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The broadband transport theory approach to model internal
wave induced scattering across deep water acoustic time-fronts

Sivaselvi Periyasamy and Tarun K. Chandrayadulaa)

Department of Ocean Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India

ABSTRACT:
There are currently no models to fully predict the effects of internal wave induced scattering on acoustic pulses.

Existing models, which predict time domain statistics, either use the ray-based path integral method or Monte Carlo

type simulations. The path integral method fails to accurately predict all of the effects of scattering. The Monte

Carlo methods base the statistics on ensemble averages and are not physics-based models. This paper overcomes

these limitations by using the modes of the waveguide in a transport theory application. The transport theory equa-

tions have, thus far, been used only to explain diffusion of mode intensities and decorrelation due to internal waves

at individual frequencies. This paper extends the current narrowband application predict mode correlations across

different frequencies and, from that, the broadband time-front, time wander, travel time bias, and the amount of

spread in intensity across time and depth. To validate these predictions, this paper uses separate parabolic equation

simulations. The comparisons between the two are good, suggesting a success for the mode-based transport theory

approach. VC 2023 Acoustical Society of America. https://doi.org/10.1121/10.0017102

(Received 13 July 2022; revised 21 December 2022; accepted 12 January 2023; published online 6 February 2023)

[Editor: Oleg A. Godin] Pages: 895–908

I. INTRODUCTION

A typical model for a deep water acoustic time-front

consists of well-defined ray-like early arrivals and an ener-

getic finale with a complicated interference pattern (Munk

et al., 1995). Internal wave induced sound speed perturba-

tions cause scattering of the time-front. The scattering

effects include loss or gain in intensity level, temporal

spreading, travel time fluctuations or wander, and travel

time bias. In spite of the scattering, the early ray-like arriv-

als are still coherent across depth. The finale, however, does

not hold its interference pattern and is much smeared in

time and depth. The time-front also shows energy at depths

where no signals are expected to arrive. The areas, called

“shadow zones,” are, thus, ensonified due to scattering

(Dushaw et al., 1999; Van Uffelen et al., 2009).

Previous studies on pulse propagation through internal

waves used ray-based path integral methods to predict the

travel time statistics, such as pulse wander and temporal

spread (Andrew et al., 2016; Colosi et al., 2019; Colosi

et al., 1999; Reynolds et al., 1985). Ray methods, by defini-

tion, are ideally suited for infinitely high frequencies. The

rays, hence, do not account for the diffraction effects in the

finale. The path integral method, in its current form, does

not adequately model the temporal spread of the finale

(Andrew et al., 2016). Further, the path integral method

relies on calculations around eigenrays predicted for the

background environment. In the shadow zones, eigenray cal-

culations, which do not include scattering, predict nil arriv-

als. The path integral method, thus, cannot predict the signal

statistics in those areas. In addition to ray methods, para-

bolic equation (PE) simulations have also been used to pre-

dict the pulse statistics (Colosi et al., 1994; Udovydchenkov

et al., 2012; Van Uffelen et al., 2009; Van Uffelen et al.,
2010). The PE statistics are estimated from Monte Carlo

runs for a specific set of internal wave model parameters. It

is, though, difficult to relate the physics and statistics in a

Monte Carlo application.

To include all the relevant propagation physics, this

paper uses the modes of deep water waveguide. The modes,

/nðzÞ, are solutions of the depth dependent wave equation,

d2/nðzÞ
dz2

þ x2=c2ðzÞ � k2
n

� �
/nðzÞ ¼ 0: (1)

The mode shapes are a function of frequency, x, and the

sound speed profile, c(z). In the real ocean, the sound speed

varies as a function of range, r, and, hence, the mode shapes,

/nðzÞ, as well. The significant changes in the sound speed

across range are due to large-scale oceanographic variabil-

ity. This paper, however, assumes a constant background

across the range and, hence, uses the same set of modes for

all of the calculations. The pressure field, pðr; z;xÞ, at range

r, depth z, and frequency x, can be expressed as

pðr; z;xÞ ¼
XN

n¼1

anðr;xÞ/nðz;xÞeiknrffiffiffiffiffiffiffi
knr
p ; (2)

where anðr;xÞ are complex mode amplitudes, and kn the

respective wavenumbers. The initial mode amplitudes are

given by anðr;xÞ ¼ /nðzs;xÞ, where zs is the source depth.

On further propagation in range, the modes suffera)Electronic mail: tkchandr@iitm.ac.in
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cylindrical spreading, 1=
ffiffiffiffiffiffiffi
knr
p

, and incur phases equal to knr

to travel with group velocities,

vg;n ¼
dx
dkn

: (3)

To connect the mean intensity, hIðr; z; tÞi, and the mode

amplitudes, this paper express the time-front as a Fourier

integral, where

hIðr; z; tÞi ¼
ð

x1

ð
x2

hpðr; z;x1Þp�ðr; z;x2Þieiðx1�x2Þtdx1dx2;

(4)

and hpðr; z;x1Þp�ðr; z;x2Þi is the cross-frequency correla-

tion function of the pressure field. Using Eq. (2), the expres-

sion for mean intensity becomes

hIðr; z; tÞi ¼
ð

x1

ð
x2

XN

n¼1

XN

p¼1

hanðx1Þa�pðx2ÞiðrÞ
r

�
/nðz;x1Þ/pðz;x2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

knðx1Þkpðx2Þ
p eiðx1�x2Þtdx1dx2; (5)

where hanðx1Þa�pðx2ÞiðrÞ denotes the frequency correlation

of modes (broadband mode statistics) across range. The

cross-mode cross-frequency correlations are the central

focus of this paper. Virovlyansky (2015) and Virovlyansky

and Kazarova (2016) used the Wentzel-Kramers-Brillouin

(WKB) approximation to derive a ray-based approximation

to modes and their correlation functions across range. The

WKB methods are attractive because they yield analytical

expressions for the cross-mode correlations and, yet, ideally

are suited only for high frequencies. Also, Virovlyansky

(2015) and, later, Virovlyansky and Kazarova (2016) only

presented simulations for limited ranges with discrepancies

in the model comparisons for the longest ranges around

500 km. The WKB methods are also better suited for the

early arrivals, which are more akin to rays than the signals

around the finale. This paper will predict scattering statistics

for long ranges by going up to 1000 km and focusing on all

parts of the time-front and, hence, eschews any WKB

approximations and uses the exact modes of the waveguide

as computed from Eq. (1).

