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Genetic interactions are fundamental to the architecture of complex traits, yet
the molecular mechanisms by which variant combinations influence cellular
pathways remain poorly understood. Here, we answer the question of whether
interactions between genetic variants can activate unique pathways and if such
pathways can be targeted to modulate phenotypic outcomes. The model
organism Saccharomyces cerevisiae was used to dissect how two causal SNPs,

MKTI®*° and TAO3*’¢, interact to modulate metabolic and phenotypic out-
comes during sporulation. By integrating time-resolved transcriptomics,
absolute proteomics, and targeted metabolomics in isogenic allele replace-
ment yeast strains, we show that the combined presence of these SNPs
uniquely activates the arginine biosynthesis pathway and suppresses ribosome
biogenesis, reflecting a metabolic trade-off that enhances sporulation effi-
ciency. Functional validation demonstrates that the arginine pathway is
essential for mitochondrial activity and efficient sporulation only in the
double-SNP background. Our findings show how genetic variant interactions
can rewire core metabolic networks, providing a mechanistic framework for
understanding polygenic trait regulation and the emergence of additive
effects in complex traits.

Complex traits arise from intricate interactions between causal genetic
loci, the broader genetic background, and environmental influences'?.
These loci can influence traits through additive effects or non-additive
interactions, such as dominance and epistasis. Several studies have
focused on mapping genetic interactions in model organisms like
yeast”® and human diseases’ ™. A global genetic interaction network
for yeast employing reverse genetic screens on essential and non-
essential genes revealed numerous genetic interactions, with many
interacting genes belonging to the same functional pathways, forming
highly organized and structured genetic networks®. Similarly, CRISPR
knockout screens have identified genes essential for cell viability in
cancer and pluripotent stem cells in human cell lines". While most
studies have focused on gene deletions or knockouts to identify
genetic networks, a few have used biparental yeast populations to find

genetic networks among gene variants™”. These studies identified
variant-specific gene networks that had environment-sensitive genetic
interactions, and incorporating such genetic interactions into pre-
dictive models of phenotypic variation significantly improved their
accuracy.

While the studies mentioned above highlight the prevalence of
genetic interactions in shaping complex traits, a crucial gap remains in
understanding how these interactions function at the molecular level.
Specifically, how do genetic variants interact to modulate molecular
pathways and contribute to phenotypic variation? Addressing this
question is essential for identifying novel functional targets that can be
leveraged to modulate complex traits, particularly in diseases influ-
enced by multiple interacting variants'®". In this study, we sought to
test the hypothesis: do interacting SNPs function independently
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through their respective functional networks, or do they activate latent
molecular pathways when combined (Fig. 1A)?

There are several challenges in studying genetic interactions
between SNPs, particularly in complex traits. First, genetic background
can confound the effect of SNP interactions®'*", Second, while gene
expression has been widely studied, its correlation with protein levels
is often limited’**%. Third, biological processes and the intermediate
phenotypes underpinning these processes are dynamic®.

To overcome these challenges, we employed S. cerevisiae, a yeast
model system, where one can use isogenic allele replacement yeast
strains to study various complex traits and identify the phenotypic and
molecular effects of genetic variants at the SNP level***, Gene
expression changes alone may not fully explain phenotypic outcomes,
as protein expression and post-translational modifications frequently
play critical roles. A systems genetics approach of integrating multi-
omics data, such as transcriptomics, proteomics, and metabolomics,
offers a framework for overcoming the challenge of understanding the
complex interplay among these intermediate phenotypes and their
impact on biological processes?”. In recent studies, the integration of
multi-omics information has guided targeted therapies in discovering
biomarkers for cancers and other complex diseases***. Furthermore,
studies in model organisms** and humans*? have demonstrated that
gene and protein expression variations are highly context-specific,
varying by developmental stage. Despite significant advances, most
studies investigating the molecular basis of genetic interactions in
yeast have focused on gene expression at a single time point, including
our previous study****. Therefore, understanding the temporal phase
during which causal genetic variants exert their molecular effects is
critical for understanding genotype-phenotype relationships® %4,

Here, we designed a study to systematically investigate the
genetic interaction between two key quantitative trait loci (QTLs) in
yeast sporulation, a developmental process. Using isogenic yeast
strains carrying distinct SNPs, individually and in combination, we
integrated multi-omics data to capture gene and protein expression
and key metabolite level changes at multiple time points during
sporulation (Fig. 1B). This allowed us to compare the effects of indi-
vidual SNPs with their combined effects, revealing how SNP interac-
tions modulate molecular pathways over time. Our results showed that
the combination of SNPs activated a latent metabolic pathway, dif-
ferent from those activated by each SNP independently. Our findings
have broader implications for understanding polygenic traits and
diseases, where multiple SNPs contribute additively to phenotypic
variation. We provide critical insights into the regulatory mechanisms
underlying complex traits by dissecting how causal SNPs interact at the
molecular level. This knowledge can inform the development of
therapeutic strategies for diseases driven by polygenic interactions,
offering new avenues for targeted interventions.

Results

Role of MKTI¥° and TA03*#7 SNPs in sporulation efficiency
variation

Sporulation is a developmentally regulated metabolic process in yeast.
In response to nutrient limitations, such as nitrogen starvation and the
availability of a non-fermentable carbon source like acetate, diploid
yeast cells undergo meiosis, ultimately producing four haploid
spores*®. Sporulation efficiency, defined as the rate of spore formation,
is a quantitative trait in yeast and is well-studied®?******%, A previous
study by Deutschbauer and Davis® identified MKTI®® and TAO3*7¢
SNPs from the high sporulating strain, SK1, as causal for increasing
sporulation efficiency of the low sporulating strain, S288c. From the
comprehensive yeast genomics dataset of 3034 strains*’, we found
that the MKTI%° SNP has an allele frequency of 0.9955, indicating that
itis a common variant in S. cerevisiae. In contrast, the TAO3*”° SNP has
an allele frequency of 4.952 x10™, highlighting that it is an ultra-rare

allele in the population. As these are independent SNPs, we expect
around 0.0493% of the population to carry both alleles in combination.

To study the phenotypic effects of these two SNPs, we used a
panel of isogenic strains in the S288c background generated by
swapping specific S288c¢ nucleotides with their SK1 allele counterparts,
resulting in four diploid strains: wildtype S288c, hereafter referred to
as SS strain, MM strain with the MKTI®*® SNP, TT strain with the
TAO3*77¢ SNP, and MMTT strain harboring both MKTI® and TAO3*7¢
SNPs in combination (Fig. 2A). Under the conditions described”, we
first measured the sporulation efficiencies of these allele replacement
strains to assess the effects of SNPs on sporulation efficiency variation.
The MM (39.41+2.42%), TT (37.42 + 1.81%), MMTT (75.42 + 3.68%), and
MmTt (71.29 + 0.52%) allele replacement strains, along with the wild-
type SK1 strain (90.13 + 1.78%), exhibited higher sporulation efficiency
after 48 h in sporulation medium with acetate as sole carbon source
compared to the S288c strain (SS: 7.00 +1.54%, Fig. 2B), consistent
with previous reports®*%*, We confirmed that the sporulation effi-
ciency phenotype of the MMTT was additive, representing the sum of
individual sporulation efficiencies of the MM and TT strains. Further-
more, we observed that the MKTI** and TAO3*’* alleles were domi-
nant over the S288c alleles MKTI* and TAO3*’° (Fig. 2B).

Sporulation in yeast is induced when strains are grown in an
acetate medium, the sole carbon source. We hypothesized that
increased sporulation efficiency of MM, TT, and MMTT strains could
be due to altered acetate uptake, as previous studies have shown
activation of key metabolic pathways like nitrogen metabolism, TCA
cycle, and gluconeogenesis associated with the SNPs involved***.. To
test this, we measured extracellular acetate levels over time. MMTT
strain showed a sharp decline in acetate compared to SS, MM, and TT
strains, which were similar at 2 h but diverged later (Fig. 2C). Further,
we observed that the MM and TT strains outperformed SS in utiliza-
tion, particularly after 8h (Fig. 2C). Intracellular acetate analysis
revealed rapid consumption in MMTT within 8 h, followed by gradual
accumulation up to 24 h (Fig. 2D), suggesting activation of down-
stream metabolism during the early stages of sporulation. The TT
strain showed a biphasic usage with peaks at 2h 30 min and 8-12 h.
The SS and MM strains had similar trends with an early dip, followed by
an accumulation till 12 h and then a decline.

