
npj | systems biology and applications Article
Published in partnership with the Systems Biology Institute

https://doi.org/10.1038/s41540-025-00503-3

Genome-scale metabolic modelling
identifies reactionsmediated by SNP-SNP
interactions associated with yeast
sporulation
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Genome-scalemetabolic models (GEMs) are powerful tools used to understand the functional effects
of genetic variants. However, the impact of single nucleotide polymorphisms (SNPs) in transcription
factors and their interactions on metabolic fluxes remains largely unexplored. Using gene expression
data from a yeast allele replacement panel grown during sporulation, we constructed co-expression
networks and SNP-specific GEMs. Analysis of co-expression networks revealed that during
sporulation, SNP-SNP interactions impact the connectivity of metabolic regulators involved in
glycolysis, steroid and histidine biosynthesis, and amino acid metabolism. Further, genome-scale
differential flux analysis identified reactions within six major metabolic pathways associated with
sporulation efficiency variation. Notably, autophagy was predicted to act as a pentose pathway-
dependent compensatory mechanism supplying critical precursors like nucleotides and amino acids,
enhancing sporulation. Our study highlights how transcription factor polymorphisms interact to shape
metabolic pathways in yeast, offering insights into genetic variants associated with metabolic traits in
genome-wide association studies.

The phenotypic characteristics of an organism are influenced by metabolic
reprogramming, which modifies metabolic pathways to support various
cellular functions and adapt to environmental changes. Genome-scale
metabolic models (GEMs) that connect metabolic genes, proteins, and
metabolites based on gene-protein-reaction associations are practical sys-
tems biology tools for describing cellularmetabolism1. GEMs are an in silico
tool for studying metabolic reaction networks, metabolic engineering,
enzyme function prediction, drug discovery, and understanding human
diseases2–4. Recent algorithm advancements have led tomore precise GEMs
that accurately reflect the metabolism of specific cell types or tissues. While
GEMs encompass all reactions in an organism, not all enzymes are active in
every cell line or tissue. Context-specific models, a subset of the GEMs,
capture the metabolism of individual cell types or tissues (also known as
tissue-specificmodels) by removing inactive reactions based on factors such
as gene expression levels, the presence of proteins or metabolites, experi-
mental data, literature knowledge, or predefined metabolic functions

specific to the cell type5–9. Therefore, context-specificmodels provide amore
accurate representation of metabolism for particular cell types or tissues.

Recently, GEMs have gained traction in exploring genotype-
phenotype relationships. For example, Scott et al.10 demonstrated how
intracellularflux variation in specific reactions influences aromaproduction
amongdifferent vineyard yeast strains by constraining yeastGEMwith exo-
metabolomics and leveraging the flux sampling approach. Similarly, Jenior
et al.11 leveraged transcriptomics-integrated GEMs to compare metabolic
adaptations in laboratory and clinical isolates of Klebsiella pneumoniae,
revealing increased valine catabolism as a key feature of the pathogenic
strains. Moreover, constraint-based modelling approaches are increasingly
used to predict the functional effects of genetic variants on metabolism,
thereby providing deeper insights into variant-to-function relationships12.
Øyås et al.13 developedamethodology that uses structural sensitivity analysis
to model the impact of nonsynonymous SNPs on metabolic networks.
Focusing ondeleteriousmutations and their downstreameffects on reaction
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fluxes, they applied this method to 18 Mycobacterium tuberculosis strains,
identifying functional SNPs that impact metabolic behaviour. Similarly,
Sarkar and Maranas14 introduced the SNP-effect method. This technique
models the impact of SNPs in enzyme-coding genes by constraining reac-
tion fluxes based on steady-state assumptions and relative growth rates
across genotypes. This approach provided a framework for predicting the
phenotypic consequences of SNPs and understanding how they alter
metabolic fluxes across different genetic backgrounds.

While these studies primarily focused on the cis effects of enzyme-
coding regions, the potential trans effects of SNPs in both coding and non-
coding regions of transcription factors on reshaping the metabolic land-
scape remain largely unexplored. In this study, we test how SNPs in tran-
scription factors have an impact on the metabolic landscape of a cell. We
studied four naturally occurring SNPs causal for high sporulation efficiency
in yeast. Sporulation efficiency, the percentage of cells sporulating in a
culture in yeast, is a quantitative trait and is highly heritable across yeast
strains. Sporulation efficiency is extensively studiedand serves as amodel for
understanding complex traits15–19. During sporulation, cells undergo
meiosis, where the parent diploid cell divides into four haploid spores.
Several metabolic changes happen during the entire course of sporulation
orchestrated by five major metabolic pathways—glutamate synthesis, tri-
carboxylic acid cycle, glyoxylate cycle, gluconeogenesis, and
glycogenolysis20. Studies have identified several SNPs and their genetic
interactions as causal for sporulation efficiency variation16,17,19,21,22. Since
sporulation efficiency is a metabolically driven process, it is crucial to
investigate how SNPs, individually and in combination, modulate co-
expression patterns and alter the connectivity of metabolic regulators, as
well as how these interactions affect metabolic flux distribution.

Our study aimed to investigate how, individually and in combination,
SNPs affect differential expression and co-expression patterns of metabolic
regulators, as well as the distribution of intracellular metabolic flux. We
explored whether interactions between SNPs influence the distribution of
intracellularmetabolicflux.Weused gene expressiondata fromapreviously
published allele replacement panel to create context-specific genome-scale
metabolic models. The goal was to investigate the interactions between
SNPs and their impact on sporulation efficiency variation.While metabolic
flux analysis and network-based approaches have previously been used to
study the molecular mechanisms underlying specific traits or diseases, our
study represents one of the few attempts to integrate gene expression data
from an allele replacement panel with context-specific GEMs to explore the
molecular basis of SNP interactions.

Results
Molecular model of sporulation efficiency under study
The previous studies dissected genetic variants causal for differences in
sporulation efficiency in a segregant population of a cross between two yeast
strains, namely, a natural oak isolate (100% sporulation efficiency) and a
vineyard strain (3.5% sporulation efficiency)17,21,22. The studies identified
four causal quantitative trait nucleotides (SNPs) responsible for high spor-
ulation efficiency by performing linkage mapping17,21,22. The four causal
SNPs (oak alleles)were in three sporulation genes: IME1 (Initiator ofMeiosis
1), RME1 (Repressor of Meiosis 1) and RSF1 (Respiratory Factor 1). There
were two alleles of IME1, namely coding IME1L325M (denoted as IME1) and a
non-coding IME1ncA-548G (denoted as IME1nc), and a non-coding poly-
morphism RME1indel-308A (denoted as RME1nc) and a coding polymorphism
in RSF1D181G (denoted as RSF1, Fig. 1A). All three genes are known tran-
scription factors involved in the sporulation process. The IME1L325M impacts
the functional equilibrium of the Ime1 protein, influencing its capacity to
regulate earlymeiotic genes as a trans-eQTL22. The IME1ncA-548G, located in a
potential Rme1binding sitewithin thepromoter region, affects the affinity of
Rme1 for IME1, modulating the strength of IME1 repression. This inter-
action adjusts the initiation of sporulation by altering the transcriptional
activity of IME1. The RME1indel-308A acts as a cis-eQTL, impacting the RME1
expressionandprotein concentration,which influences its repressive activity
on IME122. RSF1 is involved in respiration and regulation of mitochondrial

genes, which is required for sporulation23,24. Since these three genes are
involved at similar points in the sporulation regulatory network, extensive
genetic interactions have been observed among them21,22.