Transport theory is used here to predict the cross-

frequency correlation of the modes across range. The trans-

port theory methods are basically diffusion equations, which

are mathematically similar to approaches in heat and semi-

conductor physics (Van Kampen, 2007). In underwater

acoustics, transport theory has been applied to model the

diffusion of second moments of mode amplitudes,

hanðxÞa�pðxÞi, across range (Colosi et al., 2013; Colosi and

Morozov, 2009; Creamer, 1996). Transport theory connects

the rate of spread of energy among the acoustic modes with

oceanographic parameters such as strength of the internal

waves and the correlation-scales of the Garrett-Munk (GM)

wave spectrum (Garrett and Munk, 1972, 1975). For a

broadband application, Chandrayadula et al. (2013a) used

the adiabatic phase approximation to construct the pulses for

the lowest modes and compared them with observations

from the Philippine Sea 2010 (PhilSea10) experiment. The

adiabatic approximation was sufficient to model the lowest

modes (1–15) in the PhilSea10 experiment. Chandrayadula

et al. (2013a) used the mode travel time sensitivity kernels

to suggest that the reason for such good agreement with

only an approximate model was potentially because of the

nature of the dispersion for the lowest modes in the back-

ground PhilSea10 acoustic environment (Worcester et al.,
2013). For the time-front predictions of the finale in

PhilSea10, which involves combinations across the low

modes, however, Periyasamy et al. (2022) showed that the

adiabatic approximation was insufficient and required solv-

ing the transport theory for all the cross-modal cross-

frequency correlations. It is currently not known if the adia-

batic approximation is applicable to the low modes in a

universal manner without regard to the background environ-

ment. Also, the calculations for the finale by Periyasamy

et al. (2022) only used a subset of modes, which is not

enough to model the other parts of the time-front. A full test

of the broadband transport theory, which includes all of the

parts of the time-front is awaited. Some of the scattering

effects, such as the stability of the early ray-like arrivals,

and the ensonification of shadow zones, which involve the

high modes, have still not been examined fully.

This paper performs broadband transport theory predic-

tions to model the mean time-front for a source bandwidth

of 60–90 Hz up to 1000 km. There are two reasons to prefer

this bandwidth. The first reason is that these low frequencies

keep the modes at a manageable number in the transport the-

ory calculations. The second is that the frequencies are simi-

lar to prior deep water experiments in the North Pacific

Ocean (Colosi and the ATOC Group, 1999; Mercer et al.,
2009). The predictions, thus, use the background environ-

mental profiles (sound speed, buoyancy profile, potential

sound speed gradient, and the root mean square (RMS)

sound speed perturbations) based on in situ measurements

during the Long Range Ocean Acoustic Propagation

Experiment (LOAPEX) conducted in 2004, which was a

part of the larger North Pacific Acoustic Laboratory exercise

(Fig. 1). Comparison of the predictions to observations from

an actual long range experiment would entail including real-

istic effects such as variation of the background sound speed

profile across range. The transport theory model in its cur-

rent form only assumes a constant background profile and is

not equipped to handle variations across range. Also, the

low frequency experiments in the North Pacific did not con-

tain observations using a full water-column spanning array,

which will be compared herein. To test the model, this

paper, thus, resorts to PE simulations that use the back-

ground SSP in Fig. 1. Multiple realizations of the internal

wave effects based on the buoyancy and adiabatic sound

speed gradient profiles in Fig. 1 were generated using the

method suggested by Colosi and Brown (1998) and added to

the background SSP. Figure 1 shows the RMS value of

the sound speed perturbations added to the constant
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background. There were a total of 100 such PE simulations.

The mean intensity and various time-front statistics predic-

tions from the model are then compared with averages from

the PE simulations.

The remaining sections of this paper are organized as

follows. Section II sets up the transport theory for broadband

mode statistics predictions and discusses the details of the

PE simulations. There are also complementary simulations

based on the adiabatic model. There are two reasons for

including the adiabatic model. The first is that the adiabatic

model includes mostly just the time wander induced by

internal waves and not the effects of interference that occur

due to cross-frequency decorrelation. This paper will test if

such a model is sufficient for all of the modes in the North

Pacific environment. The second is that the adiabatic model

provides analytical predictions for cross-modal decorrela-

tions, which are later used to predict the fluctuation in

arrival times for the modes, and the time-front. Next, Sec.

III compares the transport theory predictions with statistics

estimated from PE simulations. Finally, Sec. IV discusses

the results and concludes the paper.