These observations suggested that the enhanced sporulation
efficiency observed in the MMTT strain could be driven by more effi-
cient acetate uptake and utilization during the early time points
(0-8h). The distinct temporal patterns of intracellular and extra-
cellular acetate across strains suggest that the SNP-associated changes
can confer metabolic plasticity across strains. This plasticity is likely
orchestrated by coordinated changes at the transcriptomic, pro-
teomic, and intracellular metabolite levels, enabling differential spor-
ulation efficiency across strains.

Genetic interaction reshuffles amino acid metabolism and
ribosomal pathways

In previous studies from our lab, we investigated the functional and
molecular effects of the MKTI®*° and TAO3*”7° SNPs using global tem-
poral microarray analyses, with samples collected throughout spor-
ulation up to 8h 30 min, with denser sampling during the early
stages*>*.. The choice of this logarithmic time series instead of a linear
time series was to capture the rapid changes occurring in early response
genes that have causal effects on the phenotype*®>**°. These studies
revealed that MKTI and TAO3 play critical roles early in sporulation. The
MKTI%° allele enhanced sporulation efficiency by activating genes such
as RTGI1/3, which are involved in mitochondrial retrograde signaling,
and DALS2, associated with nitrogen starvation'’. In contrast, the
TAO3*7¢ allele improved sporulation efficiency through the activation
of genes like ERTI, linked to the TCA cycle, and PIP2, involved in glu-
coneogenesis, compared to when these SNPs were absent*’.
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Fig. 2 | Additive effect of MKTT**° and TAO3**’° on sporulation efficiency var-
iation. A Schematic representation of the steps involved in generating the MMTT
strain, highlighting the introduction of the MKTI®**® and TAO3*7 alleles.

B Sporulation efficiency of the SS, MM, TT, MMTT, MmTt (heterozygous), and
SK1 strains was measured after 48 h in the sporulation medium. The bar graph
represents the percentage of sporulating cells (dyads, triads, and tetrads),
demonstrating the additive effect of the MKTI and TAO3 alleles. Error bars repre-
sent mean + SD from at least three biological replicates. Individual data points are
shown as dots. C Mean values of extracellular acetate levels in the sporulation
medium of the SS, MM, TT, and MMTT strains at different time points during

sporulation (N =2). D Intracellular acetate concentrations were measured across
four yeast strains (SS, MM, TT, MMTT) at five time points (O h, 2 h 30 min, 5h
40 min, 12 h, and 24 h) in sporulation medium. Error bars represent mean + SD from
three biological replicates. Individual data points are shown as dots. Statistical
significance was assessed using one-way ANOVA, followed by Tukey’s HSD post-hoc
test for each time point independently. Significance levels are indicated as follows:
4 < 0.0001, **p < 0.001, *p < 0.01, *p < 0.05. Exact adjusted p-values are pro-
vided in the Source data file. Source data are provided as a Source Data file for
(B-D). Created in BioRender. Sinha, H. (2025) https://BioRender.com/07eizi3.

To characterize the effect of MKTI**® and TAO3*7° SNPs in the
combination on the global gene expression variation, we performed
RNAseq for SS strain and MMTT strain throughout sporulation with
denser sampling during the early phase at 0 h, 30 min, 45min, 1h
10 min, 1h 40 min, 2h 30 min, 3h 50 min, 5h 40 min till 8 h 30 min
(Fig. 3A). These time points were identical to the expression analysis
study done for single SNP strains, MM and TT***, which allowed
us to make comparisons of differentially expressed genes between

individual SNPs and their combinations to identify causal mechanisms
activated in response to genetic interactions.

Hierarchical clustering and Principal component analysis (PCA) of
the gene expression data revealed a clear distinction between the SS
and MMTT strains (Supplementary Fig. 1A, B). The analysis of differ-
entially expressed genes at each time point against the initial
time point between the SS and MMTT strains revealed substantial
differences in gene expression patterns between the two strains.
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The differentially expressed genes at each time point for SS and MMTT
strains are provided in Supplementary Data 1. A notable increase in
DEGs was observed in the MMTT strain, particularly during the early
phase (2 h 30 min), with 132 genes upregulated and 32 downregulated.
This trend continued in the later phase (8 h 30 min), where 265 genes
were upregulated, and 61 were downregulated (Fig. 3B). GO enrich-
ment analysis on the upregulated and downregulated genes found that
in the case of the SS strain, there was a consistent upregulation of
pathways like protein folding, response to heat (stress response), and
biosynthesis of amino acids across all time points (Fig. 3C) In contrast,
the MMTT strain exhibited distinct pathway activations between early
time points (30 min, 45 min, 1 h 10 min, 1 h 40 min) and middle to late
time points (2h 30 min, 3h 50 min, 5h 40 min, 8 h 30 min). Specifi-
cally, significant upregulation was observed in genes associated with
the amino acid biosynthetic process, dicarboxylic acid metabolic
process, and histidine biosynthetic process as early as 30 min into
sporulation (Fig. 3D). These pathways remained upregulated during
the early phase but not in the middle and late phases. Additionally, the
enrichment of pathways related to meiotic nuclear division and the
meiotic cell cycle began at 1h 40 min in the MMTT strain, which was
not observed in the S strain. Furthermore, genes involved in poly-
saccharide metabolic processes and ascospore-type pro-spore mem-
brane formation were uniquely upregulated at 8 h 30 min in the MMTT
strain, highlighting the onset of spore wall formation (Fig. 3D).

We also compared differential gene expression at each time point
between the SS and MMTT strains. As expected, we identified a large
number of differentially expressed genes in the MMTT strain, parti-
cularly at 2h 30 min and 8 h 30 min (Supplementary Fig. 2, Supple-
mentary Data 1). During the early stages of MMTT strain, upregulated
genes were significantly enriched in pathways related to amino acid
biosynthesis, including histidine metabolism and L-arginine biosyn-
thetic processes. In the later stages, we observed enrichment of genes
involved in the meiotic cell cycle and meiosis only in the MMTT strain
(Supplementary Fig. 3).

In addition, we identified a set of genes that were differentially
expressed as a function of the MKTI®** and TAO3*’° genotypes in
combination over time. The DESeq2 LRT method™ was applied with a
full model that included genotype + time + genotype x time and a
reduced model that included only genotype + time. This analysis
identified 1080 differentially expressed genes with an adjusted p-value
of 0.001 (Supplementary Data 2). These genes were primarily enriched
in pathways related to the meiotic cell cycle, cytoplasmic ribosomal
proteins, amino acid metabolic processes, and ribosome biogenesis
(Supplementary Fig. 4A).

To understand the temporal trajectories that vary between the SS
and MMTT strains, we performed clustering using the Dirichlet Gaus-
sian process mixture model (DPGP)*. Based on recent studies that
have established the effectiveness of the DPGP model in identifying co-
regulated genes within transcriptomic datasets, we applied DPGP
clustering independently to the expression values of these 1080 dif-
ferentially expressed transcripts for both the SS and MMTT strains. In
brief, DPGP clusters the data using the Dirichlet process while mod-
eling the temporal dependencies with Gaussian processes for non-
uniform time points. This analysis resulted in 17 clusters for the MMTT
and 18 for the SS strain. The genes in each cluster for the two strains are
detailed in Supplementary Data 3. The clusters were then analyzed for
enrichment to specific biological processes using Metascape (Sup-
plementary Fig. 4B, C), and the trajectories of each cluster are shown in
Supplementary Fig. 5A, B. Given the importance of early response
genes in determining sporulation efficiency variation, the GO enrich-
ment for the early cluster genes was specifically examined. In the SS
strain, clusters 5 and 9 (Supplementary Figs. 4B, 5A), which showed
early expression trajectories, were enriched for ribosome-related
pathways, with 49 and 121 genes, respectively (Fig. 3E). In the MMTT
strain, cluster 5, enriched for ribosome-related pathways

(Supplementary Fig. 4C), exhibited the downregulation of genes dur-
ing the early phase (Fig. 3E).