By swapping these four corresponding alleles in the low sporulation
vineyard strain (++++) with oak alleles (OOOO), the authors generated
16 isogenic strains with all possible allelic combinations (Fig. 1B). Based on
the sporulation efficiency data of these 16 allele replacement strains25, we
classified them as very high, high, medium, low, and very low sporulating
strains (Fig. 1C).

In the same studybySudarsanandCohen25, gene expressiondata for all
these 16 strains were obtained after 2 h of incubation in the sporulation
medium,which is considered an early time point in the sporulation process.
The study showed that the genetic variants explained more of the pheno-
typic varianceproportion than thegene expressionvariation25.However, the
study highlighted that these SNP interactions contributed significantly to
gene expression variation, underscoring the complex interplay between
SNPs and gene expression variation.

The phenotype and gene expression data from the Sudarsan and
Cohen study were used to investigate how these SNPs and their combina-
tions contribute to phenotypic variation by modulating the connectivity of
metabolic regulators and intracellular metabolic fluxes. A three-step
approach was employed to investigate the impact of SNP interactions on
cellular function. First, specific differential gene expression patterns asso-
ciated with these interactions were identified. Second, gene expression
networks were constructed for each allele replacement strain to analyse
changes in co-expression patterns. Finally, a context-specific GEM model-
ling approach was used to explore how these SNPs and their interactions
influence intracellularmetabolic fluxes, ultimately affecting the quantitative
trait. The workflow, from preprocessing RNA-Seq data to applying GEM
modelling techniques, is detailed in Fig. 1D.

SNP interactions elicit distinct sporulation and metabolic gene
expression patterns
First, we aimed to ascertain whether particular combinations of SNPs
uniquely influence specific gene expression patterns. Second, we sought to
determine if different SNP combinations elicit differential expression in
distinct sets of genes or if a consistent core of genes was affected. The strains
were termed based on the oak alleles as ‘O’ and vineyard as ‘+’ in the gene
order ‘IME1 IME1nc RME1nc RSF1’. To address this, we analysed differ-
ential gene expression between the wildtype vineyard strain and the allele
replacement strains usingDESeq2 after adjusting for the false discovery rate
(<10% using the Benjamini-Hochberg method). We identified a total of
380 significantly up and down-regulated differentially expressed genes
(DEGs) across 15 SNP combinations with wildtype vineyard strain (S++++)
as the baseline (Fig. 2A and Supplementary Data 1).

Since we were interested in determining the number of differentially
expressed sporulation-related genes between wildtype vineyard and allele
replacement strains, we compared the above 380 DEGs list with 362 genes
known to influence sporulation efficiency phenotype15. We identified 48
sporulation-specific DEGs across all SNP combinations, each with a dif-
ferent set of these genes. The strain with all four causal oak alleles (SOOOO),
which had the highest sporulation efficiency, had the maximum number of
these sporulation-specific DEGs (Figs. 2B and S1). In all strains except for
the strain S+OO+, the presence of the RME1nc allele resulted in the down-
regulation ofRME1 gene expression (Fig. S1). TheRME1 gene is a repressor
of sporulation and its downregulation in the presence of the RME1nc allele
highlights the cis effect of this allele in enhancing sporulation efficiency in
oak strains. Upregulation of the IME1 gene, whenever theRSF1 allele was in
combination with either IME1 or IME1nc (Fig. S1), could be due to a trans-
effect of the RSF1 allele on the expression of the RIM4 gene, a major reg-
ulator of early sporulation genes and IME1 gene expression.

Interestingly, no common genes were found to be upregulated across
all five high sporulating strains (SOOOO, S+OOO, SO+OO, SOO+O and SOOO+) even
though several genes were uniquely activated in each SNP combination
strain (Fig. 2C).We found that IME2, a meiosis initiator gene, was activated
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and uniquely upregulated only when all four SNP were combined (SOOOO).
We identified five upregulated genes, HSP26, IME1, REC8, RIM4, and
YIR016W, common across the subset of strains (SOOOO, SOO+O, SO+OO, SO++O)
with IME1 andRSF1 variants in combination (Fig. 2D). In particular,REC8,
a gene that mediates sister chromatid cohesion, homologous recombina-
tion, and chromosome synapsis26, was uniquely upregulated only in this
subset of strains (Fig. 2E).

To investigate which metabolic genes were differentially expressed
across the 16 SNP combinations, we took 1150 from the Yeast8 metabolic
model27, which had all metabolic reactions in the yeast genome. Using the
Yeast8 model, we found that 164 metabolic genes were differentially
expressed across all SNP combinations. We focused on identifying the
metabolic genes upregulated in the strain (SOOOO), as these genes could be
crucial for high sporulation efficiency. We found 14 upregulated genes,

including FKS3 (1-3-beta-D-glucan synthase), involved in ascospore wall
assembly formation28 and were uniquely upregulated in this strain.We also
identified that the expression of SRT1 (involved in dolichol biosynthesis and
linked to reduced sporulation in null mutants)29, SPF1 (a P-type ATPase
with null mutant showing sporulation defects)29, and ATP15 (an ATPase)
was upregulated whenever the RSF1 allele was in combination with IME1
and IME1nc, i.e., in SOO+O and SOOOO strains (Fig. S1B).

The connectivity of critical metabolic regulators changes with
SNP interactions
To elucidate the underlying regulatory mechanisms driving the differential
expressionpatterns, we tested howdifferent allelic combinations can impact
the co-expression patterns of genes and regulators that control the spor-
ulation phenotype.

Fig. 1 | Schematic representation outlines the key steps and methodologies
employed in our study. AOverview of yeast sporulation efficiency model where four
causal Oak SNPs in three genes IME1, RME1 and RSF1 contribute to sporulation
efficiency variation.BThe table represents thenotationof strains andmodels used in the
study and their respective genotypes. C The sporulation efficiency of each allele repla-
cement strain (the data were from Sudarsan and Cohen25). D The raw transcriptomic
data of 16 allele replacement panels were preprocessed and corrected for batch effects

using CombatSeq. Differentially expressed genes were obtained using DESeq2, and the
critical regulators were obtained from RIF analysis and further studied for connectivity
using PCIT analysis. An evaluation ofmodel extraction and thresholding methods was
performed to identify the best combination for integrating transcriptomic data into the
yeast genome-scalemetabolicmodel to reconstruct SNP-specificmetabolicmodels. The
change in intracellular fluxes between the wild type and the SNP models was studied
using GS-DFA. The figure was created with BioRender.com.
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Given that the SOOOO strain with four causal oak SNPs had the highest
sporulation efficiency,we examined the connectivity ofmetabolic regulators
that control the expression of differentially expressed genes in this strain
varied across other combinations of SNPs. For this, we applied Regulatory
Impact Factor (RIF)30 analysis to determine the critical transcription factors
(TF) that control the expression of differentially expressed genes in the
SOOOO strain. TheRIF analysis has beenused in various studies to identify the
critical transcription factors that control gene expression31,32. The algorithm
assigns a score to each transcription factor and classifies them as RIF-I and
RIF-II metrics. In brief, the RIF-I metric classified TFs that were differen-
tially co-expressedwith highly abundant differentially expressed genes. RIF-
II was used to identify the TFs with the altered ability to predict the abun-
dance of differentially expressed genes30. Using z-score cutoffs of the RIF-I
and RIF-II, we obtained 15 TFs as regulators of DEG expression

