their unique

functional characteristics. By overcoming the limitations of current PGMM construction methods and the inherent resolution constraints of

16S rRNA sequencing, our method paves the way for significantly more accurate predictions of the metabolic capabilities of microbial

communities.
RESULTS

In this work, we present the ‘‘Panera’’ algorithm, designed to tackle uncertainties in metabolic function prediction arising from the limitations

of 16S rRNA sequencing data. While 16S sequencing-derived taxonomic data offers valuable insights, it often lacks species-level resolution, a

key input for accurate community metabolic modeling. Traditionally, only species-level data are utilized in microbial community modeling,

neglecting approximately 40% of the information available at the genus level. In addition, an alternate approach, building community models

using genus-specific models with aggregated genus-level taxonomic data, not only discards valuable species information but also reduces

the accuracy of community-level metabolic predictions. Panera addresses this challenge by generating species-aware genus-level metabolic

models and integrating them into species-level GSMMs to construct an in-silico representation of a microbial community. We achieve this by

reconstructing PGMMs from existing GSMMs. These PGMMs capture unique reactions specific to each genus and incorporate the species

composition through flexible biomass formulation. Subsequently, we evaluated the ability of PGMM to represent both individual species

and entire genera. Furthermore, the reconstructed PGMMs are shown to be a valuable tool for exploring themetabolic potential of individual

genera, identifying context-dependent functional similarities between genera, and modeling diverse microbial community scenarios. Our

analysis reveals that these hybrid models, incorporating both species and genus information, demonstrate a significant reduction (46%) in

predicting metabolic capabilities compared to the lumped model-based communities. This improvement underscores the efficacy of Pan-

era-derived hybrid models in enhancing the accuracy of microbial community modeling and their functionality prediction.
PGMM can be a representative of both genus and species

To assess the ability of PGMMs to retain the functionalities of individual species models, we examined them against the respective species

GSMMs from the AGORA database (detailed information on the species models used and the variations observed are provided in Table S3).

Species representation by the Panera PGMMwas evaluated by comparing the net maximum production/consumption potential of exchange

metabolites with the flux predicted by the GSMM using flux variability analysis (FVA) (Figure 2A). A significant flux difference was defined as a

ratio exceeding 10% between the maximum exchange metabolite flux in the GSMM and the species model derived from the PGMM.40 This

analysis showed nearly 8.7% of exchange reactions have significantly different flux values. Qualitative analysis, focusing on the number of me-

tabolites producedwithin amodel using Jaccarddistance, revealedminimal variationbetween themodels, with an averageof 4%.Conversely,
2 iScience 27, 110358, July 19, 2024
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Figure 1. Overview of model reconstruction for different microbial community modeling approaches

The figure depicts the key steps involved in reconstructing different models (GSMM, PanModel, and PGMM) and their application in modeling microbial

communities (Created with BioRender).

(A) illustrates the GSMMs as input for constructing community models using species-level information; (B) depicts the generation of genus models by

aggregating species models and retaining only the unique reactions within the combined model; (C) shows how the combined reaction structure is further

defined by a biomass equation to create a functional model and illustrates how PanModels differ from pan-genus metabolic model (PGMM). PanModels

utilize a lumped biomass approach, averaging the biomass reactant and product coefficients. In contrast, the PGMMs formulated by Panera incorporate

species information into the model by defining the biomass as a combination of species abundance coefficients and individual species biomass reactions;

and (D) illustrates the reconstruction of different community models. GSMM-based communities serve as the benchmark, while hybrid communities are

proposed for modeling microbial samples sequenced using 16S rRNA sequencing, which typically provides a mixture of species and genus-level information

(see also Figure S4; Tables S1 and S2).
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quantitative analysis investigating variations in metabolite production/consumption rates using Euclidean distance showed a moderate vari-

ation ranging between 5 and 10% in the fluxes of exchange metabolites.

We further investigated the capability of PGMMs to represent themetabolic potential of a genus. Thiswas evaluatedby comparingPGMMs

togenus-levelmodels built usingGSMMs (Table S4). To simulate anequal presenceof all specieswithin a genus,wemodified thePGMMusing

a speciesprobability vectorwhereall specieshaveauniformproportion summing to1. Subsequently, thegenus-levelmodelwas reconstructed

by integrating the corresponding GSMMs at equal abundances through a compartmentalization approach. In contrast to individual species

models, substantial variability in both qualitative and quantitative analyses was observed between the genus representation by PGMM and

the GSMM-based genus model (Figure 2B). Analysis on maximum exchange metabolite production flux revealed an average difference of

38% between the models. Additionally, an 18% variation was observed in predicting the number of metabolites produced.

Metabolic landscape analysis reveals a fascinating context-specific metabolic similarity between genera

The inherent flexibility of Panera-derived PGMMs allows for the investigation of metabolic production landscape within a genus, providing

insights into its overall metabolic capabilities and potential metabolic niche development within a genus. For instance, switching from tight-

ened control of reaction flux in the genus model containing (n-1) species to broader flux bandwidth in the genus model containing n species

suggests that the addition of nth species contributes to themetabolic pathway diversification that contributes to the production of that partic-

ular metabolite. We categorized the observed bandwidth into four distinct groups: high variability, low variability, tight regulation, and no

production. Tight regulation of specific metabolites across all species within a genus, regardless of species composition, suggests conserved

flux maintenance and potential essentiality for survival under the simulated condition. Conversely, metabolic production with a broader flux
iScience 27, 110358, July 19, 2024 3
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Figure 2. PGMM can be a representative of both genus and species

Qualitative (variation in the active exchangemetabolites in themodel using Jaccard distance) and quantitative (differences in themaximum production flux of the

exchange metabolites within the model) variation in the metabolic potential prediction of (A) individual species extracted from PGMM-Panera models in

comparison to GSMM (the variation is reported for 150 individual species) and (B) equal-species abundance implied PGMM in comparison to GSMM-based

genus models (the variation is reported for 20 different genera) (see also Figure S5; Tables S3 and S4).
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range indicates the varying impact of individual species on the overall production potential, i.e., the metabolite production may be depen-

dent on the cross-feeding interactions or presence of other species.