We also observed that cluster 1 in the MMTT strain, enriched for
amino acid metabolism genes, showed an early expression trend
(Fig. 3E). In comparison, these pathways in the SS strain displayed an
initial downregulation followed by delayed upregulation (Fig. 3E). This
pattern suggested a trade-off in the MMTT strain between the amino
acid biosynthetic process and ribosomal pathways. Since ribosome
biogenesis was an energy-intensive process, the MMTT strain
appeared to downregulate ribosome-related genes and upregulate
amino acid metabolism in response to sporulation conditions, possibly
to enhance sporulation efficiency, a strategy not observed in the SS
strain.

We then examined the active genes in the later stages of spor-
ulation. As expected, clusters 2 and 3 in the MMTT strain, which
showed increased and synchronized gene expression in the later
phase, were enriched for meiosis-related pathways, cell cycle regula-
tion, and pro-spore membrane formation (Supplementary Figs. 4C, 6).
This differed from SS, where these genes did not display any specific
temporal gene expression pattern (Supplementary Fig. 6). This finding
demonstrated how the combination of MKTI®*° and TAO3*"* reshuf-
fled the trajectories of amino acid metabolism and ribosomal pathways
to facilitate efficient sporulation in the MMTT strain.

Finally, we aimed to identify genes that exhibit early expression
trends in the MMTT strain but do not show differential expression in
the MM and TT strains. These genes are interesting because their
expression likely results from genetic interactions of MKTI®*¢ and
TAO3*¢ specific to the MMTT strain and could be causal for the
sporulation efficiency variation. Comparison of the differentially
expressed genes identified for the MM and TT strains, as reported in
the original publications*>*, with the 119 genes in cluster 1 of the
MMTT strain revealed 95 genes unique to the MMTT strain, which were
enriched in pathways related to amino acid biosynthesis, including
phenylalanine, tyrosine, and tryptophan biosynthesis, 2-oxocarboxylic
acid metabolism, and arginine biosynthesis (Fig. 3F, G). These findings
underscore a distinct transcriptional response in the MMTT strain
during sporulation to an immediate response to nitrogen starvation,
driven by the genetic interactions between the MKTI®** and TAO3*"¢
SNPs, which enhanced sporulation efficiency.

Limited but function-specific correlation between transcript
and protein levels

Transcript abundance and protein level correlations are poorly
correlated® . In this and previous studies®***, specific functional
categories of gene sets were differentially and temporally regulated
during sporulation. To elucidate if these SNP-specific gene expression
variations had protein level changes and thereby directly affected
phenotypic variation, we performed an absolute quantification of the
yeast proteome in the sporulation medium for the four allele-specific
strains (SS, MM, TT and MMTT). Since most of the SNP-specific gene
expression changes were in early sporulation, we focused on eluci-
dating the early-phase proteome dynamics during sporulation, as dif-
ferential expression patterns observed during this stage indicate
genotype-driven phenotypic changes.

Employing label-free absolute quantitative proteomics using data-
independent acquisition and Total Protein Approach (TPA approach),
we quantified protein concentrations (in fmol ug™) at 2 time points,
once at an initial time point (0 h) and during the early phase of spor-
ulation (2 h 30 min). This approach provided a direct and quantitative
view of proteome composition across conditions and genotypes. The
absolute quantification enabled biologically meaningful comparisons
of protein mass fractions, which were critical for interpreting pro-
teome allocation and cellular resource distribution as described in
previous studies®** (Fig. 4A, B, Supplementary Fig. 7). Pearson corre-
lation of 2996 pairs of transcripts (TPM) and protein abundance values
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BioRender. Sinha, H. (2025) https://BioRender.com/07eizi3.

(fmol ug™) for SS and MMTT strain showed a limited overall correlation
between the datasets (correlation ranging between 0.393 and 0.461)
and protein-mRNA slope represented as a regression line (depicts the
relationship between the abundance of mRNA and the abundance of
proteins) between 0.462 and 0.589 with p-value <2.2e™ (Fig. 4C).
These findings were consistent with previous findings in yeast*>*" and
human CD8" T cells™.

Given this limited correlation, we analyzed gene class-specific
correlations. Genes were grouped based on the GO-slim mapper
terms list, and their mRNA-protein slope and correlation were

calculated. We observed that the ribosomal assembly, carbohydrate
transport, carbohydrate metabolic process, and monocarboxylic
acid metabolic process showed a higher slope and correlation than
other gene classes (Fig. 4D, E). Furthermore, our analysis revealed
that the slope and correlation of gene classes specific for respira-
tion, meiotic cell cycle, amino acid transport, cellular amino
acid metabolic process and sporulation were comparatively higher
for the early phase of sporulation (2h 30 min) in MMTT strain
compared to the O h of SS and MMTT and 2 h 30 min of SS strain
(Fig. 4D, E). These observations highlighted that genes defined
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by the time point display distinct mRNA-protein correlations during
sporulation.

Differential protein levels highly correlate with temporal
transcriptome analyses

The presence of causal variants can influence the protein expression
changes and differentially activate pathways in response to genetic
interactions between variants. To test this hypothesis, we first calcu-
lated the mass fraction of each protein and then conducted pairwise
differential abundance analysis as described previously>® and briefly
described in Methods. Differential protein abundance analysis
revealed significant regulation of proteins across pairwise compar-
isons with the SS strain for respective time points (Supplementary
Data 4, 5). We first verified whether MKT1 and TAO3 genes are differ-
entially regulated at the protein level, given that no differences were
observed at the gene expression level. Interestingly, we found that
MKTI protein levels were nearly undetectable in both the SS and TT
strains, which carry the MKTI®* variant. In contrast, MKTI protein was
expressed in the MM and MMTT strains, both of which carry the
MKT1%%¢ variant. This indicates that the MKTI protein encoded by the
89A variant likely has reduced stability or increased degradation
compared to the 89G variant. For TAO3, we did not observe any sig-
nificant changes in either gene or protein expression across the SS,
MM, TT, and MMTT strains. This suggests that the TAO3*’C variant
may alter protein function rather than affecting expression levels or
protein stability (Supplementary Fig. 8).

By studying the differentially expressed proteins, we found that,
at the O h time point, we identified 123 proteins with significant reg-
ulation (105 up and 18 downregulated) when comparing the MM and
SS strains. Similarly, between the TT and SS strains, 26 proteins were
significantly regulated (20 up and 6 downregulated). Notably, a sub-
stantial number of genes (206) were deregulated when comparing the
MMTT and SS strains, with 188 upregulated and 16 downregulated
genes. Significant protein regulation was also evident during the early
sporulation phase (2h 30 min). In the MM strain, we identified 65
regulated proteins (42 up, 23 down); in the TT strain, 35 proteins (13
up, 22 down); and in the MMTT strain, 98 proteins (86 up, 12 down)
compared to the SS strain (Fig. 5A). The upregulated proteins, both
unique and shared among strains, are given in Table 1.

The gene ontology (GO)-term enrichment analysis revealed acti-
vated pathways or processes shared and unique between each SNP and
their combination (Fig. 5B). Cellular respiration and mitochondrial
translation processes were enriched during O h and 2 h 30 min spor-
ulation (Fig. 5B) among the upregulated proteins in the MM and MMTT
strains. This observation suggested a role for MKTI®*C in enhancing
cellular respiration and mitochondrial activity during the early phases
of sporulation. In contrast, no significant enrichment of gene ontology
terms was observed for the TT strain. Notably, we observed a unique
enrichment of the arginine biosynthetic pathway exclusively for the
MMTT strains at O h and 2h 30 min (Fig. 5B, C). We also observed
mitochondrial genome maintenance, respiratory chain complex 3
assembly, and regulation of mitochondrial gene expression to be
enriched uniquely in the MMTT strain during the initiation of spor-
ulation (Fig. 5B).