II. TRANSPORT THEORY PREDICTIONS AND PE
SIMULATIONS

Prior to the transport theory equations, it is useful to

briefly review the background of mode propagation through

internal waves. In a range-independent environment where

the sound speed is constant across range, the mode ampli-

tudes propagate independently and the phases given by the

predictions from the background profile. However, in an

environment where the sound speed varies from one range

to the other, the coupled mode theory predicts that the mode

amplitudes interfere with each other, and the individual

phases are perturbed from their background values. For an

environment containing diffuse internal waves, such as

described by the GM model, where the SSP is continuously

perturbed across different range scales, the coupled mode

theory equations can be modeled as stochastic differential

equations. Dozier and Tappert (1978a,b) produced the semi-

nal work in this field to show that internal wave induced

coupling causes mode intensities to diffuse across mode

number. This coupling continues to infinitely long ranges

until equipartition in mode intensities and Rayleigh statistics

for scintillation. Dozier and Tappert (1978a,b), though,

neglected cross-modal correlations in their predictions for

intensities. Later, Colosi and Morozov (2009) and Colosi

et al. (2013) explicitly predicted the cross-modal correla-

tions. Chandrayadula et al. (2013a) then verified the predic-

tions against observations. For broadband mode statistics,

such as scattering in mode pulses or the time-front, there

have been many experimental observations and simulations

(Chandrayadula et al., 2013b; Colosi and Flatte, 1996;

Wage et al., 2003; Udovydchenkov and Brown, 2008;

Udovydchenkov et al., 2012; Wage et al., 2005). The obser-

vations from experiments and simulations suggest that

modes initially propagate as independent pulses with only a

time wander due to the variation in the average sound speed

and, at further ranges, show multiple arrivals. The scattering

effects were more obvious in the finale, where the arrival

structure seemed to be diffuse in time and depth. However,

there have been no analytical models to fully predict the

mode arrival structure in broadband, which requires the

cross-mode cross-frequency correlations [Eq. (5)].

The transport theory equations for the cross-frequency

cross-mode correlations are given by Colosi (2016),

dhanðx1Þa�pðx2ÞiðrÞ
dr

¼ iðkn1 � k�p2Þhanðx1Þa�pðx2Þi

�
XN

m¼1

XN

q¼1

hamðx1Þa�qðx2ÞiI�mn1;qp2

þ haqðx1Þa�mðx2ÞiI�mp2;qn1

�hanðx1Þa�qðx2ÞiI�mp2;qm2 þ hanðx1Þa�qðx2ÞiI�mn1;qm1;

(6)

where kn1 and kp2 are the wavenumbers for modes, n and p,

at frequencies, x1 and x2, respectively. The expression for

the scattering matrix,

Imn1;qp2 ¼
XJ

j¼1

HðjÞGmn1ð jÞGqp2ðjÞ
ð1

0

dkhF1ðkhÞ

�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

h � k2
pq2

q ; 0 � jkpq2j < kh;

i signðkpq2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

pq2 � k2
h

q ; 0 � kh < jkpq2j;

8>>>>>><
>>>>>>:

(7)

FIG. 1. The mean sound speed profile, buoyancy frequency profile, poten-

tial sound speed gradient (ð@cðzÞ=@zÞp), and RMS of the sound speed varia-

tions, ðhdc2ðzÞi1=2Þ.
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is a weighted summation of coupling matrices across the

internal wave mode number, j. The coupling matrices,

Gmn1ðjÞ, are given by

Gmn1ðjÞ ¼
f0k2

01

c0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

kn1km1

r ðD

0

dz
@cðzÞ
@z

� �
p

� N0

NðzÞ

� �1=2

sin pjẑðzÞ½ �/n1ðzÞ/m1ðzÞ
q0ðzÞ

: (8)

For calculating Gmn1 in Eq. (8), f0 is a reference internal

wave displacement, k01 ¼ x1=c0 is a reference acoustic

wavenumber, ð@cðzÞ=@zÞp is the potential sound speed gra-

dient, N0 is a reference buoyancy frequency, N(z) is the

buoyancy frequency profile, ẑðzÞ is the Wentzel-Kramers-

Brillouin-Jeffreys (WKBJ) stretched vertical coordinate, and

kpq ¼ kp � kq is the difference modal wavenumber. A simi-

lar expression holds for Gqp2ðjÞ using modes at frequency

x2. The expressions for GM vertical mode number spec-

trum, H( j), and internal wave spectrum, F1ðkhÞ, are given

by

HðjÞ ¼ 1

Mj

1

jþ j�
; (9)

F1ðkhÞ ¼
4

p
k2

hk̂j

ðk2
h þ k̂

2

j Þ
2
: (10)

The parameter, j�, called the “modal bandwidth,” Mj

¼
PJmax

j¼i 1=ðj2 þ j2
�Þ is the normalization constant for Jmax

number of internal wave modes; kh the internal wave hori-

zontal wavenumber; k̂ j ¼ pjf=N0B is the internal wave

wavenumber, which depends on the Coriolis frequency, f;
N0B ¼

ÐD
0

NðzÞdz, where N(z) is the buoyancy frequency

profile and D the total water depth.

The complementary simulations using the adiabatic ver-

sion only include the travel time wander due to perturbation

in sound speed across range and not all the effects of cross-

frequency decorrelation (Chandrayadula et al., 2020).

Although the wander is constant across the bandwidth, the

individual frequency components are slightly decorrelated

with each other due to the different phases they incur. This

approach performs separate predictions for each frequency

(Colosi and Morozov, 2009) and approximates the cross-

frequency coherences by using the adiabatic phase

structure-function. The cross-mode cross-frequency correla-

tions in the adiabatic approximation are given by

hanðx1Þa�pðx2ÞiðrÞ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hjanðr;x1Þj2ihjapðr;x2Þj2i

q
� signðanð0;x1ÞÞsignðapð0;x2ÞÞ
� eiðknðx1Þ�kpðx2ÞÞre�ðInn;nnðx1ÞþIpp;ppðx2Þ�2Inn;ppðx1;x2ÞÞr; (11)

where Inn;nnðx1Þ and Ipp;ppðx2Þ are the scattering matrices from

Eq. (7), calculated for mode n at angular frequency x1 and mode

p at x2, respectively. The quantities hjanðr;x1Þj2i and

hjapðr;x2Þj2i are mode energies at x1 and x2, respectively.