Interestingly, mapping the metabolic flux bandwidth of exchange metabolites across all genera revealed greater metabolic similarities

among opportunistic pathogens compared to commensal genera (Figures S2A and S2B: heatmap of the metabolic bandwidth for exchange

metabolites across genera).41–45 This observation aligns with the distance trees constructed based on the metabolite similarity (Figure S1:

distance tree based on metabolites similarity of a genus) and reaction similarity (Figure S1: distance tree based on reaction similarity of a

genus), which rely on the presence or absence of these entities. These trees demonstrate similar metabolic potential within clusters of organ-

isms including opportunistic pathogenic clusters, such as cluster-I (Staphylococcus, Streptococcus, Shigella, and Serratia), cluster-II (Haemo-

philus,Helicobacter, Klebsiella, andGemella), and commensal genera (Blautia, Bifidobacterium, Bacillus, and Bacteroides). Furthermore, flux

bandwidth analysis offers insights into genus-specific characteristics. For instance, the distinct clustering of Bacteroides and Prevotella

observed on the reaction and metabolite similarity-based trees is challenged by the flux bandwidth-based tree (Figure S1). This suggests

a potential sharedmetabolic regulation between these genera, evenwith somedissimilarity in their reaction andmetabolite profiles. A similar

pattern is observed for Shigella, Enterobacter, Klebsiella, andHaemophilus.Notably, over 70% of the clustering patterns based on flux band-

width types remained consistent across different dietary conditions (i.e., on both European and Mediterranean diets).

Our analysis revealed that the metabolic flux bandwidth of a specific metabolite can vary among different genera, and this variation ap-

pears to be indirectly related to metabolite regulation. For example, the flux range of L-cysteine observed in Bacteroides and Prevotella was

notably wider than that in Streptococcus (Figure 3). However, a bimodal distribution of the flux range, regardless of its magnitude (high or

low), suggests distinct control mechanisms employed by the species in these genera for cysteine production. Additionally, the fluctuating

flux range distribution for acetate and L-cysteine across these three genera highlights the influence of species composition onmetabolic con-

trol. Further investigation of the metabolic flux bandwidth for each exchange metabolite within these genera (Figure S2) revealed stricter

regulation across different genera for metabolites associated with inorganic ion metabolism, such as zinc, copper, and magnesium. This

may be attributed to the limited micronutrient requirements for these organisms.

We observed that the cofactor group, which includes quinone, glutathione, folate, and riboflavin, showed a robust regulation in most of

the genera, except for the genus cluster containing Shigella, Escherichia, Enterococcus, Klebsiella, andHaemophilus under both dietary con-

ditions. On the other hand, this specific genus cluster displayed robust regulation for other cofactors like reduced glutathione. These obser-

vations suggest that different genera might have unique cofactor requirements essential for their specific functionalities. In contrast, amino

acid production fluxes, another class of metabolites, exhibited greater variability than the other metabolites group. Notably, commensals

displayed weaker regulation over amino acid production compared to other genera. Most of the observed results remained consistent under

both simulated dietary conditions. Consequently, we detected higher similarity in metabolite-level clustering between European and Med-

iterranean diet conditions. Overall, this study leverages the flexibility of PGMMs to explore themetabolic potential and regulatory landscapes

within microbial genera. The observed variations in metabolic flux bandwidth provide valuable insights into the functional characteristics and

potential niche adaptations of different genera.

PGMM captures better metabolic information than the lumped genus model in community modeling

We investigated the applicability of PGMMs in characterizing microbial communities through metabolic modeling using both the metage-

nomic data generated synthetically and data from colorectal cancer (CRC) studies. We employed synthetic microbial abundance data for

various community sizes (n = 10 and 50). Four distinct in-silico community types were reconstructed, and their predicted metabolic outputs

were compared to those obtained from widely used GSMM-based communities (as demonstrated in Figure 1).
4 iScience 27, 110358, July 19, 2024



Figure 3. Metabolic flux bandwidth analysis of acetate and L-cysteine production by different genera

Metabolic flux bandwidth of acetate and L-cysteine production across various genera is estimated with 120 different species combinations under two dietary

conditions: European (EU) diet (left panel) and Mediterranean diet (right panel). The analysis reveals tighter regulation of acetate production in Bacteroides

under both diets, while Streptococcus and Prevotella exhibit greater production variability across the diets (See also Figures S1, S2, and S6A).
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Qualitative variation analysis revealed that Panera-derived PGMM models, when implemented within communities, captured a broader

range of metabolic information (metabolic information is defined as the functional capability of themicrobial community that can be analyzed

using constraint-based modeling approaches), i.e., the predicted metabolite production capacity has lesser error while comparing with

PanModels for a smaller community (Tables S5B and S6B). Hybrid models showed improved metabolic output predictions from the commu-

nities. The difference between PGMM and PanModel became statistically significant with increasing community size (Figure 4A). The uptake

metabolic potential is captured significantly better in hybrid communities than PanModel and PGMM-based communities (Tables S5B and