The temporal changes in protein abundances were examined by
comparing the O h and 2 h 30 min time points across all four strains
(Supplementary Fig. 9A). The number of differentially expressed pro-
teins at the 2 h 30 min time point, in comparison to the 0 h time point,
showed that 7 proteins were found to be upregulated in all strains at
the 2 h 30 min time point, including Ady2 (required for acetate utili-
zation during sporulation)*, Inol (involved in myo-inositol biosynth-
esis and required for sporulation)®, Cit3 (involved in the tricarboxylic
acid cycle)”, Enal (expressed in response to glucose starvation)®,
Pho89 (involved in phosphate metabolism)*’, Leul (involved in leucine
biosynthesis)®°, Oacl (oxaloacetate carrier)®’, and NcelO3 (necessary

for the formation of bicarbonate, a step required for sporulation that
increases the pH of the sporulation medium®%; Supplementary Fig. 6B,
Supplementary Data 6). Analysis of the downregulated proteins iden-
tified that in the MMTT strain specifically, several ribosomal proteins
(Rtc6, Rpl22a, Rpl14b, Rpl4b, Rpl13a) were downregulated. This com-
plemented our gene expression analysis, indicating that the MMTT
strain reduced energy-intensive processes like ribosome biogenesis to
promote sporulation.

Genetic interaction increases proteome allocation to arginine
biosynthesis and mitochondrial respiration

Further, we investigated how proteome resources were reallocated in
response to the causal variants and temporal progression in the spor-
ulation medium. This approach provides a holistic view of how yeast
strains adapt to nutrient-limited conditions by reallocating their cellular
resources and helping to identify key proteomic adjustments that con-
tribute to efficient sporulation. For this, we calculated the summed mass
allocations of a group of proteins belonging to a particular GO term
obtained from the yeast GO-slim mapper process terms dataset™. We
then compared the SS and allele replacement strains (MM, TT, and
MMTT) at each time point. We focused on GO terms that exhibited a
significant p-value for at least one of the comparisons independently for
each time point. We observed that 17 GO mapper processes were real-
located at O h in response to causal variants (Supplementary Fig. 10A). At
the same time, a substantial reallocation of proteins occurred during the
2 h 30 min time, with 36 GO mapper processes being significantly real-
located (Supplementary Fig. 10B). At O h, causal variants led to increased
protein allocation to cellular respiration, as yeast cells had already been
exposed to a pre-sporulation medium with acetate as the sole carbon
source. We also noted a significant change in protein allocation to
mitochondrial translation when the MKTI®C variant was present. After
2 h 30 min into sporulation, MM and MMTT strains showed significant
enrichment for mitochondrial translation. Additionally, we found a
unique enrichment of mitochondrial organization and amino acid
transport in the MMTT strain.

As we identified an enrichment of upregulated proteins involved in
the arginine biosynthetic process using differential protein abundance
analysis, we wanted to examine how proteins are allocated to the argi-
nine biosynthetic pathway. We found that the allocation to arginine
metabolism increases during sporulation in all strains. Specifically, we
found that the protein allocation to arginine metabolism in the MMTT
strain was higher than in the SS, MM and TT strains during the 2 h 30 min
period (Fig. 5D). We also observed that the protein is reallocated to
amino acid metabolism from ribosomes and glycolysis during sporula-
tion in a genotype-specific manner, suggesting yeast cells in nutrient-
limited conditions redirect their protein resources towards amino acid
metabolism rather than ribosomes, translation (Table 2), and glycolysis
(Supplementary Fig. 11). This finding aligned with previous studies®”,
demonstrating that yeast reallocated proteins to ribosomes in rich
conditions, enhancing growth rates.

Further, to validate our findings, we assessed the cellular energy
status by analyzing the intracellular ATP levels for all strains during
sporulation at multiple time points. We observed that all the strains
had a sharp decline in ATP levels by 2 h 30 min, with the MMTT strain
showing a complete recovery of the initial ATP concentration during
8h, while other strains showed partial recovery (Supplementary
Fig. 12). This enhanced recovery highlights the more efficient
respiration during sporulation in the MMTT strain. Further to
understand the increased ATP levels seen in the SS strain, we ana-
lyzed the protein allocated to the glycolytic pathway, a key pathway
for ATP production. At 2 h 30 min, the SS strain maintained a higher
proportion of its proteome allocated to glycolytic enzymes (-14%),
while MM, TT, and MMTT strains showed reduced allocation
(-11-12%, Supplementary Fig. 11). This suggested that the SS strain
retained a stronger glycolytic capacity, potentially supporting ATP
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regeneration through substrate-level phosphorylation even under
conditions of limited mitochondrial activity. Consistently, Seahorse
XF respirometry measurements revealed significantly higher basal
oxygen consumption rates (OCR) in MM and MMTT strains com-
pared to SS (Supplementary Fig. 13), aligning with the proteomic
evidence of increased investment in mitochondrial respiration.

Genetic interactions alter intracellular amino acid dynamics
linked to nitrogen metabolism

Through our transcriptomics and proteomics data, we revealed a dis-
tinct regulation of amino acid metabolism in the MMTT strain. Hence,

we wanted to test and show how the genetic interactions can reshape
metabolic trajectories during sporulation. For this, we performed
targeted temporal profiling of key intracellular amino acids across the
SS, MM, TT, and MMTT strains at key developmental time points (O h,
2 h 30 min, and 8 h) of sporulation (Fig. 6A).

Normalized intensity values were averaged across replicates and
represented as z-score heatmaps. Clustering was performed on the
MMTT strain to highlight its metabolic program, and the same amino
acid order was retained across all strains for comparative analysis
(Supplementary Fig. 14). We found that the MMTT strain showed a
unique biphasic amino acid trend, which was not observed in the other
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Table 1| Unique and shared upregulated proteins in MM, TT, and MMTT strains compared to the SS strain at 2 h 30 min into

sporulation

Strains Number of proteins  Differentially expressed proteins

MM, MMTT, TT 1 Syt1

MM, MMTT 24 Arg3, Aro10, Cox1, Cox2, Cox5a, Cul3, Fmp10, Grel, Gtt2, Ino1, Mef1, Mrp4, Mrpl17, Mrpl7, Mrps12, Mrps35, Msf1, Pbp1, Pbp4,
Rec8, Rmd9, Ssa3, Sws2, YklO65w-A

MMTT, TT 3 Bud23, Jhd2, Ypl245w

MMTT 58 Argl, Arg4, Arg56, Arg8, Bes1, Cbp4, Cit3, Cmc1, Cmc2, Cox13, Cox7, Dia4, Fmp33, Gey1, Glg1, Gpx1, Ifm1, Mam33, Mcp2,
Mho1, Mhr1, Mpm1, Mrp1, Mrp7, Mrpl10, Mrpl13, Mrpl3, Mrpl35, Mrpl4, Mrpl9, Mrps16, Mrps18, Mrps28, Mrps5, Mrps8,
Mrps9, Msc6, Msk1, Mss116, Pam18, Pdh1, Ppa2, Rcf1, Rim4, Rnp1, Rsm10, Rsm23, Rsm24, Rsm26, Rsm28, Rsm7, Sct1, SIm5,
Trm12, Vtal, Ydr115w, YgrO21w, Yml6

MM 17 Aim32, Bop2, Cox23, Ctt1, Cyt2, Guf1, Itt1, Mdm35, Nam9, Pir3, Pot1, Pst1, Rsm19, Rsm27, Uga3, Yhr202w, YjlO45w

T 9 Ahcl, Dal7, Hmi1, Htd2, Hym!1, Lin1, Mnl1, Rme1, Yjr124c

Table 2 | Difference in summed protein allocation between 2 h
30 min and Oth hour in SS, MM, TT, and MMTT for translation,
ribosome, and amino acid metabolism GO categories

Strains  Difference in summed mass protein allocation (t2 1, 30 min— to h)
Translation (%) Ribosome (%) Amino acid Arginine

metabolism metabolism
(%) (%)

SS -1.02 -1.14 1.68 on

MM -1.42 -0.94 0.77 0.17

T -1.7 -1.35 1.66 0.13

MMTT -2.52 -1.91 1.46 0.24

strains (Fig. 6B; Supplementary Fig. 14). Notably, there was an early
surge in the levels of alanine, arginine, lysine, glutamine, and histidine
between Oh and 2h 30 min, followed by a pronounced depletion
phase from 2 h 30 min to 8 h (Fig. 6B). This trajectory was consistent
with our transcriptomic data, where we found a unique upregulation of
genes related to amino acid metabolism, particularly histidine meta-
bolism, arginine biosynthesis during the early phase (Supplementary
Data 1). This shows an early biosynthetic burst, possibly driven by a
programmed metabolic activation, followed by rapid mobilization of
these resources for nucleotide biosynthesis during commitment to
meiosis and spore morphogenesis. In contrast, the SS strain main-
tained a continuous accumulation of most amino acids, suggesting a
dysregulation of intracellular metabolite utilization for meiosis and
sporulation (Fig. 6C).