The expression for the mean travel time variance at the center

frequency, xc ¼ ðx1 þ x2Þ=2, and Dx ¼ x2 � x1 is

hs2
ni¼

2

Dx2
ðInn;nnðxcþDx=2ÞþInn;nnðxc�Dx=2Þ

�2Inn;nnðxcþDx=2;xc�Dx=2ÞÞr: (12)

The “travel time wander” is the RMS of the fluctuations,ffiffiffiffiffiffiffiffi
hs2

ni
p

.

Both Eqs. (6) and (11), for the full transport theory and

the adiabatic theory, respectively, are used for modes 1–75

to predict the cross-mode cross-frequency coherence,

hanðx1Þa�pðx2ÞiðrÞ ¼
hanðx1Þa�pðx2ÞiðrÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hjanðx1ÞðrÞj2ihjapðx2ÞðrÞj2i
q ; (13)

the mean intensity of the mode pulse,

hjanðr; tÞj2i ¼
ð

x1

ð
x2

hanðx1Þa�nðx2ÞiðrÞeiðx1�x2Þt dx1 dx2;

(14)

the time-front, hIðr; z; tÞi, based on Eq. (5), and the RMS

wander from Eq. (12). This paper also estimates the tempo-

ral “spread,” which describes the total width of the pulse. In

the absence of internal wave scattering, the background

pulse width is approximately the sum of only (1/source

bandwidth), and the dispersion induced spread for the source

frequencies, which differs from one mode to the other.

When internal wave perturbations cause scattering, there are

two more additions to the spread. The first is the RMS wan-

der of the pulse, which stretches the average pulse in time.

The second is the coupling-induced multipath, which also

smears the mean intensity temporally. There are no analyti-

cal expressions for the coupling-induced temporal-spread.

In the absence of such analytical expressions, this paper,

thus, uses the average intensities [Eq. (14)] and, from that,

estimates the temporal width.

Table I lists the parameters used in the transport theory

calculations. For the internal wave simulations, this paper

used the same parameters that were previously used by

Chandrayadula et al. (2013a). Colosi (2015) suggests

increasing the number of internal wave modes, Jmax, to 900

from the previous number of 50 to account for shear

TABLE I. Simulation parameters for transport theory predictions.

Reference sound speed (c0) 1480 m/s

Source depth (zsÞ 800 m

Frequency resolution 0.33 Hz

Latitude 30�

Reference buoyancy frequency (N0) 3 cycles=h

Number of internal wave modes (Jmax) 50

Reference internal wave displacement (f0) 7.3 m

Modal bandwidth ( j�) 3
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instability. Using a high number of internal wave modes in

the transport theory model also entails large computation

times for the scattering matrix calculations, especially for all

the cross-frequency calculations in a broadband setup. The

authors compared the transport theory predictions using 50

internal wave modes with calculations involving 900 inter-

nal wave modes. The predictions were used to model acous-

tic mode energies at a single frequency of 75 Hz and cross-

frequency coherences of 60–90 Hz against 75 Hz. For the

acoustic environment considered in this paper, there did not

seem to be much difference between the two predictions,

thus, only 50 internal wave modes were used to model the

sound speed perturbations.

The transport theory calculations were run on the

AQUA cluster at the Indian Institute of Technology (IIT)

Madras. The cluster consists of 260 nodes with every node

containing 20 cores. Each of the cores had a 2.5 GHz dual

Intel Xeon Gold 6248 processor and shared a 192 GB mem-

ory. The calculations used a total of 91 frequencies, which

were configured to run in parallel, with each job correlating

one frequency against the rest of the bandwidth. Each job

took about 5–10 days. The differences in compute-times

were due to the variations in computational load on the clus-

ter at various times. The nodes were not all available simul-

taneously for this calculation, and, hence, there were wait-

times, which extended the total duration for computations

by a large amount. The total time taken to compute all the

cross-mode cross-frequency correlations for a 1000 km

range took about 3 months.

The broadband PE simulations are based on the split-

step Pad�e solution (Collins, 1993; Jensen et al., 1994). The

simulations use the same SSP, buoyancy profile, and poten-

tial sound speed gradient given in Fig. 1. To fix the grid

sizes of the PE simulations, the simulations were bench-

marked against a normal mode sum, which used the same

environment profiles as in Fig. 1. The PE simulations con-

verged to less than 1 dB of the normal mode sum for the

parameters in Table II. Internal wave induced random sound

speed perturbations, dcðr; zÞ, were then generated using the

method of Colosi and Brown (1998), and added to the back-

ground SSP. For mode pulses, the simulated pressure fields

from the PE were projected onto the mode shapes, /nðzÞ, at

TABLE II. Computational parameters for PE simulations.

Number of Pad�e coefficients 4

Range grid spacing 50 m

Depth grid spacing 0.5 m

Bottom attenuation coefficient 5 dB=k
Time window 3 s

FIG. 2. The cross-frequency coherences of modes from transport theory, PE simulations, and adiabatic approximations at 250, 500, and 1000 km. The stan-

dard error bars for coherences of modes at frequency, x, are calculated using the expression ð1� ðhanðxÞa�pðxcÞiðrÞÞ2Þ=
ffiffiffi
n
p

, where xc is the center fre-

quency of 2p� 75 Hz (Bendat and Piersol, 2010).
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respective frequencies and, from that, the broadband statis-

tics obtained.