S6B; Figure S3). Furthermore, quantitative variation analysis demonstrated that PGMM-based communities offered more accurate predic-

tions of metabolic capabilities compared to PanModel-based communities when benchmarked against GSMM-basedmicrobial communities

(Figure 4B; Tables S5C and S6C). Notably, no significant variations were observed in uptake fluxes, representing the community’s consump-

tion capabilities (Figure S3). This analysis suggests that even minor variations in nutrient uptake within the model can lead to substantial

changes in predicted production fluxes. Interestingly, while the uptake metabolic flux may be similar across all community models, the

metabolic production profiles for the same community differ based on the community type. This observation potentially points toward

the inherent differences in themodel structure of each communitymodel. In conclusion, our findings indicate that PGMM-based communities

and hybrid communities can effectively capture the qualitativemetabolic potential of GSMM-based communities than PanModel-based com-

munities. This showcases the potential of PGMM as a valuable alternative to existing PanModel for community metabolic modeling from

genus-level data.
iScience 27, 110358, July 19, 2024 5
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Figure 4. Hybrid models in community modelling improve the prediction of metabolic potential

The figure presents a comparative analysis of qualitative (Jaccard distance) and quantitative (normalized Euclidean distance) differences in the metabolic

potential between various community models and GSMM-based communities for two datasets: synthetic dataset (A and B) and CRC metagenomics dataset

(C and D). The analysis is employed for different community types, including PGMM (Panera-derived pan-genus metabolic model), PanModel (pan-genus

metabolic model constructed with ‘‘CreatePanModels’’ in the CobraToolBox suite), and hybrid communities (combining GSMM and PGMM). The variation is

evaluated in relation to GSMM-based community models. The reported significance is calculated based on the paired t-test and the level of significance is

represented as follows: ns, not significant; *p % 0.05; **p % 0.01; ***p % 0.001 and ****p % 0.0001 (See also Figures S3 and S6B; Tables S5, S6, and S7).

(A) Highlights qualitative differences in metabolic diversity and (B) quantitative differences (variation in metabolite production flux) when compared to GSMM-

based communities for both 10 (no. of models, n = 34) and 50-member synthetic communities (no. of models, n = 15).

(C) Demonstrates the variance in metabolic production diversity within a community when compared to metabolomics study in the CRC metagenomics dataset

(no. of models, n = 24).

(D) Displays the differences in metabolic production flux within a community concerning GSMM-based communities in the CRC metagenomics dataset.
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Hybrid models in community modeling improve the prediction of metabolic potential

We subjectedmicrobial communities, generated usingCRC-metagenomics data, to a comprehensive analysis encompassing both qualitative

and quantitative variations across different modeling approaches. Comparisons were drawn against available metabolomics data for valida-

tion.Given thehigher computationaldemandassociatedwithanalyzing themetabolicpotential of themicrobial communities throughdifferent

modeling strategies, we restricted the analysis to two different sets of around 20 samples each. Both the sets yielded consistent results, which

are presented in detail in Tables S7A–S7H. We assessed the qualitative variation by comparing the net metabolic output detected in the me-

tabolomics data with the netmetabolic potential produced by the various community types (Figure 4C; Table S7B). Intriguingly, a comparable

set of secreted metabolites were captured by the communities built from PGMM, PanModels, and hybrid models (GSMM along with PGMM)

when compared to the standard GSMM-based microbial communities. The comparison of the error metrics and their statistical significance

revealed that the predictions from hybrid models exhibited a closer alignment with those from GSMM-based communities (Tables S7B and

S7E), Conversely, predictions fromPGMM-based and PanModel-based communities deviated significantly from the standardGSMMcommu-

nities. This observation indicates that hybridmodels offer accuratemetabolic output predictions compared to PanModel-based communities.

To quantitatively evaluate the alteration in the production flux of exchange metabolites, we reported the comparison with GSMM-based

communities since the metabolomics data were presented in terms of metabolite concentration along with the significance of the prediction

error (Table S7C). No significant differences were observed between PGMM and PanModel communities, with variations falling within a nar-

row range of 0.2–0.5% (Figure 4D). However, hybrid communitymodels (using bothGSMMand PGMM to build a community) demonstrated a

46%–57% reduction in error rate for functional predictions when compared with the maximum flux values of the exchange metabolites from a

community (Tables S7C and S7F). Overall, the evaluation of metabolomic analysis outcomes against the predicted metabolic abilities of the

various community models insinuates that hybrid models exhibit comparable prediction accuracy as GSMM with minimal qualitative and

quantitative disparities.
DISCUSSION

Metagenomic sequencing technologies, particularly the cost-effective 16S rRNA sequencing, have significantly advanced our comprehen-

sion of microbial ecosystems, specifically regarding their compositional and functional dynamics. Nevertheless, the fundamental limitation

of acquiring taxonomic assignments at finer taxonomic levels in amplicon sequencing poses a challenge in building communities and pre-

dicting community functionality and metabolic interactions using constraint-based in-silico microbial community modeling. To address

the issue, the PGMM is employed as a valuable alternative to GSMMs for constructing microbial communities and studying their function-

alities and dynamics. However, reconstructing high-quality PGMMs from pan-genomes is time-consuming and requires manual curation.