Additionally, glutamic acid, an early intermediate derived from
acetate via the TCA cycle, was found to show a distinct early spike
exclusively in the MMTT strain, followed by sustained levels up to 8 h
(Fig. 6C). This pattern was absent in the other strains. The early accu-
mulation of glutamate in the MMTT strain was consistent with pre-
vious studies reporting a transient increase in glutamate during early
sporulation, which facilitated ammonium ion removal, a known inhi-
bitor of the sporulation process™.

Together, these data showed that amino acid metabolism was not
merely passive during sporulation but was actively rewired in a strain-
specific manner. The distinct temporal control of amino acid pools,
especially those linked to nitrogen metabolism, emerged as a critical
determinant of sporulation trajectory and efficiency, with the MMTT
strain showing a dynamic and resource-intensive strategy to support
its developmental program. Raw mass spectrometry intensity data for
all measured amino acids are provided in Supplementary Data 7.

Genetic interaction promotes the arginine biosynthetic pathway
essential for mitochondrial function

From our multi-omics data analysis, we have identified a distinctive
regulation of the arginine biosynthetic process in the MMTT strain

during the initial stages of sporulation. This discovery led us to
hypothesize that this regulation could have a significant causal role in
modulating sporulation efficiency, mainly through genetic interac-
tions involving the MKTI®** and TAO3*”7¢ SNPs. Previous studies on
other yeast strains, such as SK1 and W303, known for their high
sporulation efficiency, have shown an upregulation of the ARG4 gene
during early sporulation phases®. However, arg44 in the S288c strain,
which typically exhibited lower sporulation efficiency, did not appear
to affect the sporulation process. This phenotypic divergence among
strains prompted us to investigate whether a unique interaction
between the MKTI® and TAO3*7¢ SNPs in the MMTT strain could
modulate sporulation through the arginine biosynthesis pathway. To
test this, deletions of ARG4, argininosuccinate lyase, a key enzyme
involved in the final step of the arginine biosynthetic pathway, and
ARGS6, acetyl glutamate kinase and N-acetyl-gamma-glutamyl-phos-
phate reductase, catalyzing the second and third steps in the arginine
biosynthetic pathway, in SS, MM, TT, and MMTT strains were gener-
ated. Our working hypothesis was that if the arginine biosynthetic
pathway served as a causal route responsible for the observed additive
phenotypic effects of the MKTI%° and TAO3*””© SNPs on sporulation
efficiency, then the deletion of these key genes would have a more
pronounced impact on the MMTT strain than on the other strains.

Sporulation efficiency of wild-type and deletion strains showed
that arg44 and arg564 did not affect sporulation efficiency in SS, MM,
and TT strains. In contrast, these deletions showed no sporulation
phenotype, specifically in the MMTT strain with arg44, even after 48 h
in the sporulation medium (Fig. 7A). This strain-specific phenotype
suggested a potential link between arg44 and a defect in mitochon-
drial stability or respiration, crucial for the initiation of sporulation.

Since respiration is closely linked to the sporulation process,
especially under nutrient-limiting conditions, we aimed to investigate
the underlying respiratory dysfunction in the MT strain further.
Growth phenotype of S, M, T, and MT strains and their arg44 in non-
fermentable carbon sources, such as glycerol, ethanol, and glycerol/
ethanol mixtures (YPG, YPE, and YPEG) showed that the S, M, and T
strains showed no growth defects in these media. However, despite an
extended incubation period of four days, MT-arg4A failed to grow in
these non-fermentable carbon sources (Fig. 7B). This indicated that
arg44 in the MT strain showed a strong respiratory defect. Further, this
growth and sporulation defect in MMTT-arg44 was not rescued even
with supplementing arginine and other amino acids (Supplemen-
tary Fig. 15).

To find if the observed respiratory defect was linked to impaired
mitochondrial activity, we performed a Mitotracker assay to measure
mitochondrial activity in these strains. The assay was performed for 2 h
after transferring haploid cells to a non-fermentable carbon source
(acetate). The Mitotracker assay results showed that the MT strain with
arg4A significantly reduced mitochondrial activity compared to its
wildtype (p-value <0.001), indicating that ARG4 was required to
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maintain mitochondrial function in the MT strain. In contrast, as
expected, the S, M, and T strains did not show a reduction in mito-
chondrial activity following arg44 (Supplementary Fig. 16). We also
measured mitochondrial activity in SS, MM, TT, and MMTT diploid
strains after 2 h of incubation in the sporulation medium. Consistent
with the results from haploid cells, we found that only the MMTT strain
with arg44 exhibited a pronounced reduction in Mitotracker intensity
compared to the wild-type MMTT strain (Fig. 7C). This suggested the
essential role of ARG4 in maintaining mitochondrial function, specifi-
cally in the MMTT strain. We also found that arg44 in the MMTT strain
resulted in only petite colonies, which suggested that ARG4 was
required to maintain mitochondrial stability (Fig. 7D).

We then measured basal respiration rates in fermentable and non-
fermentable media to further probe the effects of arg44 and arg564 on
respiratory function. For this, we assessed the oxygen consumption
rates (OCR) using a Seahorse assay of all strains in acetate and glucose
media, as acetate is known to be a respiratory substrate. The results
revealed that neither arg44 nor arg564 significantly impacted OCR in

the SS and TT strains, indicating that respiration in these strains
remains unaffected mainly by disruptions in the arginine biosynthetic
pathway (Fig. 7E). However, in the MM strain, both deletions led to a
reduction in OCR, though this reduction did not impair sporulation
efficiency, suggesting that compensatory mechanisms support spor-
ulation independently of respiration. Only in the MMTT strain did
arg4A completely abolish respiratory function, while arg564 had no
significant effect on respiration (Fig. 7E). Interestingly, these patterns
were not observed when glucose was used as the carbon source,
highlighting the respiratory-specific impact of arg4A (Supplemen-
tary Fig. 17).

In conclusion, our findings demonstrated that the arginine bio-
synthesis pathway was critical in initiating sporulation and maintaining
mitochondrial function only in the MMTT strain.

Discussion
Genome-wide gene deletion studies have shown that the combination
of gene deletions can be additive, and epistatic interactions have
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D Petite frequency assay of wild-type and arg44 of the MMTT strain (N=3). E The
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oxygen consumption rate (OCR) of SS, MM, TT, and MMTT for WT (N =4), arg4A
(N=4), and arg54 (N=3) cells was measured using the Seahorse Extracellular Flux
96 Analyzer, grown in acetate media. After three basal measurements, sodium azide
was injected into the wells to shut off mitochondrial oxygen consumption, and an
additional three sets of measurements were taken. p-values were calculated using a
two-sided unpaired t-test in the rstatix R package (v.0.7.2) (A, C, D). Significance
levels are indicated as follows: ***p < 0.0001, **p < 0.001, **p < 0.01, *p < 0.05. The
exact p-values are provided in the source data file (A, D). The error bar represents
the mean + SD (A, C-E). Source data are provided as a Source Data file for (A, C-E).
Created in BioRender. Sinha, H. (2025) https://BioRender.com/07eizi3.

different phenotypic effects than the effect of individual gene
deletions®****. We extend this concept to study natural genetic var-
iants and show that when two additive effect SNPs are present together
in a strain, they impact the phenotype by activating a unique metabolic
pathway different from the metabolic pathways of individual SNP
effects. Our result has consequences for understanding how variants
affect disease phenotypes, specifically in complex traits where multi-
ple SNP combinations can have differential outcomes in the progres-
sion of the disease and treatment responses.