III. RESULTS: COMPARISONS BETWEEN
TRANSPORT THEORY AND PE SIMULATIONS

This section initially compares the models on a mode-

by-mode basis and then proceeds to the time-front.

A. Transport theory predictions vs PE for the
individual modes

Figure 2 shows the cross-frequency coherences,

hanðxÞa�nðxcÞiðrÞ, for a few modes between 1 and 75 and

compares them with predictions using separate PE simula-

tions. Comparisons are also included for the adiabatic

approximation. The coherences are calculated with refer-

ence to a frequency of xc ¼ 2p� 75 Hz. The transport the-

ory predictions are close to the averages from PE and

mostly within the errorbars. For both methods, mode 1 is

highly correlated across frequency at 250 km and 500 km

but decorrelates slightly by 1000 km. The coherence band-

widths, however, decrease for an increase in mode number.

For modes 65 and 75, at ranges 250, 500, and 1000 km, the

coherence is an irregular pattern across frequency and does

not steadily decay. The structure of the frequency coherence

has some nulls and certain areas where it is high. For some

modes, though, such as mode 65 at 250 km and mode 50 at

1000 km, the predictions and PE simulations differ by two

errorbars. The adiabatic approximation is a close match to

the mode 1 predictions but predicts wider coherence band-

widths for the high modes than the other two methods.

Figure 3 shows mode coherences between frequencies

70 Hz and 80 Hz at 250 km, 500 km, and 1000 km. The two

frequencies were chosen so that they were symmetrically

located (65 Hz) at some distance from the center frequency

and, yet, not much at the edges of the bandwidth. The results

in Fig. 3 can also be extended to other combinations in the

source spectrum with similar comparisons. The PE and

transport methods show a decrease in coherence across

range with the highest coherences across mode number at

250 km and the lowest at 1000 km. Unlike an increase in

range, the coherences do not decrease with the mode num-

ber. The low modes 1 and 25 are weakly correlated across

mode number for all three ranges. Mode 50 at 250 km and

500 km is more correlated than the previous calculation for

modes 1 and 25. The mode 50 against the other modes is,

however, poorly correlated at 1000 km. A higher mode, such

as mode 65, shows even stronger coherence across mode

FIG. 3. (Color online) The cross-mode cross-frequency coherences from transport theory, PE simulations, and the adiabatic approximation at 250, 500, and

1000 km. The errorbar calculation is similar to that in Fig. 2.
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number for 250 km and 500 km than that for modes 1, 25,

and 50. Again, similar to other modes at 1000 km, for mode

65, there is not much correlated across mode number. At

1000 km, there is more decorrelation across all of the mode

numbers. The adiabatic mode 1 is poorly correlated with

other modes and behaves similar to predictions from the

full transport theory. The adiabatic modes 25 and 50 at

250 km are strongly correlated with other modes. The PE

and transport methods also predict coherences above zero

and, yet, stay a little lower than the adiabatic approxima-

tion. On propagating farther than 250 km, the adiabatic

approximation for modes 25 and 50 does not compare

well with the other two methods. The adiabatic approxi-

mation, however, works very well for mode 65 at 250 km

and 500 km. The modes are highly correlated across mode

number in the approximate case and the full transport the-

ory models. For mode 75, the adiabatic approximation

does not work well. The modes are more decorrelated

than what the theory predicts. Although Fig. 3 does not

show all the correlations, other modes around them also

behaved in a similar manner. The low modes, such as

modes 1–25, were more decorrelated across mode num-

ber, but the coherences improved for the high modes,

such as around 55–70, with values close to the adiabatic

approximation.

Figure 4 compares the mean intensities of the time

series for modes 1, 25, and 50 for the transport theory and

PE. There are also comparisons included for the adiabatic

approximation and predictions using only the background

without any internal waves. All the methods show similar

peak values. The adiabatic and the no internal wave case

show a similar structure with narrow spreads, which is

mostly accounted by the bandwidth. The PE and the trans-

port, however, show larger spreads than the other two due to

the effects of scattering. Mode 1 at 250 km does not differ

much between all four methods. At 500 km, though, mode 1

pulse shows scattering at times prior to the main arrival.

Mode 1 at 1000 km is further spread than the previous

ranges. Similar to the 500 km range, the spread occurs at

times preceding the main bulk intensity. Mode 25 at 250 km

and 500 km shows an increase in spreads for times that fol-

low the main arrival. At 1000 km, mode 25 spreads further,

showing scattering on both sides of the main pulse. For

mode 50, much of the spread at 250 km and 500 km seems

to be from dispersion, and not much scattering is immedi-

ately obvious. At 1000 km, however, mode 50 shows an

increase in spread in the order of about 0.3 s. The statistics

for the other mode pulses lie in between the behavior for the

modes in Fig. 4. The scattering on either side of the main

arrival is due to coupling-induced contribution from the

FIG. 4. (Color online) Comparisons between the mean intensity of the mode pulse, hjbnðr; tÞj2i, predictions from transport theory, and PE simulations (stan-

dard error �0.37–0.45 dB) for ranges 250, 500, and 1000 km. Predictions using only the background profile and the adiabatic approximation are also

included.
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respective mode numbers. Mode 1 seems to contain

coupling-induced arrivals from modes that arrive early and,

hence, the additional spreads toward the times that precede

the main arrival. Similarly, mode 25 contains coupling from

modes that arrive later than the main arrival. Colosi and

Flatte (1996) also made similar observations in relating the

trailing and leading edges to the cross-modal scattering

contributions.

Figure 5 estimated the temporal spreads from mode

pulses, such as the one in Fig. 4, using a 10 dB cut off from

the peak for the transport theory predictions and PE aver-

ages. The spread from the predictions is within the errorbars

of the PE averages. Comparisons are also included for the

predictions from the adiabatic model [Eqs. (11) and (14)].