(Supplementary Data 2). The RIF-I analysis identified GCR1 (z-score =
2.40), which has the highest z-score value and is a transcriptional activator
of glycolysis33. The top candidate transcription factor from RIF-II analysis
was BAS1 (z-score = 2.18), a Myb-related TF that regulates the basal and
induced expression of genes of the purine and histidine biosynthesis
pathways34. Of these 15 regulators, we were able to identify sevenmetabolic
regulators:GCR133, GCR235 in glycolysis,ARG8036, LYS1437, andMET3238 in
aminoacidmetabolism,UPC2 involved in sterol biosynthesis39, andBAS1 in
histidine biosynthesis34.

Next, we explored how SNP interactions alter co-expression patterns.
We constructed co-expression networks for thewildtype vineyard and allele
replacement strains using the Partial Correlation and Information Theory
(PCIT) algorithm, as detailed in the ‘Methods’ section. We chose PCIT for
its ability to discern significant gene-to-gene associations by evaluating all

Fig. 2 | Transcriptional differences between the allele replacement strains.
A Number of upregulated and downregulated genes (LFC > 0.5 and LFC <−0.5)
identified using DESeq2 between wildtype vs. each SNP combination. B The
number of differentially expressed (LFC > 0.5 and LFC < 0.5) sporulation-specific
and metabolic genes identified using DESeq2 between wildtype vs. each SNP.
CVenn diagram analysis of upregulated genes in all strains withRSF1O and IME1O

SNP combinations (SOOOO, SOO+O, SO+OO, SO++O) compared to wildtype vineyard

strain. D Venn diagram plot for upregulated genes identified using DESeq2 with
LFC > 0.5 and p adj > 0.1 for three SNP combination strains (S+OOO, SO+OO, SOO+O

and SOOO+) and four oak SNP combination strain (SOOOO) strains in comparison
with the wildtype vineyard strain. E Heatmap representing the LFC values of
IME1,RIM4, andREC8 genes across all allele replacement strains compared to the
wildtype vineyard strain. The Venn diagrams were generated using a web
tool ‘Venn’.
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possible gene triplets, which helps filter out indirect correlations and reduce
false positives. Further, due to limited replicates (4 replicates per condition),
PCIT is advantageous over other conventional correlation analyses like
WGCNA as they may yield a high number of spurious associations. Our
analysis covered 6307 genes, applying a stringent correlation threshold
greater than |0.95|, which revealed distinct numbers of correlated pairs
across the wildtype and allele-specific networks, highlighting differences in
gene co-expression influenced by SNP interactions.

To investigate the co-expression patterns among key regulators, we
focusedon the interactions between the critical regulators identified through
Regulatory Impact Factor (RIF) analysis and the differentially expressed
genes between S++++ andSOOOO strains. Specifically, wefiltered co-expressed
gene pairs to include only those involving the 143 differentially expressed
genes and the 15 identified TFs from the RIF analysis. This approach
enabled us to construct allele-specific sub-networks with varying numbers
of nodes and edges (Supplementary Data 3). These allele-specific sub-net-
works were further analysed to understand how these TFs regulated gene
expression by varying their connectivity across the SNPs and their combi-
nations (Fig. 3A). The term ‘connectivity’ refers to the number of connec-
tions each node has in a network relative to the node with the highest
number of connections in that network, which is a proxy for the importance
of that node in the network31,32.We found that eachmetabolic regulator has
different connectivity across SNPcombinations. Inparticular,we couldonly
identify that the connectivity of the UPC2 gene was higher for high and
medium sporulating strains than for low sporulating strains, while other
regulators exhibited varying connectivity without a pattern (Fig. 3B). This
finding highlighted that the regulatory influence of transcription factors
could differ based on SNP combinations, which might lead to the same
phenotypic outcome but through distinct regulatory pathways or co-
expressionpatterns.Therefore, itwas essential to thoroughlyunderstand the
key metabolic shifts by studying the critical intracellular metabolic flux
alterations driven by the genetic interactions between the SNPs associated
with sporulation efficiency variation.

Context-specific metabolic models for each SNP and their
combinations showmetabolic heterogeneity
The gene expression levels do not directly correlate with the enzyme levels.
Hence, we leveraged GEMs to identify the metabolic flux alteration. As
previously established, several genes and pathways undergo deregulation
during yeast sporulation29,40. Furthermore, our analysis showed that the
combinations of the SNPs studied here activate different genes (Fig. 2A).

Hence, extracting only the active genes and pathways from the gen-
eralised yeast metabolic model was crucial to reconstructing SNP-specific
metabolic models. We generated context-specific metabolic models by
integrating the gene expression data of SNPs and their combination into
yeast GEM (Yeast 8.4.2)27 using three model extraction methods: iMAT5,
INIT9, and FASTCORE8. Briefly, iMAT (Integrative Metabolic Analysis
Tool) creates context-specific models by balancing the inclusion of core
reactions and the exclusion of non-core reactions. It requires the gene or
protein expression data to be classified into high, moderate, and low
expression categories, and it identifies a subnetwork that is abundant in
high-expression reactions and has few low-expression reactions. iMAT
maximises the number of reactions whose activity corresponds to their
expression level, assigningnon-zeroflux to the active reactions and zeroflux
to inactive ones. FASTCORE uses an iterative linear programming (LP)
approach to solving two LP problems. One maximises the number of core
reactions with non-zero flux, and the other minimises the number of
reactions required for functional support of core reactions. In this way,
FASTCORE constructs a consistent context-specific model with all the
predefined core reaction sets (highly expressed) in the given context. Other
non-core reactions are added only to provide support to the core reactions.
The extracted metabolic subnetwork will have no blocked reactions,
ensuring all reactions are flux-consistent and have a non-zero flux dis-
tribution under the given conditions. INIT (Integrative Network Inference
for Tissues) frames the model extraction problem as a mixed-integer LP

optimisation problem. It requires weights to be derived from the gene
expression data for all the reactions in the GEM. A positive weight corre-
sponds to evidence for the presence of the reaction, and a negative weight
corresponds to evidence for the absence of the reaction. INIT finds the
optimal trade-off between the inclusion of reactions with positive weights
and the exclusion of reactions with negative weights to identify the meta-
bolic network that defines the specific context.