This limitation prompts the researchers to explore an alternative approach using existing curated GSMMs. Yet, models generated from

one such existing tool, MMT, struggles with accommodating both the genus and species compositionality in a single data and represent-

ing species within a genus, which restricts their utilization in community modeling that necessitates the incorporation of both genus and

species information from amplicon sequencing. Consequently, the entire potential of metabolic modeling inmicrobial community analysis

remains underutilised.

To address these challenges, we introduce our method, ‘‘Panera,’’ which presents a unique and adaptable framework for generating

PGMMs (Figure 1). The primary aim of Panera is to reduce uncertainties in assessing themetabolic capabilities of amicrobial community while

using uncertain taxonomic information from 16S amplicon sequencing data. This framework constructs a comprehensive model by inte-

grating all unique reactions from individual species-specific GSMMs within a genus and their respective metabolic data. The ‘‘panBiomass’’

equation, which represents a linear combination of species biomass equations, is then incorporated into the model to obtain a PGMM. The

components in PGMM are ‘‘species-aware’’ as opposed to the PanModels built fromMMT, which generates a new biomass reaction by aver-

aging the coefficients of the reactants and products involved in the biomass equation. The updated biomass formulation (an objective func-

tion) subsequently presents the flux distribution of the PGMM. In addition, the Panera algorithm further enhances PGMMs by introducing

flexibility, i.e., allowing users to tailor the model to the specific input parameters (microbial species abundance data). We rigorously tested

Panera PGMMs while predicting the metabolic capabilities of individual species and the collective abilities of genera. These models were

evaluated for their primary application in simulating in-silico microbial communities, particularly in comparison to conventional GSMMs
iScience 27, 110358, July 19, 2024 7
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and investigating the metabolic potential and inter-species/genus communication in a community. Additionally, PGMM showcased their

unique utility in exploring the metabolic landscape of genera.

Our analyses demonstrated that PGMMs effectively capture the metabolic activities of individual species GSMMs, as indicated by com-

parable qualitative and quantitative metabolic flux predictions. However, disparities arose when comparing PGMMs to GSMM-based simu-

lations while analyzing the equal species probability genus-level models. These discrepancies could be attributed to the structural differences

between the models. PGMMs exclusively comprise unique reactions of a genus in a single compartment, while GSMM-based genus-level

model adopt a compartmentalization approach46,47 that combines all species models via an extracellular compartment while keeping the

internal species reactions intact. Despite both models utilizing a similar objective formulation, which involves a linear combination of species

proportion and species biomass, variations emerged when simulating a community biomass flux. A single unique biomass precursor reaction

accounts for the multiple species’ biomass production in PGMM. In comparison, the GSMM-based community relies on precursor reactions

within each species for their respective biomass production. Differences also surfaced in the prediction of certain biomass precursors,

including higher fluxes for amino acids like cysteine and phenylalanine in PGMMs and lower fluxes for secondary metabolites such as cholate

and phenol, alongside polysaccharide precursors (N-acetyl D-glucosamine and glucosamine). These variations could be attributed to a po-

tential trade-off between accuracy and abstraction stemming from information loss.48

We further investigated the unique potential of PGMMs in exploring the metabolic landscape of the genus. We simulated PGMMs with

distinct species probability vectors, replicating varying species proportions in a genus. The analysis of reaction and metabolite similarity

between PGMMs illustrated the clustering of genera with similar functions as comparable to the phylogenetic tree, aligning with previous

findings indicating shared functionalities among phylogenetically diverse organisms.49–51 Notable disparities between the reaction and

metabolite similarity tree and metabolic flux bandwidth distance tree suggested that active metabolic fluxes may differ based on nutri-

tional supplements and environmental factors compared to the putative functionalities observed within genera.52,53 Additionally, the clus-

tering of Prevotella and Bacteroides in the flux bandwidth-based tree could be supported by the shared core protein similarity54,55 be-

tween the two genera despite their associations with different diets.56 Similarly, metabolic regulation clustering observed among

opportunistic pathogens such as Escherichia and Shigella is consistent with their genetic similarity.57,58 Moreover, significant variations

in the amino acid production potential of dysbiotic communities20,59 present evidence for the enhanced regulation of amino acid produc-

tion in opportunistic pathogens. Ultimately, the flexible Panera PGMMproved to be a valuable resource for investigating the capabilities of

microbial genera and customizing species composition within PGMMs, providing a significant advantage for studying core functionalities

and niche development. Furthermore, these models can be employed to investigate context-specific genus similarity, providing insights

into the functional relatedness of genera under specific conditions. Considering PGMM’s ability to comprehend the metabolic potential

space of a genus in a given environment, it can serve as a scrutinizing step in formulating synthetic consortia for microbiome modulation

strategies. Moreover, Panera can be instrumental in exploring the metabolic niche contribution of identified MAGs within their respective

genera, by using good quality draft GSMMs built from MAGs, and understanding their metabolic variation under different environmental

conditions.

Finally, we reported the principal utility of PGMM, which is to be a valuable tool in constructing microbial communities using incom-

plete taxonomic information. The evaluation of PGMM in a microbial community used two distinct datasets: (1) synthetic microbial

abundance data with different community sizes and (2) metagenomics and metabolomics data collected from healthy individuals

and CRC patients. Both analyses revealed that hybrid community models, which incorporate both GSMMs and PGMMs, offer

predictions comparable to GSMM communities, surpassing the performance of PGMM or PanModel communities. As expected,

PGMM communities outperformed PanModel communities in synthetic microbiome dataset. The predictability of hybrid models was

particularly efficient with larger community sizes, demonstrating a better qualitative metabolic flux prediction in both 10-member

and 50-member community models. The enhanced predictability observed can be attributed to the incorporation of species-level meta-

bolic information alongside the genus-level data while characterizing a community. This approach might provide a more nuanced rep-

resentation of metabolism within a community. Notably, previous studies that often-simplified 16S rRNA taxonomic information to the

genus level for metabolic analysis can use hybrid model communities as a promising alternative without compromising data richness.