The predictions for the spreads using the full transport the-

ory follow the adiabatic model up to 100–150 km and then

show a faster increase beyond 200 km. The transport theory

predictions for the lowest set of modes increase the fastest

and the highest set of modes the slowest among the three

groups. The reason for the fastest increase in time spreads is

due to the low values for the cross-mode cross-frequency for

these lowest modes (Fig. 3). The adiabatic model for tempo-

ral spreads is adequate for ranges up to 100–200 km but fails

at greater ranges.

Figure 6 shows the bias of the average mode pulse for

both the transport theory predictions and PE simulations.

The bias is defined here as the difference of the arrival time

estimated from the centroid of the background pulse against

the average from PE of transport theory. The estimates for

the travel time use the centroid calculated for arrivals within

a 10 dB of the peak of the mode time series. Colosi and

Flatte (1996) and Flatt�e and Vera (2003) also estimated the

travel time biases for the modes and the time-front, respec-

tively. Transport theory does not yield the average of travel

times, but only the average intensity. Figure 6, thus, uses the

travel time of the mean intensity to present the bias. At

200 km, transport theory predictions predict a bias similar to

that of the average from PE. The transport theory and the PE

biases differed by only a few ms. For the resolution afforded

by Fig. 6, the two methods at 200 km are on top of each

other. At ranges 400 km and 600 km, the predictions are,

again, much closer to the estimate from the PE method. For

800 km, the two methods diverge a little and differ by

around 25–30 ms at 1000 km. Both the transport theory

method and PE predictions, however, show a curious pattern

to the biases. The high modes seem to cluster in groups,

containing a spread of biases centered around zero. The

biases within each group increase linearly, ranging from a

FIG. 5. (Color online) The time spread estimated from transport theory

compared against averages from PE simulations. The spread estimated from

the mode pulse using adiabatic expression for the mode pulse is also

plotted.

FIG. 6. (Color online) Bias at different ranges for the travel time estimated

from the average mode pulse. The transport theory mean intensities were

calculated using Eq. (14). For the mean PE mode pulse, the mode pulses for

each realization were initially estimated by projecting the pressure time

series onto the mode pulses at the respective frequencies and then averaged.
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set of negative to positive values. This linear pattern repeats

itself across range with the mode-groups having a similar

slope.

B. Transport theory predictions vs PE for the
time-front

This section will use only the PE and transport theory

and also compares the scattering predictions against calcu-

lations using only the background profile without any inter-

nal waves to appreciate the effects of internal wave

scattering. Figures 7–9 show that for ranges 250 km, 500

km, and 1000 km, the transport theory and averages from

the PE look quite similar. The scattered time-fronts show

smearing of intensities across time and depth. While the

background calculations show the interference pattern of

the modes with well-defined nulls in depth, they are

smeared out in the averages of the two other methods. For

example, at 500 km range, in the top row, showing the back-

ground predictions around the finale (800–1300 m and

337.9–338.1 s), the low modes are separated in time. Modes

1 and 2 arrive last, preceded by what seem likes modes 5

and higher. The model predictions (verified by PE) show no

such distinct modes for the finale, which overlap in time.

The 1000 km comparisons in the top row of Fig. 9 also

show a similar behavior.

Figure 7 also shows slices of the time-front at 250 km

for three different depths. The bottom row shows the time-

front at depths 800 m, 1760 m, and 2400 m. The compari-

sons at 800 m do not show much difference among the three

methods. At 1760 m, the biggest difference is for the finale

around 168.95 s. The predictions from the background do

not show any arrivals toward the end, whereas the transport

theory shows scattered arrivals of a transmission loss (TL)

value �115 dB, which is 10 dB less than the peak at that

depth. The PE simulations are a little less than �115 dB but

more visible. This scattering of intensities into a shadow

zone is only due to the internal waves, which the back-

ground predictions did not include. There is a similar com-

parison at 2400 m for an arrival that is around a cusp of the

early part of the time-front at 168.8 s. For the 500 km range,

Fig. 8 shows, in the bottom subplot, slices at 800, 1740, and

3200 m depths. At 1740 m, the transport theory and PE show

a much different structure than the background predictions.

The latest arrival at 337.85 s for the PE and transport shows

much higher levels of intensities than the background, again,

due to scattering by internal waves. Similarly at 3200 m

depth, the early arrival at 337.2 s shows an arrival that is

15 dB less than the peak. For 1000 km range, Fig. 9 shows

the time series at depths 800 m, 1050 m, and 2700 m, which

all clearly show the effects of scattering. The transport the-

ory predictions and the PE for the 800 m slice show differ-

ences in the order of 5–10 dB for many arrivals. The finale

for times after 675.65 s shows much smearing of arrivals

with no clear resolution of pulses. The slice at 1050 m also

FIG. 7. (Color online) Intensity predictions using only the background SSP (Fig. 1), the mean intensity using transport theory model, and the average of PE

simulations (standard error of 0.2–0.5 dB) at 250 km (top row) and the comparisons of intensities for depths 800, 1760, and 2400 (bottom subplots).
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FIG. 8. (Color online) A 2 s window of the time-front for range 500 km with similar comparisons as in Fig. 7. The bottom subplot compares the intensities

for depths 800, 1740, and 3200 m.

FIG. 9. (Color online) Similar to Fig. 7, a 3 s window of the time-front is shown for range 1000 km. The bottom subplot compares the intensities for depths

800, 1050, and 2700 m.
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shows similar effects with a peak arrival that seems to be

from scattering and exceeds the background predictions by

more than 10 dB. The slice at 2700 m depth shows a final

arrival that seems to be due to scattering and is only around

5 dB less than the peak.