Complex trait variation arises from both genetic and environ-
mental influences. When multiple causal genes contribute to a trait, the
resulting phenotype can be shaped by gene-gene-environment
(GxGxE) interactions. To isolate the role of gene-gene (GxG) interac-
tions, we held the environment constant and examined the con-
sequences of genetic interactions to the phenotypic variation by
studying the intermediate phenotypes like gene expression, protein
expression, and metabolite levels. Using a multi-omics approach,
combining temporal transcriptome, proteome, and metabolite
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profiling of isogenic allele replacement yeast strains, we were able to
ascertain that the strain with combined SNPs, MKTI® and TAO3*",
activated the amino acid metabolism pathways early in sporulation
while simultaneously downregulating ribosome-related processes.
This observation suggested a metabolic trade-off wherein yeast redu-
ces energy-intensive processes like ribosome biogenesis and redirects
resources toward amino acid biosynthesis in response to nutrient
starvation®. Further analysis of proteome allocation, supported by
intracellular ATP and respiratory assays, revealed substantial repro-
gramming of mitochondrial function and biogenesis during early
adaptation to respiratory metabolism. These findings are consistent
with previous reports by Bjorkeroth et al.>>. We also found that the
strains with both SNPs in combination can activate the arginine bio-
synthetic pathway differentially by allocating more protein to arginine
biosynthesis than to ribosome biogenesis and glycolysis. While we
acknowledge that a complete energy budget for protein turnover was
not captured in our dataset, the absolute proteomic quantification
provided a critical and biologically meaningful readout of resource
allocation trends. These trends are especially relevant in develop-
mental programs like sporulation, where resource prioritization,
rather than growth optimization, becomes the dominant strategy.
Thus, our protein allocation analysis provided a first-order approx-
imation of how proteome resources were being reallocated during
critical transitions, such as sporulation. Further, through experimental
validation, we have shown that ARG#4 is necessary to maintain mito-
chondrial activity and respiration only when MKTI®° and TAO3*7¢
SNPs are combined. We speculate that due to the genetic interactions
between MKTI®*° and TAO3*"7° SNPs, a rewiring of the metabolic net-
work makes mitochondrial function heavily dependent on the arginine
biosynthetic pathway. This was further supported by the unique
biphasic dynamics of alanine and arginine in the MMTT strain, which
accumulated early (0 h-2h 30 min) and was rapidly depleted by 8 h,
unlike in other strains. The increased sporulation efficiency in the
MMTT strain could be attributed to the immediate response to nutri-
ent starvation and their ability to synthesize the necessary amino acids
like histidine during the early phase as precursors for nucleotide bio-
synthesis and meiotic process during the later stages. The interaction
observed here shares conceptual parallels with known “moonlighting”
functions of metabolic enzymes. For example, Altl, an alanine transa-
minase, has been implicated in mitochondrial gene regulation beyond
its catalytic activity®. Similarly, Ilv5, involved in branched-chain amino
acid biosynthesis, also contributes to mtDNA stability®’. These findings
indicate that metabolic enzymes, including those in the arginine
pathway, might participate in mitochondrial regulation beyond their
canonical roles, particularly under conditions of network rewiring
imposed by genetic variation®®,

The observed allele frequencies of MKTI®*° and TAO3*7C indicate
distinct evolutionary dynamics. The near-fixation of MKTI®* in S. cer-
evisiae suggests it confers an adaptive advantage, particularly in stress-
related contexts, as shown in prior studies®®’’. In contrast, the
TAO3*7¢ variant is extremely rare, implying it may be deleterious in
most backgrounds or advantageous only under specific environmental
or genetic conditions while having an effect size similar to a common
variant”. Notably, when TAO3"7¢ co-occurs with MKTI%%, it induces a
metabolic shift activating arginine biosynthesis and suppressing
ribosome biogenesis, indicating a context-dependent benefit that
arises from this genetic interaction.

Beyond yeast, these findings provide a conceptual framework for
understanding how genetic interactions (GxG) can reconfigure cellular
metabolism to activate latent pathways. In human systems, genetic
interactions further modified by environmental factors may activate
latent pathways that can influence disease phenotypes or therapeutic
responses, especially in conditions where metabolic reconfiguration
and rare allele effects are observed. Our work emphasizes the impor-
tance of resolving variant effects in combinatorial contexts and

demonstrates how integrated multi-omics approaches can uncover
the molecular logic of complex trait architecture.

Methods

Allele replacement strains

All yeast strains are derivatives of S288c, a widely used laboratory
strain, and their relevant genotypes are listed in Supplementary
Table 1. The available diploid MM strain with MKTI¥° allele and TT
strain with TAO3*7¢ allele, corrected for background mutations,
were validated for their SNPs using allele-specific PCRs and Sanger
sequencing. The haploids of M and T strains were generated by
sporulating their respective diploid strains, followed by spore
enrichment. The resulting M and T haploids were confirmed using
the MAT locus PCR. The opposite mating types of M and T strains
were crossed to obtain the diploid MmTt strain with genotype
MKTI®°/MKTI®* TAO3*7/TAO3*°. The diploid MmTt strain was
sporulated and spore-enriched, which resulted in segregants having
all possible combinations of MKTI and TAO3 alleles: Mt (MKT1%%/
TAO3*77C), mt (MKTI®*/TAO3*77°), mT (MKTI***/TAO3*), and MT
(MKTI®°/TAO3*7C). The MT haploids were selected by performing
allele-specific PCRs and were further validated using Sanger
sequencing. The opposite mating types of MT haploids were mated
to obtain the diploid MMTT strain with genotype MKTI®°/MKT1%°
TAO3*7/TAO3*7C, All further experiments are performed using the
diploid MMTT strain.

Phenotyping for sporulation efficiency

The diploid SS, MM, TT, MmTt, MMTT, and SK1 strains were pheno-
typed for sporulation efficiency. Briefly, the strains were first grown in
YPD (2% (w/v) yeast extract (HIMEDIA, Cat. No. CRO27), 1% (w/v)
peptone (HIMEDIA, Cat. No. CROO01), 2% (w/v) dextrose (HIMEDIA, Cat.
No. PCT0603)) from ODgpo 0.2 to 1.0 and then grown in YPA (1% (w/v)
yeast extract, 2% (w/v) peptone, 1% (w/v) potassium acetate (Sisco
Research Laboratories, Cat. No. 96248)) from OD¢go 0.2 to 1.0. The
cells were washed in water, then in potassium acetate, and then incu-
bated in 1% potassium acetate supplemented with amino acids (sup-
plemented with 20 pg mI™ uracil (Sigma, Cat. No. U0750), 20 pg ml™
histidine (Sigma, Cat. No. H8000), 30 pg mI™ leucine (Sigma, Cat. No.
L8000), 20 pg ml™ methionine (Sigma, Cat. No. M9625) and 30 pg ml™?
lysine (Sigma, Cat. No. L5626)). The sporulation efficiency was calcu-
lated as the ratio of dyads and tetrads produced by a strain to the
number of single-nucleus cells.

Generation of ARG4 and ARG56 deletion mutants

The gene deletions of ARG4 and ARG56 were performed in haploids of
S, M, T, and MT by replacing the ARG4 and ARG56 genes with drug
resistance cassettes (hphMX4) by following the high-efficiency lithium
acetate protocol’. The transformants were selected by plating onto
YPD media containing hygromycin (HIMEDIA, Cat. No. AO15). The
deletion confirmation (homologous integration) was done by colony
PCR of insertion junctions using junction-specific primers. The dele-
tion confirmed haploid cells were diploidized by transforming strains
with the pHSO3 plasmid (resistant to Nat (JENA Bioscience, Cat. No. AB-
102)) and confirmed using the MAT locus PCR. The list of primers used
in this study is given in Supplementary Table 2. Further, the diploid
strains with respective deletions were phenotyped for sporulation
efficiency and for studying mitochondrial activity.