This strategy is especially pertinent since 16S rRNA sequencing provides a combination of species and genus information. In addition,

PGMMs can be tailored to incorporate prior probabilities if the information is available for a better accurate representation of a genus

under a specific context. For example, suppose the adult gut microbiota is known to comprise 50% Bacteroides fragilis, 30% Bacter-

oides vulgatus, and 20% of the remaining species within Bacteroides genus. In that case, these prior probabilities can be applied to

create a more precise model of the Bacteroides in the gut microbiota. Despite the variations in metabolic predictions, the adaptable

PGMM and hybrid GSMM-PGMM communities demonstrate their significance in studying the metabolic abilities of microbial commu-

nities reconstructed from ambiguous amplicon sequencing data.

In summary, we have developed a unique framework, ‘‘Panera,’’ which can significantly reduce uncertainties in metabolic profiling of

personalized microbial communities using ambiguous relative abundance data obtained from 16S rRNA sequencing analysis. The unique,

flexible nature of the PGMM facilitates the examination ofmetabolic profiles at varying species compositions within a genus. This adaptability

empowers the exploration of the metabolic landscape of genera and becomes instrumental in investigating the shared functionalities be-

tween genera and modulatory potential of genera within microbial communities. Furthermore, our study demonstrates that the hybrid com-

munity model, combining PGMMs and GSMMs, is a viable and efficient approach for capturing the capabilities of a microbial community

without any information loss, even when encountered with uncertain taxonomic information.
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Limitations of the study

A limitation in constructing PGMMs from GSMMs lies in the quality of the PGMM, which is contingent upon the quality of source models.

Additionally, these GSMMs should have a consistent standard annotation to ensure that the combined reactions function seamlessly as a

proper metabolic model. This limitation constrains using the ‘‘Panera’’ algorithm to models obtained from a single source with uniform anno-

tation. Nevertheless, the current availability of 7,302 curated strain-specific metabolic reconstructions, comprising 504 genera in AGORA2,34

presents a substantial resource for PGMM reconstruction. Since there is widespread availability of publicly accessible 16S rRNA sequencing

datasets, the ‘‘Panera’’ algorithm is designed to focus on the microbiome characterized using amplicon sequencing. This helps to use the

prior studies to dive deeper to unravel the potential links between metabolic dependencies and disease conditions. In addition, the existing

database is designed to cater only for the models from the Virtual Metabolic Human (VMH) database, and the reaction and metabolite data-

base has to be generated before employing GSMMs from different sources.
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22. Scherer, N., Fässler, D., Borisov, O., Cheng,
Y., Schlosser, P., Wuttke, M., Patil, S.,
Meiselbach, H., Telkämper, F., Berger, U.,
et al. (2023). Coupling of metabolomics and
exome sequencing reveals graded effects of
rare damaging heterozygous variants on
gene function and resulting traits and
diseases. Preprint at medRxiv 18, 62. https://
doi.org/10.1101/2023.10.17.23297094.

23. Basile, A., Heinken, A., Hertel, J., Smarr, L., Li,
W., Treu, L., Valle, G., Campanaro, S., and
Thiele, I. (2023). Longitudinal flux balance
analyses of a patient with episodic colonic
inflammation reveals microbiome metabolic
dynamics. Gut Microb. 15, 2226921. https://
doi.org/10.1080/19490976.2023.2226921.

24. Greenhalgh, K., Ramiro-Garcia, J., Heinken,
A., Ullmann, P., Bintener, T., Pacheco, M.P.,
Baginska, J., Shah, P., Frachet, A., Halder, R.,
et al. (2019). Integrated In Vitro and In Silico
Modeling Delineates the Molecular Effects of
a Synbiotic Regimen on Colorectal-Cancer-
Derived Cells. Cell Rep. 27, 1621–1632.e9.
https://doi.org/10.1016/j.celrep.2019.04.001.
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STAR+METHODS

KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Metagenomics and Metabolomics of

healthy and CRC patients

Yachida et al.60 Table with metagenomic data; Raw sequencing

data: GenBank: DRA006684; GenBank: DRA008156

Repository of GSMMs – AGORA 1.03 Magnúsdóttir et al.35 https://www.vmh.life/files/reconstructions/AGORA/

1.03/AGORA-1.03-With-Mucins.zip

Software and Algorithms

CobraToolbox v3.0 Heirendt et al.61 https://github.com/opencobra/cobratoolbox

MATLAB R2022b The MathWorks Inc. https://www.mathworks.com

R version 4.0.1 R Foundation for Statistical Computing https://www.R-project.org/

Microbiome Modeling Toolbox V2.0 Baldini et al.36 https://github.com/opencobra/cobratoolbox/tree/master/

src/analysis/multiSpecies/microbiomeModelingToolbox/

Distributed FBA – Julia v1.6.8 Heirendt et al.62 https://github.com/opencobra/COBRA.jl

Panera This study https://github.com/RamanLab/Panera/
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Karthik Raman

(kraman@iitm.ac.in).
Materials availability

This study did not generate new unique reagents.
Data and code availability

� This paper analyzes existing, publicly available data. The links for the datasets are listed in the key resources table.
� All original code has been deposited at GitHub and is publicly available as of the date of publication: https://github.com/RamanLab/