Moving on to comparisons for other statistics, this sec-

tion uses slices of the time-front at two separate depths. The

two sets of arrivals are chosen to contrast the statistics for

the early part of the time-front against the finale. The slices

and respective portions at each depth were chosen such that

they could be analyzed from transport theory predictions,

and also tracked across the complementary PE trials. Figure

10 focuses on statistics for an early part (outlined by a box

for clarity) of the time-front by using arrivals at 2000 m

FIG. 10. (Color online) Intensity time

series at depth 2000 m for ranges 200,

400, 600, 800, and 1000 km. The

arrival indicated within a box is used

to estimate the time spread, wander,

and bias.

FIG. 11. (Color online) Intensity time

series at depth 800 m for ranges 200,

400, 600, 800, and 1000 km. The final

arrival indicated within a box is used

to estimate the time spread, wander,

and bias.
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across range. Figure 11 uses the finale at 800 m depth, which

is around the axis.

The wanders for the arrivals in Figs. 10 and 11 were

predicted using modes and compared with PE. At each

range, the mode arrival times for the bandwidth of 60–90 Hz

were calculated using the background sound speed profile

[Eq. (3)]. The overlap in modal-arrival times against the two

different portions marked in Figs. 10 and 11 was used to

associate a subset of modes for each of the respective

ranges. Table III shows that the arrivals in Fig. 10 are made

of modes greater than 20 up to mode 75 at some ranges. On

the other hand, Table IV shows that the arrivals in Fig. 11

are mostly made of the low modes, 15 or less. The low

modes (Table IV) have a greater wander than the high

modes (Table III). This can be explained as follows. The

predictions for the wander in Eq. (12) depend on the scatter-

ing matrices, Inn; which are a summation across GnnðjÞ,
weighted by the respective internal wave strengths, H( j), for

each internal wave mode number, j [Eq. (7)]. The GnnðjÞ
depend on the overlap between the internal wave mode

shape, j, and the acoustic mode shape, n [Eq. (8)]. The low

acoustic mode shapes correlate the most with the low inter-

nal wave modes and vice versa for the high. The lowest

internal wave modes have the most energy in the spectrum,

H( j), and so cause the most wander in the lowest acoustic

modes. For comparisons with the model, the wanders were

also estimated from the Monte Carlo PE simulations. For

each section (Figs. 10 and 11), the arrival times of the peak

across PE simulations were first estimated and their sample

standard deviation calculated. Tables III and IV show the

comparisons between the models based on modes and the

PE simulations. The mode-based model and the averages

from PE simulations agree.

Tables V and VI show the pulse spread comparisons for

the arrivals in Figs. 10 and 11, respectively. The spreads

were estimated by calculating the total widths of all arrivals

that are within 10 dB of the peak inside the observation win-

dow. For the early arrivals, Table V shows that the predic-

tions agree with the averages from the PE. The time spreads

for the PE and transport methods, which include the scatter-

ing, are both greater than the predictions from background

by amount of 5–15 ms. The difference in time spread

between the scattering predictions and the background seem

to be around the wanders predicted in Table III. For the

arrivals in the finale, Table VI shows different amounts of

spread for the background at the different ranges. The differ-

ence in spread is due to the respective number of (low)

modes and the nature of the intra-modal dispersion. The

time spreads for the scattering predictions are larger than

their counterparts for the early arrival (Table V). In compar-

ison to the mean arrivals in Fig. 10, the finale (Fig. 11) looks

more spread, which the time-spread estimates also indicate.

The agreement between the PE and the transport theory is

within 1–1.5 errorbars for all ranges except 800 km.

However, the arrivals around the axis for long ranges, such

as 800 km, seem complicated (Fig. 11) with multiple peaks.

The discrepancy in the time-spread estimates is potentially

because of the nature of the arrival.

Tables VII and VIII compare the bias estimates for the

mean time-front from the PE and transport theory. Similar

to the mode pulses, the biases measure the difference

between the average travel times from the predictions

against a similar calculation for the background. The travel

times are estimated using the centroid of arrivals within a

10 dB cutoff from the maximum. The biases for the early

arrivals in Table VII are smaller than the biases for the indi-

vidual modes in Fig. 6. The high modes showed a bias of

around 100 ms for the high modes at 1000 km (Fig. 6). In

TABLE III. Wander from PE simulations and predictions from the respective

modal wander across range for the arrivals in Fig. 10. In brackets, the predic-

tions also show the spread of wanders for the different modes used in the cal-

culation. The standard error of the PE estimate was estimated using the

expression r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 1=NÞ � c4ðNÞ2

q
, where r is the wander estimated from

PE simulations, c4ðNÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 1Þ=N

p
ð1� 1=4N � 7=32N2 � 19=128N3Þ,

and N¼ 100 (Cochran, 1934).

Range (km) Modes Prediction wander (ms) PE wander (ms)

200 53–73 2.57 (2.29–2.98) 2.7 6 0.19

400 22–56 5.5 (4.04–6.67) 4.1 6 0.28

600 53–75 4.49 (3.87–5.17) 5.2 6 0.36

800 45–74 5.56 (4.52–7.02) 7.2 6 0.5

1000 51–75 5.88 (5–6.91) 6.8 6 0.48

TABLE IV. Wander from PE simulations and predictions from the respec-

tive modal wander across range for the arrivals in Fig. 11. The rest of the

caption is the same as that in Table III.