Spot dilution assay

Overnight cultures of the strains were grown in 5 ml of YPD and diluted
to an ODgq of 1.0. Ten-fold serial dilutions were prepared, and 5 pl of
each dilution was spotted onto fermentable media (YPD) and non-
fermentable carbon source media (YPGlycerol (2%), YPEthanol (2%),
YPEG (1% ethanol (Hayman, Cat. No. F204325) + 3% glycerol (HIMEDIA,
Cat. No. TC503))). The final ODgqo values of the spots were 1, 0.1, 0.01,
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0.001, and 0.0001. Plates were incubated at 30 °C, with growth cap-
tured after 2 days for YPD and 4 days for the non-fermentable media.

Mitotracker fluorescence assay

The Mitotracker plate reader assay was adapted from Vengayil et al.”®
with modifications for high-throughput analysis. In brief, overnight
yeast cultures were initially grown in YPD medium, followed by sec-
ondary cultures diluted to an ODggg of 0.2 and grown to an OD¢gg of
1.0. Cells were washed and incubated in 1% potassium acetate for 2 h.
Following this, Mitotracker CMXRos (ThermoFisher, Cat. No. M7512)
was added to each well to a final concentration of 200 nM, and the
plates were incubated in the dark for 30 min at 30 °C in a shaking
incubator. After incubation, the plates were centrifuged at 1700 rpm
for 2 min, and the supernatant was discarded. The cells were washed
once with PBS (pH 7.4, HIMEDIA, Cat. No. TS1006) to remove excess
dye and media, and 200 pl of PBS was added to each well. The cells
were resuspended and transferred to black plates for fluorescence
measurement. Fluorescence was recorded using a multimode plate
reader (BioTek Synergy H1, Agilent Technologies Inc.) at excitation/
emission wavelengths of 572/599 nm. Finally, the fluorescence signal
was normalized using the optical density (ODggo) of the same samples,
which was measured.

Petite frequency assay

Three independent colonies were resuspended in 1 ml of PBS, diluted,
and plated on YPDG medium (1% yeast extract, 2% peptone, 0.1% glu-
cose, and 3% glycerol) to yield approximately 200-400 colonies per
plate. After five days of incubation, colonies were counted, distin-
guishing between large colonies (grande) and small colonies (petite).
The petite frequency was calculated as the ratio of petite colonies to
the total number of colonies per plate. Petite colonies were further
validated by patching them onto YPE plates to confirm their inability to
grow on this medium.

Oxygen consumption rate assay

Yeast oxygen consumption rate (OCR) measurements were performed
using the Agilent Seahorse XF Pro analyzer, following a protocol speci-
fically optimized for 0.5% sodium azide (Sigma, Cat. No. S-2002) injec-
tion, as outlined in Yao et al.” and Walden et al.”” On the first day,
overnight yeast cultures (consisting of 4 biological replicates each for SS,
MM, TT, and MMTT and four biological replicates for arg4 deletion
strains and three biological replicates for arg5 deletion strains) were
prepared. The Seahorse XF96 sensor cartridge was pre-incubated with
200 pl of calibrant solution per well at 30 °C in a CO,-free incubator. The
Seahorse assay media containing glucose and acetate (0.167% yeast
nitrogen base, 0.5% ammonium sulfate, and 1% acetate or 2% dextrose,
respectively) was prepared. The microplate wells were coated with 60 ul
of poly-L-lysine solution (Sigma-Aldrich, Cat. No. P4707) (0.1mgml™),
incubated for 1h, washed twice with PBS, and stored at room tempera-
ture overnight. On the second day, overnight yeast cultures grown in
YPD were diluted and grown until reaching an OD¢gg of 0.5-0.7 (mid-log
phase). The cells were washed and diluted to a specific concentration in
Seahorse assay media (glucose or acetate). The cells were seeded into
poly-L-lysine-treated wells of the XF96 microplate, then centrifuged at
500 rpm for 5 min and incubated at 30 °C for 1 h. The sensor cartridge
was loaded with 0.5% sodium azide in chamber A and was calibrated.
Three basal OCR measurements were recorded at 30 °C for 3 min each,
with 2 min of mixing between readings. Following the injection of 0.5%
sodium azide into chamber A, three additional OCR measurements were
taken, following the same procedure. The measured OCR values were
then normalized to ODggg 0.1.

Extracellular acetate analysis using HPLC
Two biological replicates of SS, MM, TT, and MMTT strains were grown
in YPD, followed by growth in YPA and then transferred to 1%

potassium acetate. Samples ODggo 0f 1.0 in sporulation medium were
collected at appropriate time points, and the extracellular medium was
filtered using 0.22 pum filters and stored at —20°C until analysis.
Extracellular acetate levels in the sporulation medium were measured
using Shimadzu P-series Quaternary Gradient High Performance
Liquid Chromatography equipped with a Phenomenex Rezex ROA-
Organic acid H+ (8%) column [300 x 7.8 mm] and an RI detector. The
elution buffer used was 5 mM H,SO, (Finar, Cat. No. 7664-93-9), with a
flow rate of 0.6 mImin™, and the column was maintained at an oven
temperature of 40 °C.

Intracellular acetate extraction and quantification

Yeast cells equivalent to an ODggo of 1.0 were collected at defined time
points from the sporulation medium. Pellets were washed twice with
ice-cold PBS, snap-frozen in liquid nitrogen, and stored at —80 °C until
extraction. For acetate extraction, frozen pellets were thawed and
resuspended in 250 pl of ice-cold 0.1N HCI (Sisco Research Labora-
tories, Cat. No. 34472). Cells were lysed by vortexing for 5 min with the
addition of acid-washed glass beads (Sigma, Cat. No. G8772). The
lysates were centrifuged at 14,000 rpm for 10 min at 4°C, and
180-250 ul of the clear supernatant was transferred to a fresh micro-
centrifuge tube. The pH of the extract was adjusted to 6.5-7.0 using
3-5ul of 5N NaOH (Merck, Cat. No. 193102) with gentle mixing. The
neutralized cell extracts were used for acetate quantification following
the manufacturer’s instructions provided with the Megazyme Acetic
Acid Rapid Kit (Megazyme, Ireland, Cat. No. K-ACETRM). Measure-
ments were performed using freshly prepared extracts, with three
biological replicates per condition.

Quantification of intracellular ATP levels

Intracellular ATP levels were quantified in yeast strains SS, MM, TT, and
MMTT, using a minimum of two biological replicates per strain. Sam-
ples were collected at four time points (O h, 1h 10 min, 2 h 30 min, and
8 h) following transfer to sporulation medium at an OD¢gg of 1.0. Cells
were rapidly quenched in =80 °C pre-chilled 100% methanol and pel-
leted by centrifugation at 10,000 x g for 1 min at 4 °C. The pellets were
washed once with —80 °C methanol (HIMEDIA, Cat. No. MBI113) and
stored at —80 °C until further processing.

ATP was extracted using an acetone-based method as previously
described in Takaine et al.’®, with minor modifications. Briefly, cell
pellets were resuspended in 0.75 ml of 90% acetone (Sisco Research
Laboratories, Cat. No. 31566) and mixed by repeated pipetting and
brief vortexing. Samples were then placed in a fume hood on a dry
block heater with open lids and incubated at 90 °C for 15 min to allow
complete evaporation of acetone. Following evaporation, samples
were centrifuged at high speed for 15s. The resulting aqueous super-
natant (<40 ul) was transferred to a new microcentrifuge tube and
further clarified by centrifugation at high speed for 3 min at 4 °C.

ATP concentrations were measured using a luminescence-based
detection assay (ATP Assay Kit, Sigma-Aldrich, Cat. No. MAK473)
according to the manufacturer’s instructions. Luminescence was
recorded using white opaque flat-bottom 96-well plates on a multi-
mode microplate reader (BioTek Synergy H1, Agilent Technologies
Inc.). ATP concentrations were determined using a standard curve
generated with known ATP standards provided in the kit.

Temporal transcriptome profiling and data pre-processing

The SS and MMTT strains were first grown in YPD and then in YPA and
transferred to the sporulation medium (1% potassium acetate and
amino acid supplements). The samples were taken at Oh, 30 min,
45 min, 1h 10 min, 1h 40 min, 2h 30 min, 3 h 50 min, 5h 40 min, and
8 h 30 min and were snap-frozen and stored at —80 °C. RNA extraction,
quality control, library preparation, and paired-end sequencing using
lllumina Novaseq were conducted by an external service provider
(Genotypic Technology Pvt Ltd, Bangalore, India). The detailed
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protocols followed for RNA isolation and library preparation are given
in the Supplementary Methods section.