Since these algorithms require the identification of core reactions (or
reaction weights) based on threshold and gene expression data, we
employed two thresholding methods, Standep41 and LocalGini42, which
were more effective at capturing housekeeping reactions than other
thresholding methods. Integrating the model extraction and thresholding
methods resulted in six combinations, namely, LocalGini-iMAT,LocalGini-
INIT, LocalGini-FASTCORE, Standep-iMAT, Standep-INIT and Standep-
FASTCORE, to extract SNP-specific metabolic models. The number of
reactions extracted by each of the six combinations is shown in Fig. 4A. The
three combinations, namely, LocalGini-iMAT, LocalGini-FASTCORE, and
Standep-FASTCORE, effectively captured most of the 56 meiosis-specific
reactionsmentioned inRay et al.20 (Fig. 4B). Further, through a comparative
enrichment analysis using a hypergeometric test, we found that models
derived with the LocalGini-iMAT combination exhibited higher enrich-
ment for meiosis-specific reactions (Fig. 4C), making LocalGini-iMAT
more specific compared to LocalGini-FASTCORE. Therefore, we pro-
ceeded with the SNP-specific models extracted using the LocalGini-iMAT
combination to gain further biological insights into howgenetic interactions
modulate intracellular metabolic fluxes to drive sporulation efficiency
variation.

SNP-specific models extracted from LocalGini-iMAT with the
number of genes, reactions, and metabolites present in each model are
shown in Table 1. We termed the M++++ model generated from the
wildtype vineyard strain the ‘null model’. The other SNP-specific models
were termed based on the oak alleles ‘O’ and vineyard as ‘+’ in the gene
order ‘IME1 IME1nc RME1nc RSF1’ (Table 1). To comprehensively
analyse the similarities and differences among the SNP-specific models
generated by LocalGini-iMAT, we quantified their metabolic hetero-
geneity and identified a core set of shared reactions. The metabolic
heterogeneity among the SNP-specific models was captured by calcu-
lating the Jaccard distance between each model (Fig. S2). We identified
401 common reactions across all the extractedmodels. We hypothesised
that these reactions form the core meiosis network, which was crucial
for the survival and sporulation of yeast strains in an acetate med-
ium. As expected, these reactions were significantly enriched with
pathways that play essential roles in sporulation, which include
carbon, glyoxylate and dicarboxylate, glycerolipid and glyceropho-
spholipid metabolism, pentose phosphate pathway, and amino acids
biosynthesis (Fig. S3).

SNPs activate unique subsystems associated with sporulation
efficiency variation
Since each SNP-specific model had different metabolic reactions, we
hypothesised that the observed sporulation efficiency variation could be
either due to the activation of new reactions in each model or variations in
intracellular flux within the meiosis core network. Using the M++++ null
model as a baseline, a subnetwork topology analysis of each SNPmodelwas
used to investigate the contribution of each SNP combination to the spor-
ulation efficiency variation. This analysis revealed that each SNPmodel had
uniquely enriched subsystems, a set of reactions involved sharing a common
function obtained using the flux enrichment analysis function (FEA.m)
provided in the COBRA toolbox (Supplementary Data 4). For example, the
modelwithRSF1ncSNP (M+++O) showedenrichment of valine, leucine, and
isoleucine degradation pathways, glycolysis, gluconeogenesis, pyruvate
metabolism pathways, and the TCA cycle (Fig. 5A). Using the subnetwork
topology analysis, we found metabolic pathways uniquely enriched for
respiration in the M+++O model (Fig. 5A), consistent with the previous
reports highlighting the role of the RSF1 gene in respiration during
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sporulation. Furthermore, purine metabolism is uniquely enriched only in
the M++O+ model with RME1nc SNP (Fig. 5A).

The IME1 coding variant affects the equilibrium between the func-
tional and non-functional forms of the Ime1 protein. IME1nc variant affects
the interactions between Rim11 and Ume6 and is crucial for initiating the
sporulation22,43. The study by Sudarsanam and Cohen25 revealed that IME1
coding and non-coding variants contribute to sporulation efficiency varia-
tion, with the coding variant explaining amore significant proportion of the

phenotype. Hence, we wanted to test how these variants in coding and non-
coding regions of the same protein influence the metabolic fluxes. A com-
parison of SNP-specific metabolic models, IME1 (MO+++) and IME1nc
(M+O++), revealed significant differences in the metabolic activity of these
two variants. Enrichment analysis of active reactions indicated that the
IME1 coding variant activated autophagy, one carbon pool by folate, pha-
gosome, glycerolipid metabolism, and propionate metabolism pathways
(Fig. S4A). In contrast, the IME1nc did not activate any of these metabolic

Fig. 3 | Analysis of connectivity of critical metabolic regulators. A Heatmap
showing the Connectivity of critical metabolic regulators identified using RIF ana-
lysis across combinations of SNPs. B Boxplot showing the connectivity of various
metabolic regulators across three sporulation levels: High, Medium, and Low. Each
box represents the distribution of connectivity values for individual regulators

within each sporulation category, with jittered points indicating individual data
points. A Kruskal-Wallis test was used to assess significant differences in con-
nectivity across sporulation levels ‘ns’ denotes non-significant differences, while ‘*’
indicates significant differences.
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pathways, which were activated in theMO+++model. As the model, M+O++

did not have an IME1 coding variant necessary to form a functional protein;
only the non-functional form of Ime1 protein would have been expressed.
This explains the observed differences between the models MO+++ and
M+O++, suggesting a link between the metabolic plasticity of Ime1 protein
functional and non-functional forms.

Further, we investigated whether, in comparison to their individual
effects, interactions between SNPs had the potential to selectively activate or
deactivate particular cellular pathways. In other words, we investigated
whether these interactions could result in synergistic or antagonistic effects
on specific metabolic reactions. To test this idea, we examined the combi-
nation of two coding SNPs, IME1RSF1 (MO++O) and twonon-coding SNPs,
IME1nc RME1nc (M+OO+), as well as their single SNPmodels, namely RSF1
(M+++O), IME1 (MO+++), RME1nc (M++O+), and IME1nc (M+O++). By
comparing reactions that were activated exclusively in the IME1 RSF1
(MO++O) model but not in the RSF1 (M+++O), IME1 (MO+++), and M++++

null model, we identified 113 reactions. These reactions were notably
enriched in purine and pyrimidine metabolism pathways (Fig. 5B and
Supplementary Data 5). Conversely, when comparing reactions that were
inactive in the MO++O model but active in the M+++O, MO+++, and M++++

models, we determined 271 reactions. These reactions were enriched in
various subsystems, including fatty acid biosynthesis, lipid metabolism, the

phosphatidyl inositol signalling pathway, steroid biosynthesis, etc. (Sup-
plementary Data 5 and Fig. 5C). Similarly, when comparing the RME1nc
(M++O+), IME1nc (M+O++), and IME1nc RME1nc (M+OO+) models, we
uncovered the combined role of RME1nc and IME1nc in synergistically
modulating the one-carbon pool by folate subsystems, encompassing the
glycine cleavage complex and tetrahydrofolate aminomethyl transferase
(Fig. S5 and Supplementary Data 6).