Panera/
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAIL

The presented analysis uses publicly available processed fecal metagenomic data collected from healthy individuals and CRC patients. The

study does not generate new information for the existing data or involve the collection of new human samples. Instead, the investigation fo-

cuses on the re-analysis and interpretation of existing publicly accessible datasets.
METHOD DETAILS

To mitigate the ambiguity in taxonomic resolution stemming from 16S sequencing in metabolic modeling and bridge the gap in creating a

species-aware PGMM (PGMM), the ‘Panera’method is proposed. Figure 1 visually summarizes the PGMM reconstruction process. The figure

also highlights the key distinctions between PGMMs and alternative models, along with their respective applications in microbial community

modeling. The algorithm generates a PGMM from the existing strain/species-specific GSMMs in the AGORAdatabase. AGORA (Assembly of

Gut Organisms through Reconstruction and Analysis) is a database of semi-automatically curated genome-scalemetabolic reconstructions of

human gut microbes. AGORA-1.03 includes 818 metabolic reconstructions representing 1470 KEGG orthology identifiers (KO IDs), 227

genera and 14 different phyla. ModelSEED and KBase-based draft reconstructions of microorganisms from the annotated reference genome

are gap-filled to ensure the reaction’s directionalities, mass, and balance charge. The gap-filled draft reconstructions are further refined with

publications and comparative genomic analyses.
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Formulation

Reconstruction of PGMM from species-specific GSMMs of a selected genus can be performed using the ‘Panera’ algorithm. The reconstruc-

tion pipeline employs three steps to produce a flexible PGMM: (i) Building a unified model from the reactions in all the species of a genus, (ii)

Formulating biomass to represent all the species in a genus model, and (iii) Adding fields to accommodate the variation in species compo-

sition. The steps included in the PGMM reconstruction are illustrated in Figure S4 and detailed in this section.

Building a unified model from all the species genome-scale metabolic model of a genus

(1) A database of all metabolites and reactions in VMH models63 is retrieved from the Demeter pipeline.64 A separate database for the

biomass reactions and metabolites of the species models is generated for the reconstruction (Table S1: Information of the species

biomass reactions used in the model reconstruction).

(2) Reactions from the selected species GSMMmodels of a specific genus are extracted, and unique reactions (set of all the reactions) are

identified to build a model.

(3) Unique reactions, except species biomass reactions, are integrated into a model using rBioNet. The fields such as rxnNames (reaction

names), grRules (gene reaction association), compNames (Compartment where the reaction takes place - cytosol or Extracellular) and

subsystems are added using a reaction and metabolite database.
Formulating biomass to represent the species in a genus model

(4) The biomass reaction for the pan-genera model is formulated as the linear combination of biomass reactions of individual species in

the genus:

vpanBiomass =
Xn

i = 1

vi
bio � si

where vpanBiomass is the biomass flux of the pan-genera model (Objective function), n is the number of species in the genus, vibio is the biomass

flux of the ith species and si is the coefficient for ith species, which implies the relative abundance or proportion of the microbial species in a

community. The si values can be adjusted to study the influence of a particular species in a genus. The reactions and metabolites associated

with the ‘panBiomass’ and species biomass reactions are incorporated using biomass reaction andmetabolite database. The default values of

coefficients of species biomass (si ) will be set to
1
n. The default setting establishes an equal contribution from each species, and the coefficients

can be adjusted to explore the distinct impact of a species.

(5) Duplicate reactions ormetabolites and reactions/metabolites involved in futile cycles are removed from the PGMM if the removal does

not impact the growth of the model.

(6) The refined pan-genus model is examined for growth by optimizing the model with biomass as an objective while constraining to a

provided media condition.
Adding fields to accommodate the species composition variation

7. After PGMM refinement, a ‘‘reaction-species matrix’’, a binary matrix representing whether the reaction is present (1) or absent (0) for an

individual species, is combined as a field (‘rxnPresenceMat’) with the model.

(8) An ‘spList‘ field is incorporated into themodel. Both ‘rxn-species matrix’ and ‘spList’ along with normalized ‘species probability vector’

will help filter the reactions to include in PGMM.

PGMMcan be customized for a user-defined species composition using two key variables: (i) ‘species probability vector’, a vector of length

n, a user-defined vector to reflect the estimated abundances of species in a community; and (ii) ‘rxn-species matrix’, a predefined matrix that

encodes the reaction presence within a species. The product of these two variables determines whether the reaction is active in the model.

A non-zero product indicates that the corresponding reaction is present in at least one species with a non-zero abundance, allowing it to be

active within the model. Furthermore, the species probability vector plays a crucial role in incorporating compositional constraints into the

biomass formulation. This formulation, in turn, influences the flux of internal and exchange reactions within the model.

Analysis of the reconstructed pan-genera metabolic model in analyzing species metabolic abilities

The reconstructed PGMM, which represents the universe of reactions and metabolites present in all the species within a genus, was used to

perform in silico simulations using CobraToolbox.61 The PGMM was assessed through the prediction accuracy of the growth of individual

species and the collective growth of all species within PGMM. The workflow is illustrated in Figure S5.
iScience 27, 110358, July 19, 2024 13
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Simulation of metabolic capabilities of an individual species

We conducted initial simulations to explore the effect of including reactions from other species in PGMMwhile studying themetabolism of an

individual species. Figure S5 illustrates the workflow employed for PGMMvalidation. Individual species models were derived from the PGMM

using a species probability vector. To adapt the PGMM to specific species compositions, we adjusted the model based on the species prob-

ability/abundance. For instance, in the case of a PGMM representing a genus with five species, we simulated with a species probability vector

indicating the presence of a single species at a time (Simulation 1: [1,0,0,0,0]; Simulation 2: [0,1,0,0,0] and so on).