The raw Fastq files were given as input to a customized Snake-
make pipeline, which performs quality checks using FASTQC and
MultiQC”, removes rRNA contamination, performs alignment using
STAR’, and finally gives the feature counts as output. The feature
count file was then provided as input to the IDEP 2.0 software’ for
initial quality checks. The low counts were filtered such that three
counts per million (edge R) were in at least three samples. Thus, 6207
genes from an initial list of 7127 genes were selected for further ana-
lysis. Using the 300 most variable genes, hierarchical clustering and
PCA were performed for all 54 samples, which removed five potential
outlier samples from further analysis.

Differential expression analysis using DESeq2 in IDEP software
Initially, we aimed to independently identify genes exhibiting sig-
nificant differential expression relative to the baseline (0 h) at each
time point for both MMTT and SS strains. Our dataset comprised
24 samples for the MMTT strain, encompassing 7127 genes. Subse-
quently, we filtered this dataset to retain 6447 genes with a minimum
count per million (CPM) threshold of 0.5 across at least three samples.
Employing the DESeq2” algorithm with a false discovery rate (FDR)
cutoff of 0.05 and a minimum fold change of 2, along with the Wald
test and independent filtering, we identified genes showing significant
differential expression. Similarly, in the S strain, we analyzed a dataset
containing 6409 genes that passed the aforementioned filtering cri-
teria. We used DESeq2 under identical parameters to identify genes
exhibiting differential expression relative to the Oth hour time point.

Temporal differential expression analysis using the likelihood
ratio test

We further investigated temporal differential gene expression
employing the Likelihood Ratio Test (LRT) method within DESeq2.
This approach evaluates whether significant differences in genotype
effects exist across various time points. To construct the ‘full model,
we integrated key sources of variation, including genotype and time,
along with our condition of interest, i.e., the interaction between
genotype and time (genotype x time). By contrasting this full model
with a ‘reduced model’ lacking the ‘genotype x time’ term, we identi-
fied genes exhibiting significant alterations in expression profiles
between SS and MMTT strains across multiple time points. This ana-
lysis enabled us to pinpoint genes whose expression trajectories were
influenced by the presence of MKTI*® and TAO3*"“,

Temporal gene expression clustering using DPGP

We utilized gene expression data normalized to Transcripts Per Million
(TPM) and provided it as input to the DPGP algorithm®%. To optimize
computational efficiency, we employed the ‘--fast’ option, which uti-
lizes an accelerated computation mode. Moreover, we utilized the
‘-true_times’ parameter to preserve the temporal information asso-
ciated with each expression profile during the clustering process due
to non-uniform sampling time points in our data. This enabled us to
capture the temporal dynamics inherent in the data accurately.

Absolute quantitative proteomics using mass spectrometry

To capture the absolute proteome changes during the initial phases of
sporulation, where MKTI®° and TAO3*7 SNPs were found to be
active, we performed absolute proteomics experiments for all four
strains at two time points. For this, 4 ml of the diploid strains SS, MM,
TT, and MMTT at ODggo 0f 1.0 were sampled at O h and 2 h 30 min after
incubation in sporulation medium. The samples were centrifuged at
4 °C for 2 min at 4000 x g. The supernatant was discarded, and the cell
pellets were snap-frozen in dry ice and stored at -60 °C until further
analysis. Sample preparation for proteomics analysis was performed as

described previously by Kozaeva et al.*, with some modifications (see
Supplementary Methods for details)®.

Processing of mass spectrometric raw data

Sequence identification was performed for all analyses using a protein
database consisting of the S. cerevisiae S288c (UPO00002311; accessed
on the 17th of November 2023) reference proteome. Spectronaut V18
was used for protein identification and relative quantification of pep-
tides for DIA data analysis. The default settings for “directDIA” were
applied with an FDR cutoff of 1%, except for MS1 quantification for the
peptides. Protein abundances were inferred from the peptide abun-
dances using the xTop algorithm®. Absolute protein quantification
was performed through the TPA (total protein approach)® method to
the final units of fmol pg™ total protein as proteome composition
values.

Differential protein expression and allocation analysis

We converted the fmol pg™ total protein to the percentage of the entire
protein mass (g ug™ total protein). This was done by multiplying by
molecular weight and dividing by the sum of all proteins. This analysis
expressed every protein abundance as a percentage of the entire
proteomic mass. These mass percentages were then used for sub-
sequent protein allocation and differential abundance analysis. For
GO-slim mapper process terms analysis, all proteins in all datasets were
merged, and the terms that matched the proteins were annotated to
them as described in Bjorkeroth et al.>*. For the summation of alloca-
tion, each dataset was subsequently matched to the set-up GO-slim
mapper process term framework to identify which proteins are to be
summed. The differential expression of proteins between wildtype
(SS) versus allele replacement strains (MM, TT and MMTT) and also
between the time points (0 h versus 2 h 30 min) was performed using
the log,-transformed values with unpaired two-sided Student’s t-test.
The significantly reallocated proteins are proteins with a log,(fold
change) greater than +1 or less than -1 and a p-value <0.05 for all
pairwise comparisons performed using the dataset.

mRNA-protein correlation analysis

To understand how mRNA correlates with the protein levels, we
computed the Pearson correlation, plotting the average log,(TPM) for
mRNA against the average log,(abundance) protein. The cor.test()
function from the R ‘stats’ package was employed to assess the sta-
tistical significance of correlations. Further, the mRNA-protein slope
was identified from the coefficient derived from the linear model (Im()
function in R’s ‘stats’ package) using the formula ‘lm(protein - mRNA)’,
where ‘protein’ is the log,(abundance) and ‘mRNA’ is the log,(TPM).

LC-MS analysis for relative intracellular amino acid
quantification

Samples were collected at three time points (O h,2 h 30 min, and 8 h)
following transfer to sporulation medium at an OD¢gg of 1.0. Meta-
bolism was rapidly quenched by adding four volumes of ice-cold
60% methanol (kept in —80 °C), followed by incubation on ice for
5 min. Cells were pelleted by centrifugation at 1000 x g for 3 min at
0 °C and washed once with 700 pl of ice-cold 60% methanol (kept in
-80 °C). The pellet was then resuspended in 1 ml of 75% ethanol and
incubated at 80 °C for 3 min to extract intracellular metabolites.
Samples were cooled on ice for 5 min and centrifuged at maximum
speed for 10 min at 4 °C. Supernatants were collected, dried in a
vacuum concentrator, and stored at —-80 °C until analysis. LC-MS/MS
analysis was performed on an Agilent 6495 Triple Quadrupole mass
spectrometer operating in positive ionization mode using multiple
reaction monitoring (MRM) by C-CAMP Bengaluru, India. The sam-
ple processing and detailed protocol are given in the Supplementary
Methods.
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Generation and analysis of context-specific models

We employed a genome-scale metabolic modeling approach to
understand how the SNPs and their interactions can influence the
intracellular flux variation during the early sporulation phase. We
generated context-specific metabolic models by integrating the pro-
tein expression data with the yeast genome-scale metabolic model
(Yeast9)*. Further, we analyzed the intracellular flux variation between
the generated models using genome-scale differential flux analysis
(GS-DFA) as described in the Supplementary Methods section (Sup-
plementary Note 1, Supplementary Data 8).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

Fastq files and raw gene-count data are available on GEO under the
accession number GSE278267. The mass spectrometry proteomics
data have been deposited in the ProteomeXchange Consortium via the
PRIDE® partner repository with the dataset identifier PXD056947. The
metabolomic MS raw data have been deposited in MetaboLights with
the dataset identifier MTBLS12761. All other data supporting the find-
ings of this study have been provided as supplementary tables and
source data files. Source data are provided with this paper.

Code availability

All analyses were performed using R version 4.3.1. All figures were
generated using custom R code. The R codes used for analyses are
available on GitHub [https://github.com/HimanshulLab/molecular-
additivity-of-QTNs] under MIT license and archived at Zenodo
[https://doi.org/10.5281/zenodo.139178597%.
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