The impactofSNP-SNP interactionson intracellularfluxvariation
The analysis of the unique sub-network topology showed that combinations
of SNPs could activate sharedmetabolic pathways. However, it was unclear
whether SNPs couldmodify the flux distribution patterns of these pathways
to modulate phenotypic variation, i.e., whether a pathway was deregulated
in response to SNP-SNP interactions. Therefore,flux variations in common
reactions among SNP and null models were analysed to investigate flux
distribution patterns.

While the flux balance analysis (FBA)44 for a given constraint can find
multiple potential flux values for reactions in a metabolic model, it cannot
ensure the uniqueness of a solution. To overcome this limitation in FBA, we
used a flux sampling approach to assess variations in metabolic flux dis-
tribution using the genome-scale differential flux analysis (GS-DFA)45.
Briefly, we first sampled the whole solution space of each reaction in the

Fig. 4 | LocalGini-iMAT shows higher enrichment for meiosis-specific reactions.
A Fraction of reactions extracted from each MEM and thresholding method.
B Fraction of meiosis-specific reactions extracted from eachMEM and thresholding

method. C Box plot representing the p values obtained using a hypergeometric test
for models enriched for meiosis-specific reactions.
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model using optGpSampler, a random flux sampling method. We chose
optGpSampler because of its advantages of faster convergence and reduced
run time compared to traditional samplers like the GP sampler and ACHR,
facilitating efficient sampling of large solution spaces. This allowed us to
generate 10,000 flux solutions for each model, which spans the whole flux
space (see ‘Methods’ for details). While nucleotide synthesis could be con-
sidered anobjective during the early stages of sporulation, theprogressionof
meiosis can vary between strains due to SNP effects. For example, a strain
with a single SNPmay not be undergoing activemeiosis at the same time as
another strain with four SNPs that is progressing rapidly. Therefore,
selecting a single objective function to predict flux distributions would not
adequately capture the dynamic and SNP-dependent variations in spor-
ulation. Consequently, we performed flux sampling without an objective
function to bypass these limitations and more accurately represent the
metabolic fluxes influenced by SNPs across different strains.

Next, we employed GS-DFA for its capability to detect significant
flux dysregulation by comparing flux distributions between SNP-
specific models and the null model (M++++) using a stringent statistical
test and flux change cutoff (see methods). This approach provided a
robust framework for identifying reactions significantly modulated by
specific SNPs and their combinations. We identified upregulated
(Supplementary Data 7) and downregulated (Supplementary Data 8)
reactions in each SNP model compared to the null model. GS-DFA
analysis showed that the upregulated reactions were primarily enriched
in the six subsystems involved in the biosynthesis of amino acids,
antibiotics, secondary metabolites, glycerophospholipid metabolism,
glycerolipid metabolism, and pentose phosphate pathway in the strain
with the four oak allele combination SOOOO (MOOOO, Fig. 6A and Sup-
plementary Data 9).

AsMOOOOmodel created from strain SOOOO had the highest sporulation
efficiency, we checked if these six subsystems were present in the other high
sporulation efficiency strainmodels:M+OOO,MO+OO,MOO+O andMOOOO.We
found that these models contained different subsets of the six subsystems
observed in the MOOOO model, emphasising the role of intracellular flux
variations in these pathways as significant contributors to the observed
differences in sporulation efficiency across the strains (Fig. 6A). The two
subsystems, glycerophospholipid and glycerolipid metabolism, present in
all models suggested that they were essential for sporulation.

Further, we explored how the functional (with the IME1 coding var-
iant) and non-functional forms (without the IME1 coding variant) of the
Ime1 protein could change the flux distribution patterns to modulate
sporulation efficiency variation. From the GS-DFA analysis, we found that
reactions involved in glycerolipid, glycerophospholipid metabolism, and
biosynthesis of secondary metabolites were upregulated only in IME1
IME1nc (MOO++) and IME1 (MO+++) models but not in IME1nc (M+O++)
model (Fig. S4B). Interestingly, we could also predict the metabolic con-
sequence of the non-functional form of IME1 (IME1nc, M+O++), which
upregulated the reactions involved in theperoxisome, fatty acidmetabolism,
fatty acid degradation, and fatty acid biosynthesis (Fig. S4B).

Upon hierarchically clustering the flux change (FC) values of upre-
gulated reactions in the MOOOO model across other models, we found that
models were clustered into two groups (Fig. S6). The presence or absence of
the IME1nc variant primarily determined this clustering. Further, we found
that SNP combinations without the IME1nc variant, i.e., MO+OO, MO++O,
MO+O+, M++OO, M++O+, MO+++, andMOOOO models led to an increased flux
through reactions involved in the pentose phosphate pathway (PPP, Table 2
and SupplementaryData 9). This result was consistent with the flux balance
analysis performed using nucleotide biosynthesis as the objective function
and flux variability analysis46, where we found that the PPP reactions were
upregulated in these models (Fig. S7 and Supplementary Data 10). The
increased flux through PPP reactions was inversely coupled with the
glucose-6-phosphate isomerase reaction. This result indicated that the flux
was redirected through the PPP for biosynthesis rather than glycolysis for
energy generation (Fig. 6B). In highly sporulating SNP-specific models
MOO+O,MOOO+, andM+OOO that had IME1nc variant andwhere the PPPwas
not upregulated (Fig. 6A, B), showed enrichment of reactions involved in
autophagy and phagosomes (Fig. 6C). These findings were interesting since
previous studies have established a correlation between autophagy and yeast
sporulation, and the deletion of several autophagy-related genes has shown
reduced sporulation47,48. Thesefindings demonstrated the significant impact
of SNPs and their interactions on themetabolicflux distribution, explaining
how these interactions affected sporulation efficiency.

Discussion
By analysing the gene expression data from an allele replacement panel of
four SNPs, we showed how SNPs interacted and modulated the metabolic
pathways associated with sporulation efficiency variation.We showed a few
cases where specific SNP combinations could synergistically or antag-
onistically modulate certain metabolic reactions. We identified that
nucleotide metabolism (purine and pyrimidine metabolism) was synergis-
tically modulated, while steroid biosynthesis was antagonistically modu-
lated when coding variants of RSF1 and IME1 were combined. These
insights gave us a better understanding of how SNP interactions could
redirect metabolic flux, prioritising nucleotide synthesis over steroid
synthesis in the early stages of meiotic progression during sporulation.
Previous studies have underscored the pivotal role of pyrimidine metabo-
lism in facilitating efficient meiotic progression49. Further, we showed the
SNP-specific modulation of the glycine cleavage system, where the SNPs of
RME1nc and IME1nc were synergistic.