A total of 150 species were selected for comparison of the metabolic abilities of customized PGMMs with GSMMs. Reactions with a re-

action presence probability (product of species probability and reaction-species matrix) of more than zero were retained, while zero proba-

bility reactions were constrained to zero on their lower and upper bounds. The panBiomass reaction coefficients were adjusted to represent a

species model, and the model was then subjected to FVA.65 The maximum flux of FVA was used as an indicator for the metabolic production

capability of the model. Additionally, we analyzed the growth and maximummetabolite production potential of the species-specific GSMM.

To evaluate the ability of PGMM to preserve the functionalities of a single species, we compared themetabolite production abilities between

species-specific GSMM and modified PGMM under a given media condition. Jaccard distance between the maximum FVA values from

GSMM and PGMM was evaluated to represent the qualitative variation by capturing the differences in the production of metabolites in

the model, i.e., distinction in the metabolites with non-zero flux values. Meanwhile, the Euclidean distance between the maximum FVA of

PGMM and GSMM was calculated to explain the quantitative variation, i.e., the magnitude of variation in the production flux value of the

metabolites in the model. This distancemetric provides insight into howmuch number of producedmetabolites differs between themodels.

To ensure comparability across differentmodels, we normalized the Euclidean distance by dividing it by themaximum value observed among

all the models. In addition, to study the fraction of reactions exhibiting varying fluxes, we defined the stringent threshold of 10% flux variation

between the comparable models.

Working of pan-genus metabolic model

The top-down approach of reconstructing PGMM aims to capture the genus-wide functionalities using species-level metabolic information.

We assigned equal species probability as coefficients for biomass reactions in PGMM. For example, if a genus contains ten species, the co-

efficients for all species biomass reactants in the panBiomass reaction were set to 0.1, reflecting an equal contribution from each species. We

generated a reference genus model with an equal abundance of species within a genus using GSMM andMMT v1. For comparative analysis,

we then generated customized PGMMs and GSMM-based communities for 20 different genera retrieved from the AGORA database. FVA

was performed on both the PGMMs and the genus models derived from GSMMs. By comparing the presence and magnitude of metabolite

production across these models, we assessed the ability of PGMMs to represent the conserved and unique metabolic traits of a genus.

Application of pan-genus metabolic models in interpreting the metabolic landscape of a genus

Scouring the metabolic functional terrain of a genus could illustrate and cast light on its metabolic diversity trajectories and niche develop-

ment.53 We analyzed the PGMMwith varying species composition of a genus to explore their metabolic landscape (Figure S6A). The varying

species combination representing the changing genera configurations was implied on the model by applying a species probability vector,

which was generated by normalizing the sum of randomly generated values for each species within the genus to 1. The model was tailored

to the given species composition by constraining the reaction bounds and species biomass coefficients in panBiomass.

Tailored PGMMs were subjected to FVA under different dietary conditions - European (EU) diet and Mediterranean diet (The constraints

for the diet conditions were retrieved from VMH) and maximum flux was utilized from FVA to evaluate metrics to define the flux bandwidth of

the metabolites. Two different metrics, (i) average maximum flux, which represents the mean of maximum flux of the metabolite production/

consumption across different species composition and (ii) flux range, which explains the difference between the highest maximum flux to the

lowest maximum flux observed for a metabolite across varying compositions were used to categorize the reactions into.

(1) No production - if both the averaged maximum flux and flux range are zero;

(2) Low varying reactions - if the averaged flux is non-zero and the flux range falls between 5% and 25%;

(3) Highly varying - if the flux range is greater than 50% and.

(4) Tightly regulated - if the flux range is within 5%.
Utility of pan-genus metabolic models in microbial community metabolic modeling

Metabolic modeling of metagenomics data-derived microbial communities presents a valuable tool for probing the hidden complexities of

microbial associations and their metabolic interactions.66 Investigating the metabolic exchanges in a community unveils the interplay within

the microbial species in a community and between the microbes and environment/host. In the current study, we substantiated the utility of

PGMM in microbial community modeling by examining the metabolism of communities using synthetic and publicly available metagenome

datasets. Given that PGMMs are species-aware, the unique functionality of those in creating communities with hybrid models are also

analyzed. The workflow to infer how PGMMs could improve the insights about community interactions over GSMMs in synthetic and real

metagenomic datasets is illustrated in Figure S6B.
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Application of pan-genus metabolic model in analyzing metabolic capabilities of synthetic microbiota

Synthetic abundance data generation. To evaluate the applicability and efficiency of PGMMs in characterizing microbiota, we generated

synthetic abundance data for various community sizes. We generated synthetic abundance data for 34 samples of a 10-member community

and 15 samples of a 50-member community by randomly selecting ‘k’ strains from the pool of 818 AGORA metabolic reconstructions and

assigning a random value to each strain. We performed data normalization, ensuring that the total abundances summed to 1. The normalized

data were then grouped at the genus level to construct a genus-level abundance matrix. Additionally, we explored hybrid models that use

taxa information resolved at both species and genus levels. Specifically, we conducted simulations using abundance data where 50% of the

taxa were resolved to the species level, while the remaining were resolved only to the genus level (represented in Figure S6B).