Range (km) Modes Prediction wander (ms) PE wander (ms)

200 1–15 4.76 (4.6–4.84) 4.3 6 0.3

400 1–12 6.7 (6.5–6.86) 7.2 6 0.5

600 1–9 8.1 (7.95–8.39) 8.1 6 0.57

800 1–7 9.2 (9.18–9.59) 9.2 6 0.65

1000 1–6 10.7 (10.26–10.6) 10.7 6 0.75

TABLE V. Pulse spread estimates for the early arrivals at 2000 m depth

(Fig. 10).

Range (km) Background (ms) Prediction (ms) PE (ms)

200 74 74.7 76.7 6 5.41

400 74 90.1 93.3 6 6.58

600 74.7 76.9 76.7 6 5.41

800 73.2 80.6 80 6 5.65

1000 79.1 84.2 80 6 5.64

TABLE VI. Pulse spread estimates for the finale at 800 m depth (Fig. 11).

Range (km) Background (ms) Prediction (ms) PE (ms)

200 75.4 95.2 93.3 6 6.58

400 95.2 106.9 106.7 6 7.53

600 105.5 116.5 106.7 6 7.53

800 69.6 112.8 95 6 6.35

1000 68.8 94.5 86.7 6 6.12
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contrast to the modes, the early arrival in the time-front only

showed a bias of 13 ms at 1000 km (Table VII). Similarly,

the biases for the finale are also a little less than the individ-

ual low modes. While the modes 1–15 at 1000 km show a

bias of around 650 ms, the finale at 1000 km suggests a bias

about -26 ms. The bias estimates for the finale are all nega-

tive across range, implying the finale, which is made of the

lowest modes, consistently arrives earlier than the

background.

IV. DISCUSSION

The results in this paper prove that the mode-based

transport theory accurately predicts the intensities in all

parts of a deep water time-front (Figs. 7–9). The mode-

based approach and PE method are based on completely dif-

ferent computational methods and, yet, show almost the

same results. The transport theory method seems accurate

and also incorporates all of the physics of the waveguide

modes and can, hence, be used as a benchmarking tool to

predict time-fronts in a random medium. Section II men-

tioned the time taken to implement such calculations by

using the local resources. The lengthy computational times

are a potential hindrance for running mode calculations at

higher frequencies and longer ranges than discussed in this

paper. However, this situation will improve with fast com-

putational resources to establish the mode method as the

standard in wave propagation through random media

models.

The transport theory method also gives insight into

some of the physics of deep water time-fronts. In compari-

son to the pulse arrivals in the time-front, the mode-view

gives a more detailed picture into some of the scattering.

Figure 3 showed that the lowest modes are uncorrelated

across frequency and mode number. The finale at ranges

such as 250 and 500 km are, thus, effectively a sum of

uncorrelated mode pulses. This explains the smearing of

intensities in the finale of the time-front (Figs. 8 and 9).

Although the high modes (such as mode 65 in Fig. 3 and

others around it) undergo scattering, they are highly corre-

lated. The high modes roughly share similar turning depths

and, hence, their scattering is correlated (Colosi, 2016). This

explains why the early parts of the time-front keep their

time-depth structure intact. Virovlyansky (1999) offered a

ray-based explanation for this phenomenon. Regarding the

shadow zones, the modal approach in this paper predicts the

amount of ensonification. The high modes scatter toward the

low modes and, thus, spread toward later parts of the time-

front (example modes 25 and 50 in Fig. 4). While spreading

in time, the high modes also scatter energy into deeper

depths. This is because the high modes have a larger spread

in depth than the low modes. Therefore, this additional

spread ends up filling up the shadow zones. Transport theory

also seems to provide a mode-based explanation for the

ensonification of shadow zones.

For the different sections of the time-front, compari-

sons in Tables III and IV showed that using an appropriate

choice of mode numbers, the RMS wander can be success-

fully predicted. The mode-based method and path integral

method suggest a
ffiffiffi
R
p

range dependence for the time wan-

der. The similarity lies in both the methods using an adia-

batic phase approximation. The difference to be noted,

however, is that while the ray method relies on picking the

right launch angle and the turning depths, the other

method relies on choosing the correct set of modes based

on the respective group velocities. Transport theory,

though, does not yield analytical predictions that relate the

GM parameters to statistics such as spread and bias. The

path integral method provides the predictions via expres-

sions for the frequency coherence (Flatte, 1983). The adia-

batic model for modes promises such analytical

expressions (Colosi et al., 2013). Nonetheless, this paper

showed the limitations of the adiabatic theory for predict-

ing the spreads, specifically with regard to high modes and

ranges greater than 200 km (Fig. 5). The transport theory

method can only give average intensities to estimate the

pulse spreads and its predictions are still valuable, espe-

cially for estimates around the finale, where the path inte-

gral method has issues (Andrew et al., 2016). For the bias

predictions, the transport theory method predicts large val-

ues for the individual mode arrivals (Fig. 6) and, yet, a rel-

atively small bias for the time-front (Sec. III B). This

reduction can be explained as follows. The time-front is a

coherent combination of mode pulses with different

biases, which add or cancel each other, to yield a net bias

that is lower than the individual values.
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TABLE VII. Pulse bias estimates for the early arrival at 2000 m depth

(Fig. 10).

Range (km) Prediction (ms) PE (ms)

200 �2.97 �2.69 6 0.19

400 �11.19 �10.68 6 0.75

600 6.13 7.79 6 0.55

800 �15.23 �14.53 6 1.02

1000 13.08 16.45 6 1.16

TABLE VIII. Pulse bias estimates for the finale at 800 m depth (Fig. 11).

Range (km) Prediction (ms) PE (ms)

200 �7.94 �7.9 6 0.55

400 �9.90 �10.37 6 0.73

600 �16.21 �13 6 0.91

800 �24.01 �21.73 6 1.53

1000 �26.69 �26.66 6 1.88
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