We characterised the intracellular metabolic flux states of each SNP-
specificmodel10,45.UsingGS-DFAanalysis, we identifiedflux variation in six
major pathways as significant contributors to sporulation efficiency varia-
tion. Interestingly, our GS-DFA analysis did not identify the fundamental
reactions that were known to constitute the meiosis-specific metabolic
model20. These included the TCA cycle, glyoxylate cycle, and acetate uptake,
which have been shown to influence sporulation at an early stage through
gene-knockout approaches. However, we captured these pathways in our
core meiosis-specific network by comparing the common reactions shared
among SNP-specific models. These findings suggested that SNPs and their
interactions modulate sporulation efficiency variation by influencing
metabolic reactions beyond the essential ones required for sporulation. This
observationhighlighted the specific effects of SNP-level variations, revealing
regulatory influences often ignored in gene knockout studies in metabolic

Table 1 | Number of reactions, metabolites, and genes in each
SNP-specific model generated using LocalGini-iMAT
thresholding

Models Genes Reactions Metabolites Genotypes

M++++ 596 1728 1231 IME1VIME1ncVRME1VRSF1V

MO+++ 571 1720 1219 IME1OIME1ncVRME1VRSF1V

M+O++ 504 1247 1012 IME1VIME1ncORME1VRSF1V

M++O+ 565 1644 1155 IME1VIME1ncVRME1ORSF1V

M+++O 591 1731 1237 IME1VIME1ncVRME1VRSF1O

MOO++ 579 1717 1222 IME1OIME1ncORME1VRSF1V

MO+O+ 515 1560 1088 IME1OIME1ncVRME1ORSF1V

MO++O 570 1604 1139 IME1OIME1ncVRME1VRSF1O

M+OO+ 602 1750 1247 IME1VIME1ncORME1ORSF1V

M+O+O 595 1742 1238 IME1VIME1ncORME1VRSF1O

M++OO 594 1733 1233 IME1VIME1ncVRME1ORSF1O

M+OOO 557 1737 1242 IME1VIME1ncORME1ORSF1O

MO+OO 569 1696 1209 IME1OIME1ncVRME1ORSF1O

MOO+O 595 1745 1246 IME1OIME1ncORME1VRSF1O

MOOO+ 598 1737 1240 IME1OIME1ncORME1ORSF1V

MOOOO 603 1726 1227 IME1OIME1ncORME1ORSF1O

‘O’ denotes the oak allele, and ‘V’ indicates the vineyard allele.
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Fig. 5 | SNPs activate unique subsystems associated with sporulation efficiency
variation. AMetabolic subsystems enrichment analysis for reactions that are over-
represented in each comparison that are present exclusively in single SNP models
compared with the wildtypemodel. The size of the dots represents the reaction ratio,
while the colour intensity indicates the adjusted p value obtained using the hyper-
geometric test. B Synergistic effect of RSF1O and IME1O in modulating nucleotide
metabolism. Here, the violin plots represent the flux distribution obtained by

optGpSampler for representative key reactions involved in purine and pyrimidine
metabolism compared across null (M++++), RSF1OIME1O (MO++O), RSF1O (M+++O)
and IME1O (MO+++) models. C Antagonistic effect of RSF1O and IME1O in mod-
ulating Steroid metabolism. Here, the violin plots represent the flux distribution
obtained by optGpSampler for representative key reactions involved in Steroid
biosynthesis compared across null (M++++), RSF1OIME1O (MO++O), RSF1O (M+++O)
and IME1O (MO+++) models.
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Fig. 6 | Pentose phosphate pathway is differentially regulated in SNP models.
A Flux enrichment plots for upregulated reactions in three and four SNP combi-
nation models (M+OOO

, M
O+OO

, M
OO+O

, M
OOO+ and MOOOO) compared to the null

(M++++) model obtained after GS-DFA analysis. The size of the dots represents the
reaction ratio, while the colour intensity indicates the adjusted p value obtained
using the hypergeometric test. B Box plots representing the flux distribution of key
reactions involved in the pentose phosphate pathway obtained from optGpSampler

for three and four SNP combination models (M+OOO
, M

O+OO
, M

OO+O
, M

OOO+ and
MOOOO) compared to the null (M++++) model. C Flux enrichment plots for unique
reactions in highly sporulating strains compared to the null model (M++++). The size
of the dots represents the reaction ratio, while the colour intensity indicates the
adjusted p value obtained using the hypergeometric test.D Proposed mechanism of
autophagy as a pentose-phosphate pathway-dependent compensatory mechanism
during the early phase of yeast sporulation (created with Biorender.com).
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models, which focus on complete pathway loss. Our analysis also predicted
the differential regulation of the pentose phosphate pathway in an IME1nc-
specificmanner. The pentose phosphate pathway is critical in supplying the
cell with the necessary building blocks and reducing equivalents needed for
the biosynthesis of nucleotides and amino acids50. Our hypothesis suggested
that autophagy could produce the essential precursors for nucleotide and
amino acid biosynthesis by degrading and recycling cellular components
compensating for PPP, particularly in models where PPP upregulation was
absent (Fig. 6D). Previous studies have shownautophagy as a compensatory
mechanism for the PPP in tumour cells51. It would be interesting to
experimentally validate whether autophagosomes are induced when the
PPP reaction is downregulated. The reactions identified as upregulated or
downregulated based on flux change do not necessarily correspond to dif-
ferential gene expression. These changes can also be attributed to the post-
transcriptional regulation of genes. Thus, integrating SNP and their
combination-specific gene expression data in GEM provided several novel
mechanisms by which phenotypic variation in a well-studied trait was
regulated at the molecular level.

Genome-wide association studies (GWAS) revealed that multiple
SNPs, each exerting a modest impact on a trait, contributed to the com-
plexity of genetic effects through additive and epistatic interactions52,53.
Several studies have reported complex genetic interactions between iden-
tified SNPs in metabolic diseases54,55. It is crucial to examine intermediate
phenotypes such as intracellular metabolic flux to address the challenge of
understanding how SNPs and their interactions influence complex traits,
particularly the variant-to-function (V2F) relationship56. A recent study has
used GWAS variant data to develop personalised organ-specific metabolic
models for 524,615 individuals of the INTERVAL andUKBiobank cohorts
to clarify the impact of genetic variations on the metabolic processes
implicated in coronary artery disease57. Applying SNP-specific genome-
scale metabolic models that integrate transcriptomic andmetabolomic data
will help identify known and novel pathways perturbed by SNPs and their
combinations, leading to clearer variant-to-function pathways.

Methods
RNA-Seq data, preprocessing, and differential expression
analysis
Raw RNA sequence read data for single SNP and their combinations was
downloaded from NCBI GEO (accession number GSE55409)25 for 16 iso-
genic allele replacement strains of the oak alleles of four SNPs IME1,

IME1nc, RME1nc andRSF1. In thementioned study, cultures of the 16 allele
replacement strains containing oak causal variants (described in the
manuscript) in all possible combinations in the vineyard background were
grown in a YPDmedium and incubated for 2 h in 1% potassium acetate to
initiate sporulation. Total RNA was extracted from the cell pellets on dif-
ferent days until four biological replicates were obtained for each strain.
Therewere 63 samples,with each strainhaving four replicates, except for the
strain harbouring the IME1c (S++O+) variant, which had only three repli-
cates. The reads were converted to Fastq format using the command ‘Fas-
tqdump’ in the SRA toolkit. The FastQC and MutiQC were performed for
quality control58. The reads were mapped to reference Saccharomyces cer-
evisiae R64-1-1.105 downloaded from the Ensembl database (https://ftp.
ensembl.org/pub/release110/fasta/saccharomyces_cerevisiae/cdna/Saccha
romyces_cerevisiae.R64-1-1.cdna.all.fa.gz) using Salmon (an alignment-
free tool), accounting for GC and sequence bias59. The transcript TPM
values obtained from Salmon were converted to gene-level counts using
Tximport v1.4.060. The effect of day on the gene expression values was
removed using ComBatseq61.