Microbiota models from synthetic abundance data. The generated abundance data were utilized to construct the personalized micro-

biota models. MMT creates a template community model comprising all the species and/or genera in the dataset. Personalized models were

then generated by adjusting species or genus biomass coefficients in the community biomass equation. We built four different community

model types using (i) GSMM, (ii) PGMMderived from the present work, (iii) PanModel created using createPanModel of theMMT (PanModel),

and (iv) hybrid models, where both GSMM and PGMM were incorporated. These models were compared against the widely used GSMM-

derived communities.

All the community models were constrained to the European Diet, as reported in VMH.63 We performed FVA on the secretion and uptake

fluxes of exchangemetabolites within these diet-constrained models. We conducted the computational analysis with a high-level, multi-pro-

cess and high-performance method, ‘distributed FBA’ in Julia v1.6.862,67 combined with CPLEX solver v12.8 to accommodate the larger num-

ber of microbial members in a community. Jaccard and Euclidean distances were used to assess differences in metabolites with non-zero flux

and the variation in flux value magnitude between the community models, respectively. This evaluation aimed to elucidate the ability of

PGMMs to capture species-model metabolic inference within themicrobial community and to determine the advantages of our metagenom-

ics-informed PGMM over the lumped PanModel.

Comparison of metabolic prediction of genome-scale metabolic model and pan-genus metabolic model with metabolomics
data. We investigated the potential of PGMMs in characterizing personalized gut microbiomemetabolic communities from colorectal can-

cer (CRC) patients. We leveraged study60 that provided both metabolomic and metagenomic data from gut microbiome samples of healthy

individuals andCRCpatients. The personalized communities were built using differentmodel sources (GSMM, PGMM, PanModels and hybrid

(GSMMand PGMM)) and the FVA of those communities were carried out for the comparison. Due to computational demands associated with

constructing personalizedmicrobial communities for all samples using four different model sources (�4N), only a subset of samples was used

for the analysis. Of the 406 subjects, we selected two different sets of 5%of samples (around 20) encompassing both healthy andCRC samples

for a comparative analysis of microbial community functionality using various community modeling approaches in conjunction with metab-

olomics data (Detailed metadata is provided in Table S7D). We preprocessed the normalized abundance values of microbial species in the

selected samples by removing rare taxa, defined as taxa with an abundance lower than 10�3. Additionally, wemimicked amplicon sequencing

data by converting approximately 50% of the species information to the genus level, enriching the abundance table with both species and

genus-level information.

We constructed personalized community models for each sample with different source models (GSMM, PGMM from our algorithm,

PanModel from MMT and hybrid approach) based on the processed abundance table. Subsequently, we comprehensively analyzed the

FVA of exchange reactions in these community models using ’distributed FBA’ in Julia to assess their metabolite production potential. To

gauge the accuracy of our predictions, we compared the net flux of exchangemetabolites (Sum of secreted and uptake fluxes) from the simu-

lated microbial communities with the actual metabolomic data. While the reference study reported the concentration of 450 metabolites to

characterize the metabolomics of a community, the comparison focused on a more targeted set of approximately 290 metabolites. These

metabolites represent the unique set of metabolites produced across all analyzed communities and overlap with the metabolites in the me-

tabolomics study. We employed Jaccard and Euclidean distance metrics to evaluate the accuracy of our predictions and identify potential

errors in predictingmetabolic capabilities. All the model communities were compared against the standard GSMM-basedmicrobial commu-

nity model predictions for estimating quantitative variation.
QUANTIFICATION AND STATISTICAL ANALYSIS

All the community model simulations were carried out usingMMT in CobraToolbox v3.0 andMATLAB R2022b. The paired t-test is employed

to calculate the significance of metabolic prediction variation between the communities fromdifferentmodel sources (PGMM, PanModel and

hybrid) with respect to GSMM-based communities using ‘ggpubr’ package. The level of significance is represented as follows: ns - not sig-

nificant; * - p % 0.05; ** - p % 0.01; *** - p % 0.001 and **** - p % 0.0001. The figures were generated using BioRender, InkScape and the

ggplot2 package in R (version 4.0.1). All the data are represented as single data points in the figures.
iScience 27, 110358, July 19, 2024 15


	Panera: An innovative framework for surmounting uncertainty in microbial community modeling using pan-genera metabolic models
	Introduction
	Results
	PGMM can be a representative of both genus and species
	Metabolic landscape analysis reveals a fascinating context-specific metabolic similarity between genera
	PGMM captures better metabolic information than the lumped genus model in community modeling
	Hybrid models in community modeling improve the prediction of metabolic potential

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Declaration of generative AI and AI-assisted technologies
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and study participant detail
	Method details
	Formulation
	Building a unified model from all the species genome-scale metabolic model of a genus
	Formulating biomass to represent the species in a genus model
	Adding fields to accommodate the species composition variation

	Analysis of the reconstructed pan-genera metabolic model in analyzing species metabolic abilities
	Simulation of metabolic capabilities of an individual species
	Working of pan-genus metabolic model

	Application of pan-genus metabolic models in interpreting the metabolic landscape of a genus
	Utility of pan-genus metabolic models in microbial community metabolic modeling
	Application of pan-genus metabolic model in analyzing metabolic capabilities of synthetic microbiota
	Synthetic abundance data generation
	Microbiota models from synthetic abundance data
	Comparison of metabolic prediction of genome-scale metabolic model and pan-genus metabolic model with metabolomics data



	Quantification and statistical analysis