To identify the genes that are differentially expressed between the
wildtype vineyard strain and each allele replacement strain, we per-
formed differential gene expression analysis using DESeq262. In brief,
the batch-corrected untransformed raw counts were given as input to
theDESeq2. After filtering for low counts with less than 100 counts in all
63 samples, 6305 genes out of 6571 were selected for further processing.
The effect of the day was included in the design model of DESeq2 to
account for the contribution of covariates to the total gene expression.
log2 fold changes (LFC) shrinkage using the alpegm method63, with a
false discovery rate of 10% (p value adjusted using the Benjamini-
Hochberg method), was used to identify differentially expressed genes
(DEGs). Genes with LFC values greater than 0.5 and less than −0.5 are
considered upregulated and down-regulated, respectively. The upre-
gulated DEGs obtained for each allele replacement strain are given as
input to ClueGO64 from Cytoscape65 for gene ontology and functional
annotations analysis.

Regulatory impact factor (RIF) analysis
The CeTF package in R was utilised to perform the Regulatory Impact
Factors analysis66. The Variance stabilising transformation (VST) was
performed on the gene expression data of wildtype vineyard strain and
strain with four oak SNPs. It was given as input for the RIF analysis as it
required two contrasting conditions. The TFs, downloaded from the
Yeastract database (http://www.yeastract.com)67 were contrasted to the list
of DEGs identified by comparing the wildtype vineyard strain (i.e., a strain
withno SNPs) to the strainwith all four oak SNPcombinations. RIF analysis
classifies TFs into two categories: RIF-I and RIF-II. RIF-I focuses on TFs
consistently exhibiting the strongest differential co-expression with highly
abundant and differentially expressed genes. In contrast, RIF-II identifies
TFs that provide predictive evidence for changes in the abundance of DE
genes. The TFs identified using the RIF analysis with scores deviating ±
1.96 SD from the mean were considered significant and termed ‘critical
regulators’.

PCIT and connectivity analysis
The Partial Correlation and Information Theory (PCIT) approach68 was
used to arrive at co-expression networks for wildtype vineyard strain and 14
SNP combinations except for strain with IME1O, which had only three
replicates. The correlation of |0.95| and based on the p value < 0.05was used
as a threshold for arriving at a significant association (this threshold was
chosen to arrive at a maximum number of significant edges)31. Further, the
DEGs (specific for wild type vs. four SNP combination strains) and critical
regulators identified using the RIF analysis are filtered to arrive at sub-
networks for each SNP-specific network. The individual co-expression sub-
networks forwildtype vineyard strain and 14 allele replacement strainswere
visualised using Cytoscape65 version (3.9.1). Each subnetwork was analysed
for network properties using the Cytoscape plug-in NetworkAnalyser 4.4.8.

Table 2 | Differential regulation of pentose phosphate pathway
subsystemacrossSNPmodels (‘O’denotes theoakallele, and
‘V’ indicates the vineyard allele)

PPP status Genotype Models

PPP similar to the null model
(M++++)
(IME1VIME1ncVRME1VRSF1V)

IME1VIME1ncORME1ORSF1V M+OO+

IME1OIME1ncORME1VRSF1V MOO++

IME1OIME1ncORME1ORSF1V MOOO+

IME1VIME1ncORME1ORSF1O M+OOO

IME1OIME1ncORME1VRSF1O MOO+O

IME1VIME1ncVRME1VRSF1O M+++O

IME1VIME1ncORME1VRSF1V M+O++

IME1VIME1ncORME1VRSF1O M+O+O

PPP upregulation IME1VIME1ncVRME1ORSF1V M++O+

IME1OIME1ncVRME1VRSF1V MO+++

IME1OIME1ncVRME1ORSF1V MO+O+

IME1VIME1ncVRME1ORSF1O M++OO

IME1OIME1ncVRME1VRSF1O MO++O

IME1OIME1ncVRME1ORSF1O MO+OO

IME1OIME1ncORME1ORSF1O MOOOO
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The connectivity for each critical regulator was identified by dividing the
degree of that regulator in any specific network with the highest degree in
that network31,32. The connectivity of each critical regulator was then
compared across each SNP combination and was visualised using the
Pheatmap package in R (v1.0.12, https://CRAN.R-project.org/package=
pheatmap).

An evaluation of model extraction and thresholding methods for
reconstructing SNP-specific metabolic models
Yeast 8.4.227, a commonly used yeast GEMmodel, was used in this study
(https://github.com/sysbiochalmers/yeast-gem). This GEM had 1150
genes, 4058 reactions, and 2742 metabolites. The bounds of exchange
reactions of the GEM were changed to reflect the early stages of the
sporulation state appropriately. For this, we restricted the intake of
glucose and nitrogen (Lower bound = Upper bound = 0 [mmol/(g DW
h)]) while allowing an unrestricted supply of oxygen and acetate (Lower
bound =−1000 [mmol/(g DW h)])20.

The gene expression data (TPM values) averaged across replicates of
wild type, and 15 allele replacement strains were preprocessed using our
novel preprocessing algorithm LocalGini thresholding42 and Standep41 and
integrated into Yeast 8.4.2 using the model extraction methods (MEMs),
iMAT5, INIT9 and FASTCORE8 algorithms that did not require any
objective function were used to build the models.

LocalGini thresholding
The LocalGini algorithm employs an inequality metric, the Gini coefficient,
to identify the high and low expressed genes as defined below. Given the
gene expressionmatrix (G) of sizem× n, the rows representedmgenes, and
the columns representednstrains.Hence, the element,Gi;j 2 ½0;1Þwas the
expression value of the ith gene for the jth strain. The Gini coefficient of the
gene i (GCi) was computed as:

GCi ¼
Pn

k¼1

Pn
j¼1 Gi;k � Gi;j

�
�
�

�
�
�

2n2 �Gi

where, nwas the total number of strains, and �Gi was themean expression of
the ith gene across the strains. Anm-dimensional vector ofGini coefficients,
GC, was constructed. GC was further scaled to percentile values. The per-
centile value of the corresponding rows in the gene-expression matrix, G,
was taken as the LocalGini threshold.

For iMAT, if a gene’s expression was greater than the obtained
threshold value, itwas included in thehigh-expressedgene set (HG-set), and
if a gene’s expression value was lesser than the obtained value, it was
included in the low-expressed gene set (LG-set). Further on, genes with
expression values above the 90th percentile were included in the HG-set,
and geneswith expression values below the 10th percentile were included in
the LG-set, regardless of their Gini coefficient. For FASTCORE, if a gene’s
expression was greater than the obtained threshold value, it was included in
the core gene set. Further on, genes with expression values above the 90th
percentile were included in the core gene set. Genes with expression values
below the 10th percentilewere excluded from the core gene set, regardless of
theirGini coefficient. For INIT, the reaction activity scoreswere obtainedby
normalising the gene expression values with respect to the thresholds. The
minimum value of the reaction activity scores was set to −10.

The Gene-Protein-Reaction (GPR) rules in Yeast 8.4.2 were utilised to
map the genes to the reactions. Reactions without gene evidence, such as
spontaneous, diffusion, and transport reactions, as well as reactions without
GPR relation, were assigned to the moderately expressed reaction set (MR-
set) in the case of iMAT, non-core reactions in the case of FASTCORE and
given a score of 0 in case of INIT.

Preprocessing using Standep
StanDep hierarchically clusters the genes with similar expression patterns
across the tissues and provides a cluster-specific threshold. Euclidean

distance and complete linkagemetrics were used for hierarchical clustering.
The cluster-specific threshold,+c, for the cluster c, was calculated as fol-
lows:

ϕc ¼ ðθc � minðθcÞÞ �
100

maxðθc � minðθcÞÞ
; ϕc 2 ½0; 100�

θc ¼ f σc
� �þ g μc

� �

f σc
� � ¼ σc � Δ

� �

max σc � Δ
� �

g μc
� � ¼ μc �M

here, θc was the raw threshold value for cluster c, μc and, σc, which was the
mean and standard deviation of the cluster, respectively.M andΔ, were the
mean and standard deviation of the entire dataset, respectively. These
thresholdswere applied to the enzyme expression values, i.e. only the ‘AND’
rule in the GPR relation was resolved.

For FASTCORE and iMAT, the core and high-expressed reaction sets
included enzyme expression values greater than the threshold. For INIT
scores, the distance between the threshold and the expression value was
provided as scores.

The yeast cells in the sporulationmedium showed an increased rate of
nucleotide synthesis during the early phase20, the reaction catalysed by
glucose-6-phosphate dehydrogenase (‘r_0466’) being the first step of the
pentose phosphate pathway. Hence, we ensured the glucose-6-phosphate
dehydrogenase (‘r_0466’) and non-growth associatedmaintenance reaction
(‘r_4046’) were present in all the extracted context-specific models. This
resulted in the reconstruction of 15 SNP-specific models and a null model
for each thresholding and MEM combination. Further, we evaluated the
performance of each method for its ability to capture most of the meiosis-
specific reactions20 in each SNP-specific model. Then, we employed a
hypergeometric test to compare the enrichment of the meiosis-specific
reactions in each method. The models generated from the optimal thresh-
olding andMEM identified in our evaluation were used for further analysis.

Tounderstand themetabolic heterogeneity of each extractedmodel, we
identified the JaccarddistancebetweeneachSNP-specificmodel. Further,we
identified reactions in each SNP-specific model that were not in the null
model. These reactions, active in SNP models while not in the null model,
were searched for significantly enriched subsystems using the flux enrich-
ment analysis function (FEA:m) provided in the COBRA toolbox69. In brief,
FEA:m used a hypergeometric 1-sided test (α = 0.05) and FDR correction
(adjusted p value < 0.05) to obtain significantly enriched subsystems.

Genome-scale differential flux analysis (GS-DFA) using a flux
sampling approach
To discern how each SNP and their combinations can modulate the
intracellularfluxes to show sporulation efficiencyvariation,we leveraged the
random flux sampling approach, which acquires a significant number of
evenly distributed solutions over the whole solution space and does not
require an objective function.We adopted a previously developedprotocol45

to identify themost significantly dysregulated reactions in the presence of a
particular SNP and their combination by comparing the null and each SNP
models. However, we modified the pipeline to use an optGpSampler70

instead of an ACHR sampler. This modification was based on previous
studies demonstrating the optGpSampler’s advantage in faster convergence
and reduced run time compared to the ACHR sampler71. The optGpSam-
pler inCOBRApy version 0.1072 was used in this study to sample 10,000flux
solutions, and the thinning factor was set to 100 for all models. This was to
ensure the spanning of the whole flux space and to obtain sparse and
uncorrelated fluxes45. Let, XSNP and Xnull , be the flux distributions of a
particular reaction in SNP-specific and null models. We identified the
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significantly deregulated reactions in each SNPmodel compared to the null
model using a two-sidedKolmogorov-Smirnov test with a significance level
0.05 (adjusted pvalueusing theBenjamini-Hochbergmethod).Upregulated
and downregulated reactions were identified from these dysregulated
reactions using the flux change value obtained. The reactions with flux
change greater than 0.82 were considered upregulated, and flux change less
than−0.82 were considered downregulated, indicating ten times higher or
lower fold change in flux in the SNP model compared to the null model.

The flux change was calculated for each reaction as follows:

Flux change ¼
�XSNP � �Xnull
�XSNP þ �Xnull

�
�

�
�

where, �XSNP and �Xnull , the arithmetic means of the flux distributions for a
given reaction in SNP and null models, respectively.

Flux balance and flux variability analysis
Using the LocalGini-iMAT-derived models, we performed flux balance
analysis44 using nucleotide biosynthesis (‘r_0466’) as objective function20

and flux variability analysis46 for the reactions in the null and each SNP-
specific model. The function fluxVariability.m in the COBRA toolbox was
used to get the minimum and maximum possible flux values for each
reaction. We used NGAM (Non-Growth Associated Maintenance Reac-
tion) as the objective function, with the upper bound set at 1000 and the
optimal percentage value set at 2%. This ensured that the metabolic reac-
tions required for the cell’s survival but not essential for their growth were
active in the models. As previously described, we calculated the flux span
ratio (FSR) for each reaction that was common between the null and SNP-
specific models2. FSR for a reaction was the ratio of flux ranges (max
flux–min flux) of the SNP-specific model to the null model. Reactions with
FSR less than 0.5 and greater than two were considered downregulated and
upregulated reactions, respectively. Further, the upregulated and down-
regulated reactions were checked for subsystem enrichment using flux
enrichment analysis as described in previous sections.

COBRA toolbox and COBRApy setup
COBRA Toolbox version 3.0.0 and COBRApy version 0.10.1 onMATLAB
R2021b andPython version 3.5.2, respectively. The optimiser used for linear
programming and mixed-integer linear programming optimisation was
Gurobi, version 8.0.0. optGpSampler was run using parallel processes. We
used customised Python scripts for statistical analysis and visualisation of
flux sampling results.

Data availability
All the RNAseq data used in this paper are available from NCBI GEO
accession number GSE55409. All other datasets used in the paper are
mentioned in the ‘Methods’ section.

Code availability
The codes used in this paper and all generated models are available in
Zenodo (https://doi.org/10.5281/zenodo.13917841)73.
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